void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) { if (!TraceMethodHandles) return; BLOCK_COMMENT("trace_method_handle {"); __ enter(); __ andptr(rsp, -16); // align stack if needed for FPU state __ pusha(); __ mov(rbx, rsp); // for retreiving saved_regs // Note: saved_regs must be in the entered frame for the // robust stack walking implemented in trace_method_handle_stub. // save FP result, valid at some call sites (adapter_opt_return_float, ...) __ increment(rsp, -2 * wordSize); if (UseSSE >= 2) { __ movdbl(Address(rsp, 0), xmm0); } else if (UseSSE == 1) { __ movflt(Address(rsp, 0), xmm0); } else { __ fst_d(Address(rsp, 0)); } // Incoming state: // rcx: method handle // // To avoid calling convention issues, build a record on the stack // and pass the pointer to that instead. __ push(rbp); // entry_sp (with extra align space) __ push(rbx); // pusha saved_regs __ push(rcx); // mh __ push(rcx); // slot for adaptername __ movptr(Address(rsp, 0), (intptr_t) adaptername); __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, trace_method_handle_stub_wrapper), rsp); __ increment(rsp, sizeof(MethodHandleStubArguments)); if (UseSSE >= 2) { __ movdbl(xmm0, Address(rsp, 0)); } else if (UseSSE == 1) { __ movflt(xmm0, Address(rsp, 0)); } else { __ fld_d(Address(rsp, 0)); } __ increment(rsp, 2 * wordSize); __ popa(); __ leave(); BLOCK_COMMENT("} trace_method_handle"); }
static void slow_call_thr_specific(MacroAssembler* _masm, Register thread) { // slow call to of thr_getspecific // int thr_getspecific(thread_key_t key, void **value); // Consider using pthread_getspecific instead. if (thread != rax) { __ push(rax); } __ push(0); // space for return value __ push(rdi); __ push(rsi); __ lea(rsi, Address(rsp, 16)); // pass return value address __ push(rdx); __ push(rcx); __ push(r8); __ push(r9); __ push(r10); // XXX __ mov(r10, rsp); __ andptr(rsp, -16); __ push(r10); __ push(r11); __ movl(rdi, ThreadLocalStorage::thread_index()); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, thr_getspecific))); __ pop(r11); __ pop(rsp); __ pop(r10); __ pop(r9); __ pop(r8); __ pop(rcx); __ pop(rdx); __ pop(rsi); __ pop(rdi); __ pop(thread); // load return value if (thread != rax) { __ pop(rax); } }
int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Register scratch, Label& slow_case) { const int aligned_mask = BytesPerWord -1; const int hdr_offset = oopDesc::mark_offset_in_bytes(); assert(hdr == rax, "hdr must be rax, for the cmpxchg instruction"); assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different"); Label done; int null_check_offset = -1; verify_oop(obj); // save object being locked into the BasicObjectLock movptr(Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()), obj); if (UseBiasedLocking) { assert(scratch != noreg, "should have scratch register at this point"); null_check_offset = biased_locking_enter(disp_hdr, obj, hdr, scratch, false, done, &slow_case); } else { null_check_offset = offset(); } // Load object header movptr(hdr, Address(obj, hdr_offset)); // and mark it as unlocked orptr(hdr, markOopDesc::unlocked_value); // save unlocked object header into the displaced header location on the stack movptr(Address(disp_hdr, 0), hdr); // test if object header is still the same (i.e. unlocked), and if so, store the // displaced header address in the object header - if it is not the same, get