Ejemplo n.º 1
0
int ardrone_write_motor_commands(int ardrone_fd, uint16_t motor1, uint16_t motor2, uint16_t motor3, uint16_t motor4) {
	const unsigned int min_motor_interval = 4900;
	static uint64_t last_motor_time = 0;

	static struct actuator_outputs_s outputs;
	outputs.timestamp = hrt_absolute_time();
	outputs.output[0] = motor1;
	outputs.output[1] = motor2;
	outputs.output[2] = motor3;
	outputs.output[3] = motor4;
	static orb_advert_t pub = 0;
	if (pub == 0) {
		pub = orb_advertise(ORB_ID_VEHICLE_CONTROLS, &outputs);
	}

	if (hrt_absolute_time() - last_motor_time > min_motor_interval) {
		uint8_t buf[5] = {0};
		ar_get_motor_packet(buf, motor1, motor2, motor3, motor4);
		int ret;
		ret = write(ardrone_fd, buf, sizeof(buf));
		fsync(ardrone_fd);

		/* publish just written values */
		orb_publish(ORB_ID_VEHICLE_CONTROLS, pub, &outputs);

		if (ret == sizeof(buf)) {
			return OK;
		} else {
			return ret;
		}
	} else {
		return -ERROR;
	}
}
Ejemplo n.º 2
0
void control_attitude(const struct rc_channels_s *rc, const struct vehicle_attitude_s *att, const struct vehicle_status_s *status, int ardrone_pub, struct ardrone_control_s *ar_control)
{
	static int motor_skip_counter = 0;

	static PID_t yaw_pos_controller;
	static PID_t yaw_speed_controller;
	static PID_t nick_controller;
	static PID_t roll_controller;

	static const float min_gas = 10;
	static const float max_gas = 512;
	static uint16_t motor_pwm[4] = {0, 0, 0, 0};
	static float motor_calc[4] = {0.0f, 0.0f, 0.0f, 0.0f};
//	static float remote_control_weight_z = 1;
//	static float position_control_weight_z = 0;

	static float pid_yawpos_lim;
	static float pid_yawspeed_lim;
	static float pid_att_lim;

	static bool initialized;

	static float_vect3 attitude_setpoint_navigationframe_from_positioncontroller;

	static hrt_abstime now_time;
	static hrt_abstime last_time;

	static commander_state_machine_t current_state;

	/* initialize the pid controllers when the function is called for the first time */
	if (initialized == false) {

		pid_init(&yaw_pos_controller,
			 global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_P],
			 global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_I],
			 global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_D],
			 global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_AWU],
			 PID_MODE_DERIVATIV_CALC, 154);

		pid_init(&yaw_speed_controller,
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_P],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_I],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_D],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_AWU],
			 PID_MODE_DERIVATIV_CALC, 155);

		pid_init(&nick_controller,
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU],
			 PID_MODE_DERIVATIV_SET, 156);

		pid_init(&roll_controller,
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
			 (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU],
			 PID_MODE_DERIVATIV_SET, 157);

		pid_yawpos_lim = 	global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_LIM];
		pid_yawspeed_lim =	(max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_LIM];
		pid_att_lim =	(max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_LIM];

		//TODO: true initialization? get gps while on ground?
		attitude_setpoint_navigationframe_from_positioncontroller.x = 0.0f;
		attitude_setpoint_navigationframe_from_positioncontroller.y = 0.0f;
		attitude_setpoint_navigationframe_from_positioncontroller.z = 0.0f;

		last_time = 0;
		initialized = true;
	}

	/* load new parameters with lower rate */
	if (motor_skip_counter % 50 == 0) {
		pid_set_parameters(&yaw_pos_controller,
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_P],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_I],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_D],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_AWU]);

		pid_set_parameters(&yaw_speed_controller,
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_P],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_I],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_D],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_AWU]);

		pid_set_parameters(&nick_controller,
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU]);

		pid_set_parameters(&roll_controller,
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_P],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_I],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_D],
				   (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_AWU]);

		pid_yawpos_lim = global_data_parameter_storage->pm.param_values[PARAM_PID_YAWPOS_LIM];
		pid_yawspeed_lim = (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_YAWSPEED_LIM];
		pid_att_lim = (max_gas - min_gas) * global_data_parameter_storage->pm.param_values[PARAM_PID_ATT_LIM];
	}

	current_state = status->state_machine;
	float_vect3 attitude_setpoint_bodyframe = {}; //this is the setpoint in the bodyframe "mixed" together from the setpoint from the remote and the setpoint from the position controller

	if (current_state == SYSTEM_STATE_AUTO) {

		attitude_setpoint_navigationframe_from_positioncontroller.x = ar_control->attitude_setpoint_navigationframe_from_positioncontroller[0];
		attitude_setpoint_navigationframe_from_positioncontroller.y = ar_control->attitude_setpoint_navigationframe_from_positioncontroller[1];
		attitude_setpoint_navigationframe_from_positioncontroller.z = ar_control->attitude_setpoint_navigationframe_from_positioncontroller[2];

		float yaw_e = att->yaw - attitude_setpoint_navigationframe_from_positioncontroller.z;