the // object header instead if (os::is_MP()) MacroAssembler::lock(); // must be immediately before cmpxchg! cmpxchgptr(disp_hdr, Address(obj, hdr_offset)); // if the object header was the same, we're done if (PrintBiasedLockingStatistics) { cond_inc32(Assembler::equal, ExternalAddress((address)BiasedLocking::fast_path_entry_count_addr())); } jcc(Assembler::equal, done); // if the object header was not the same, it is now in the hdr register // => test if it is a stack pointer into the same stack (recursive locking), i.e.: // // 1) (hdr & aligned_mask) == 0 // 2) rsp <= hdr // 3) hdr <= rsp + page_size // // these 3 tests can be done by evaluating the following expression: // // (hdr - rsp) & (aligned_mask - page_size) // // assuming both the stack pointer and page_size have their least // significant 2 bits cleared and page_size is a power of 2 subptr(hdr, rsp); andptr(hdr, aligned_mask - os::vm_page_size()); // for recursive locking, the result is zero => save it in the displaced header // location (NULL in the displaced hdr location indicates recursive locking) movptr(Address(disp_hdr, 0), hdr); // otherwise we don't care about the result and handle locking via runtime call jcc(Assembler::notZero, slow_case); // done bind(done); return null_check_offset; }
address JNI_FastGetField::generate_fast_get_int_field0(BasicType type) { const char *name; switch (type) { case T_BOOLEAN: name = "jni_fast_GetBooleanField"; break; case T_BYTE: name = "jni_fast_GetByteField"; break; case T_CHAR: name = "jni_fast_GetCharField"; break; case T_SHORT: name = "jni_fast_GetShortField"; break; case T_INT: name = "jni_fast_GetIntField"; break; default: ShouldNotReachHere(); } ResourceMark rm; BufferBlob* b = BufferBlob::create(name, BUFFER_SIZE*wordSize); address fast_entry = b->instructions_begin(); CodeBuffer cbuf(fast_entry, b->instructions_size()); MacroAssembler* masm = new MacroAssembler(&cbuf); Label slow; // stack layout: offset from rsp (in words): // return pc 0 // jni env 1 // obj 2 // jfieldID 3 ExternalAddress counter(SafepointSynchronize::safepoint_counter_addr()); __ mov32 (rcx, counter); __ testb (rcx, 1); __ jcc (Assembler::notZero, slow); if (os::is_MP()) { __ mov(rax, rcx); __ andptr(rax, 1); // rax, must end up 0 __ movptr(rdx, Address(rsp, rax, Address::times_1, 2*wordSize)); // obj, notice rax, is 0. // rdx is data dependent on rcx. } else { __ movptr (rdx, Address(rsp, 2*wordSize)); // obj } __ movptr(rax, Address(rsp, 3*wordSize)); // jfieldID __ movptr(rdx, Address(rdx, 0)); // *obj __ shrptr (rax, 2); // offset assert(count < LIST_CAPACITY, "LIST_CAPACITY too small"); speculative_load_pclist[count] = __ pc(); switch (type) { case T_BOOLEAN: __ movzbl (rax, Address(rdx, rax, Address::times_1)); break; case T_BYTE: __ movsbl (rax, Address(rdx, rax, Address::times_1)); break; case T_CHAR: __ movzwl (rax, Address(rdx, rax, Address::times_1)); break; case T_SHORT: __ movswl (rax, Address(rdx, rax, Address::times_1)); break; case T_INT: __ movl (rax, Address(rdx, rax, Address::times_1)); break; default: ShouldNotReachHere(); } Address ca1; if (os::is_MP()) { __ lea(rdx, counter); __ xorptr(rdx, rax); __ xorptr(rdx, rax); __ cmp32(rcx, Address(rdx, 0)); // ca1 is the same as ca because // rax, ^ counter_addr ^ rax, = address // ca1 is data dependent on rax,. } else { __ cmp32(rcx, counter); } __ jcc (Assembler::notEqual, slow); #ifndef _WINDOWS __ ret (0); #else // __stdcall calling convention __ ret (3*wordSize); #endif slowcase_entry_pclist[count++] = __ pc(); __ bind (slow); address slow_case_addr; switch (type) { case T_BOOLEAN: slow_case_addr = jni_GetBooleanField_addr(); break; case T_BYTE: slow_case_addr = jni_GetByteField_addr(); break; case T_CHAR: slow_case_addr = jni_GetCharField_addr(); break; case T_SHORT: slow_case_addr = jni_GetShortField_addr(); break; case T_INT: slow_case_addr = jni_GetIntField_addr(); } // tail call __ jump (ExternalAddress(slow_case_addr)); __ flush (); #ifndef _WINDOWS return fast_entry; #else switch (type) { case T_BOOLEAN: jni_fast_GetBooleanField_fp = (GetBooleanField_t)fast_entry; break; case T_BYTE: jni_fast_GetByteField_fp = (GetByteField_t)fast_entry; break; case T_CHAR: jni_fast_GetCharField_fp = (GetCharField_t)fast_entry; break; case T_SHORT: jni_fast_GetShortField_fp = (GetShortField_t)fast_entry; break; case T_INT: jni_fast_GetIntField_fp = (GetIntField_t)fast_entry; } return os::win32::fast_jni_accessor_wrapper(type); #endif }
address JNI_FastGetField::generate_fast_get_float_field0(BasicType type) { const char *name; switch (type) { case T_FLOAT: name = "jni_fast_GetFloatField"; break; case T_DOUBLE: name = "jni_fast_GetDoubleField"; break; default: ShouldNotReachHere(); } ResourceMark rm; BufferBlob* b = BufferBlob::create(name, BUFFER_SIZE*wordSize); address fast_entry = b->instructions_begin(); CodeBuffer cbuf(fast_entry, b->instructions_size()); MacroAssembler* masm = new MacroAssembler(&cbuf); Label slow_with_pop, slow; // stack layout: offset from rsp (in words): // return pc 0 // jni env 1 // obj 2 // jfieldID 3 ExternalAddress counter(SafepointSynchronize::safepoint_counter_addr()); __ mov32 (rcx, counter); __ testb (rcx, 1); __ jcc (Assembler::notZero, slow); if (os::is_MP()) { __ mov(rax, rcx); __ andptr(rax, 1); // rax, must end up 0 __ movptr(rdx, Address(rsp, rax, Address::times_1, 2*wordSize)); // obj, notice rax, is 0. // rdx is data dependent on rcx. } else { __ movptr(rdx, Address(rsp, 2*wordSize)); // obj } __ movptr(rax, Address(rsp, 3*wordSize)); // jfieldID __ movptr(rdx, Address(rdx, 0)); // *obj __ shrptr(rax, 2); // offset assert(count < LIST_CAPACITY, "LIST_CAPACITY too small"); speculative_load_pclist[count] = __ pc(); switch (type) { #ifndef _LP64 case T_FLOAT: __ fld_s (Address(rdx, rax, Address::times_1)); break; case T_DOUBLE: __ fld_d (Address(rdx, rax, Address::times_1)); break; #else case T_FLOAT: __ movflt (xmm0, Address(robj, roffset, Address::times_1)); break; case T_DOUBLE: __ movdbl (xmm0, Address(robj, roffset, Address::times_1)); break; #endif // _LP64 default: ShouldNotReachHere(); } Address ca1; if (os::is_MP()) { __ fst_s (Address(rsp, -4)); __ lea(rdx, counter); __ movl (rax, Address(rsp, -4)); // garbage hi-order bits on 64bit are harmless. __ xorptr(rdx, rax); __ xorptr(rdx, rax); __ cmp32(rcx, Address(rdx, 0)); // rax, ^ counter_addr ^ rax, = address // ca1 is data dependent on the field // access. } else { __ cmp32(rcx, counter); } __ jcc (Assembler::notEqual, slow_with_pop); #ifndef _WINDOWS __ ret (0); #else // __stdcall calling convention __ ret (3*wordSize); #endif __ bind (slow_with_pop); // invalid load. pop FPU stack. __ fstp_d (0); slowcase_entry_pclist[count++] = __ pc(); __ bind (slow); address slow_case_addr; switch (type) { case T_FLOAT: slow_case_addr = jni_GetFloatField_addr(); break; case T_DOUBLE: slow_case_addr = jni_GetDoubleField_addr(); break; default: ShouldNotReachHere(); } // tail call __ jump (ExternalAddress(slow_case_addr)); __ flush (); #ifndef _WINDOWS return fast_entry; #else switch (type) { case T_FLOAT: jni_fast_GetFloatField_fp = (GetFloatField_t)fast_entry; break; case T_DOUBLE: jni_fast_GetDoubleField_fp = (GetDoubleField_t)fast_entry; } return os::win32::fast_jni_accessor_wrapper(type); #endif }
address JNI_FastGetField::generate_fast_get_long_field() { const char *name = "jni_fast_GetLongField"; ResourceMark rm; BufferBlob* b = BufferBlob::create(name, BUFFER_SIZE*wordSize); address fast_entry = b->instructions_begin(); CodeBuffer cbuf(fast_entry, b->instructions_size()); MacroAssembler* masm = new MacroAssembler(&cbuf); Label slow; // stack layout: offset from rsp (in words): // old rsi 0 // return pc 1 // jni env 2 // obj 3 // jfieldID 4 ExternalAddress counter(SafepointSynchronize::safepoint_counter_addr()); __ push (rsi); __ mov32 (rcx, counter); __ testb (rcx, 1); __ jcc (Assembler::notZero, slow); if (os::is_MP()) { __ mov(rax, rcx); __ andptr(rax, 1); // rax, must end up 0 __ movptr(rdx, Address(rsp, rax, Address::times_1, 3*wordSize)); // obj, notice rax, is 0. // rdx is data dependent on rcx. } else { __ movptr(rdx, Address(rsp, 3*wordSize)); // obj } __ movptr(rsi, Address(rsp, 4*wordSize)); // jfieldID __ movptr(rdx, Address(rdx, 0)); // *obj __ shrptr(rsi, 2); // offset assert(count < LIST_CAPACITY-1, "LIST_CAPACITY too small"); speculative_load_pclist[count++] = __ pc(); __ movptr(rax, Address(rdx, rsi, Address::times_1)); #ifndef _LP64 speculative_load_pclist[count] = __ pc(); __ movl(rdx, Address(rdx, rsi, Address::times_1, 4)); #endif // _LP64 if (os::is_MP()) { __ lea(rsi, counter); __ xorptr(rsi, rdx); __ xorptr(rsi, rax); __ xorptr(rsi, rdx); __ xorptr(rsi, rax); __ cmp32(rcx, Address(rsi, 0)); // ca1 is the same as ca because // rax, ^ rdx ^ counter_addr ^ rax, ^ rdx = address // ca1 is data dependent on both rax, and rdx. } else { __ cmp32(rcx, counter); } __ jcc (Assembler::notEqual, slow); __ pop (rsi); #ifndef _WINDOWS __ ret (0); #else // __stdcall calling convention __ ret (3*wordSize); #endif slowcase_entry_pclist[count-1] = __ pc(); slowcase_entry_pclist[count++] = __ pc(); __ bind (slow); __ pop (rsi); address slow_case_addr = jni_GetLongField_addr();; // tail call __ jump (ExternalAddress(slow_case_addr)); __ flush (); #ifndef _WINDOWS return fast_entry; #else jni_fast_GetLongField_fp = (GetLongField_t)fast_entry; return os::win32::fast_jni_accessor_wrapper(T_LONG); #endif }
void CompactingPermGenGen::generate_vtable_methods(void** vtbl_list, void** vtable, char** md_top, char* md_end, char** mc_top, char* mc_end) { intptr_t vtable_bytes = (num_virtuals * vtbl_list_size) * sizeof(void*); *(intptr_t *)(*md_top) = vtable_bytes; *md_top += sizeof(intptr_t); void** dummy_vtable = (void**)*md_top; *vtable = dummy_vtable; *md_top += vtable_bytes; // Get ready to generate dummy methods. CodeBuffer cb((unsigned char*)*mc_top, mc_end - *mc_top); MacroAssembler* masm = new MacroAssembler(&cb); Label common_code; for (int i = 0; i < vtbl_list_size; ++i) { for (int j = 0; j < num_virtuals; ++j) { dummy_vtable[num_virtuals * i + j] = (void*)masm->pc(); // Load eax