		// don't turn around the wrong side (only works if yaw angle is between +- 180 degree)
		if (yaw_e > M_PI) {
			yaw_e -= 2.0f * M_PI_F;
		}

		if (yaw_e < -M_PI) {
			yaw_e += 2.0f * M_PI_F;
		}

		attitude_setpoint_navigationframe_from_positioncontroller.z = pid_calculate(&yaw_pos_controller, 0, yaw_e, 0, CONTROL_PID_ATTITUDE_INTERVAL);


		/* limit control output */
		if (attitude_setpoint_navigationframe_from_positioncontroller.z > pid_yawpos_lim) {
			attitude_setpoint_navigationframe_from_positioncontroller.z = pid_yawpos_lim;
			yaw_pos_controller.saturated = 1;
		}

		if (attitude_setpoint_navigationframe_from_positioncontroller.z < -pid_yawpos_lim) {
			attitude_setpoint_navigationframe_from_positioncontroller.z = -pid_yawpos_lim;
			yaw_pos_controller.saturated = 1;
		}

		//transform attitude setpoint from position controller from navi to body frame on xy_plane
		float_vect3 attitude_setpoint_bodyframe_from_positioncontroller;
		navi2body_xy_plane(&attitude_setpoint_navigationframe_from_positioncontroller, att->yaw , &attitude_setpoint_bodyframe_from_positioncontroller); //yaw angle= att->yaw
		//now everything is in body frame


		//TODO: here we decide which input (position controller or ppm) we use. For now we have only the ppm, this should be decided dpending on the state machione (manula or auto) ppm should always overwrite auto (?)
		attitude_setpoint_bodyframe.x = attitude_setpoint_bodyframe_from_positioncontroller.x;
		attitude_setpoint_bodyframe.y = attitude_setpoint_bodyframe_from_positioncontroller.y;
		attitude_setpoint_bodyframe.z = attitude_setpoint_bodyframe_from_positioncontroller.z;

	} else if (current_state == SYSTEM_STATE_MANUAL) {
		attitude_setpoint_bodyframe.x = -((float)rc->chan[rc->function[ROLL]].scale / 10000.0f) * M_PI_F / 8.0f;
		attitude_setpoint_bodyframe.y = -((float)rc->chan[rc->function[PITCH]].scale / 10000.0f) * M_PI_F / 8.0f;
		attitude_setpoint_bodyframe.z = -((float)rc->chan[rc->function[YAW]].scale / 10000.0f) * M_PI_F;
	}

	/* add an attitude offset which needs to be estimated somewhere */
	attitude_setpoint_bodyframe.x += global_data_parameter_storage->pm.param_values[PARAM_ATT_XOFFSET];
	attitude_setpoint_bodyframe.y += global_data_parameter_storage->pm.param_values[PARAM_ATT_YOFFSET];

	/*Calculate Controllers*/
	//control Nick
	float nick = pid_calculate(&nick_controller, attitude_setpoint_bodyframe.y, att->pitch, att->pitchspeed, CONTROL_PID_ATTITUDE_INTERVAL);
	//control Roll
	float roll = pid_calculate(&roll_controller, attitude_setpoint_bodyframe.x, att->roll, att->rollspeed, CONTROL_PID_ATTITUDE_INTERVAL);
	//control Yaw Speed
	float yaw = pid_calculate(&yaw_speed_controller, attitude_setpoint_bodyframe.z, att->yawspeed, 0, CONTROL_PID_ATTITUDE_INTERVAL); 	//attitude_setpoint_bodyframe.z is yaw speed!

	//compensation to keep force in z-direction
	float zcompensation;

	if (fabs(att->roll) > 0.5f) {
		zcompensation = 1.13949393f;

	} else {
		zcompensation = 1.0f / cosf(att->roll);
	}

	if (fabs(att->pitch) > 0.5f) {
		zcompensation *= 1.13949393f;

	} else {
		zcompensation *= 1.0f / cosf(att->pitch);
	}

	// use global_data.position_control_output.z and mix parameter global_data.param[PARAM_MIX_POSITION_Z_WEIGHT]
	// to compute thrust for Z position control
	//
	//	float motor_thrust = min_gas +
	//			( ( 1 - global_data.param[PARAM_MIX_POSITION_Z_WEIGHT] ) * ( max_gas - min_gas ) * global_data.gas_remote * zcompensation )
	//		   + ( global_data.param[PARAM_MIX_POSITION_Z_WEIGHT] * ( max_gas - min_gas ) * controlled_thrust * zcompensation );
	//calculate the basic thrust



	float motor_thrust = 0;

	// FLYING MODES
	if (current_state == SYSTEM_STATE_MANUAL) {
		motor_thrust = (float)rc->chan[rc->function[THROTTLE]].scale / 20000.0f;

	} else if (current_state == SYSTEM_STATE_GROUND_READY || current_state == SYSTEM_STATE_STABILIZED || current_state == SYSTEM_STATE_AUTO || current_state == SYSTEM_STATE_MISSION_ABORT) {
		motor_thrust = (float)rc->chan[rc->function[THROTTLE]].scale / 20000.0f;	//TODO

	} else if (current_state == SYSTEM_STATE_EMCY_LANDING) {
		motor_thrust = (float)rc->chan[rc->function[THROTTLE]].scale / 20000.0f;	//TODO

	} else if (current_state == SYSTEM_STATE_EMCY_CUTOFF) {
		motor_thrust = 0;	//immediately cut off thrust!