with a value indicating vtable/offset pair. // -- bits[ 7..0] (8 bits) which virtual method in table? // -- bits[12..8] (5 bits) which virtual method table? // -- must fit in 13-bit instruction immediate field. __ movl(rax, (i << 8) + j); __ jmp(common_code); } } __ bind(common_code); // Expecting to be called with "thiscall" convections -- the arguments // are on the stack and the "this" pointer is in c_rarg0. In addition, rax // was set (above) to the offset of the method in the table. __ push(c_rarg1); // save & free register __ push(c_rarg0); // save "this" __ mov(c_rarg0, rax); __ shrptr(c_rarg0, 8); // isolate vtable identifier. __ shlptr(c_rarg0, LogBytesPerWord); __ lea(c_rarg1, ExternalAddress((address)vtbl_list)); // ptr to correct vtable list. __ addptr(c_rarg1, c_rarg0); // ptr to list entry. __ movptr(c_rarg1, Address(c_rarg1, 0)); // get correct vtable address. __ pop(c_rarg0); // restore "this" __ movptr(Address(c_rarg0, 0), c_rarg1); // update vtable pointer. __ andptr(rax, 0x00ff); // isolate vtable method index __ shlptr(rax, LogBytesPerWord); __ addptr(rax, c_rarg1); // address of real method pointer. __ pop(c_rarg1); // restore register. __ movptr(rax, Address(rax, 0)); // get real method pointer. __ jmp(rax); // jump to the real method. __ flush(); *mc_top = (char*)__ pc(); }
void MetaspaceShared::generate_vtable_methods(void** vtbl_list, void** vtable, char** md_top, char* md_end, char** mc_top, char* mc_end) { intptr_t vtable_bytes = (num_virtuals * vtbl_list_size) * sizeof(void*); *(intptr_t *)(*md_top) = vtable_bytes; *md_top += sizeof(intptr_t); void** dummy_vtable = (void**)*md_top; *vtable = dummy_vtable; *md_top += vtable_bytes; // Get ready to generate dummy methods. CodeBuffer cb((unsigned char*)*mc_top, mc_end - *mc_top); MacroAssembler* masm = new MacroAssembler(&cb); Label common_code; for (int i = 0; i < vtbl_list_size; ++i) { for (int j = 0; j < num_virtuals; ++j) { dummy_vtable[num_virtuals * i + j] = (void*)masm->pc(); // Load rax, with a value indicating vtable/offset pair. // -- bits[ 7..0] (8 bits) which virtual method in table? // -- bits[12..8] (5 bits) which virtual method table? // -- must fit in 13-bit instruction immediate field. __ movl(rax, (i << 8) + j); __ jmp(common_code); } } __ bind(common_code); #ifdef WIN32 // Expecting to be called with "thiscall" conventions -- the arguments // are on the stack, except that the "this" pointer is in rcx. #else // Expecting to be called with Unix conventions -- the arguments // are on the stack, including the "this" pointer. #endif // In addition, rax was set (above) to the offset of the method in the // table. #ifdef WIN32 __ push(rcx); // save "this" #endif __ mov(rcx, rax); __ shrptr(rcx, 8); // isolate vtable identifier. __ shlptr(rcx, LogBytesPerWord); Address index(noreg, rcx, Address::times_1); ExternalAddress vtbl((address)vtbl_list); __ movptr(rdx, ArrayAddress(vtbl, index)); // get correct vtable address. #ifdef WIN32 __ pop(rcx); // restore "this" #else __ movptr(rcx, Address(rsp, BytesPerWord)); // fetch "this" #endif __ movptr(Address(rcx, 0), rdx); // update vtable pointer. __ andptr(rax, 0x00ff); // isolate vtable method index __ shlptr(rax, LogBytesPerWord); __ addptr(rax, rdx); // address of real method pointer. __ jmp(Address(rax, 0)); // get real method pointer. __ flush(); *mc_top = (char*)__ pc(); }