	} else {
		motor_thrust = 0;	// Motor thrust must be zero in any other mode!
	}

	if (status->rc_signal_lost) motor_thrust = 0;

	// Convertion to motor-step units
	motor_thrust *= zcompensation;
	/* scale up from 0..1 to 10..512) */
	motor_thrust *= ((float)max_gas - min_gas);

	//limit control output
	//yawspeed
	if (yaw > pid_yawspeed_lim) {
		yaw = pid_yawspeed_lim;
		yaw_speed_controller.saturated = 1;
	}

	if (yaw < -pid_yawspeed_lim) {
		yaw = -pid_yawspeed_lim;
		yaw_speed_controller.saturated = 1;
	}

	if (nick > pid_att_lim) {
		nick = pid_att_lim;
		nick_controller.saturated = 1;
	}

	if (nick < -pid_att_lim) {
		nick = -pid_att_lim;
		nick_controller.saturated = 1;
	}


	if (roll > pid_att_lim) {
		roll = pid_att_lim;
		roll_controller.saturated = 1;
	}

	if (roll < -pid_att_lim) {
		roll = -pid_att_lim;
		roll_controller.saturated = 1;
	}

	/* Emit controller values */
	ar_control->setpoint_thrust_cast = motor_thrust;
	ar_control->setpoint_attitude[0] = attitude_setpoint_bodyframe.x;
	ar_control->setpoint_attitude[1] = attitude_setpoint_bodyframe.y;
	ar_control->setpoint_attitude[2] = attitude_setpoint_bodyframe.z;
	ar_control->attitude_control_output[0] = roll;
	ar_control->attitude_control_output[1] = nick;
	ar_control->attitude_control_output[2] = yaw;
	ar_control->zcompensation = zcompensation;
	orb_publish(ORB_ID(ardrone_control), ardrone_pub, ar_control);

	static float output_band = 0.f;
	static float band_factor = 0.75f;
	static float startpoint_full_control = 150.0f;		//TODO
	static float yaw_factor = 1.0f;

	if (motor_thrust <= min_gas) {
		motor_thrust = min_gas;
		output_band = 0.f;

	} else if (motor_thrust < startpoint_full_control && motor_thrust > min_gas) {
		output_band = band_factor * (motor_thrust - min_gas);

	} else if (motor_thrust >= startpoint_full_control && motor_thrust < max_gas - band_factor * startpoint_full_control) {
		output_band = band_factor * startpoint_full_control;

	} else if (motor_thrust >= max_gas - band_factor * startpoint_full_control) {
		output_band = band_factor * (max_gas - motor_thrust);
	}

	//add the yaw, nick and roll components to the basic thrust //TODO:this should be done by the mixer

	// FRONT (MOTOR 1)
	motor_calc[0] = motor_thrust + (roll / 2 + nick / 2 - yaw);

	// RIGHT (MOTOR 2)
	motor_calc[1] = motor_thrust + (-roll / 2 + nick / 2 + yaw);

	// BACK (MOTOR 3)
	motor_calc[2] = motor_thrust + (-roll / 2 - nick / 2 - yaw);

	// LEFT (MOTOR 4)
	motor_calc[3] = motor_thrust + (roll / 2 - nick / 2 + yaw);

	// if we are not in the output band
	if (!(motor_calc[0] < motor_thrust + output_band && motor_calc[0] > motor_thrust - output_band
	      && motor_calc[1] < motor_thrust + output_band && motor_calc[1] > motor_thrust - output_band
	      && motor_calc[2] < motor_thrust + output_band && motor_calc[2] > motor_thrust - output_band
	      && motor_calc[3] < motor_thrust + output_band && motor_calc[3] > motor_thrust - output_band)) {

		yaw_factor = 0.5f;
		// FRONT (MOTOR 1)
		motor_calc[0] = motor_thrust + (roll / 2 + nick / 2 - yaw * yaw_factor);

		// RIGHT (MOTOR 2)
		motor_calc[1] = motor_thrust + (-roll / 2 + nick / 2 + yaw * yaw_factor);

		// BACK (MOTOR 3)
		motor_calc[2] = motor_thrust + (-roll / 2 - nick / 2 - yaw * yaw_factor);

		// LEFT (MOTOR 4)
		motor_calc[3] = motor_thrust + (roll / 2 - nick / 2 + yaw * yaw_factor);
	}

	uint8_t i;

	for (i = 0; i < 4; i++) {
		//check for limits
		if (motor_calc[i] < motor_thrust - output_band) {
			motor_calc[i] = motor_thrust - output_band;
		}

		if (motor_calc[i] > motor_thrust + output_band) {
			motor_calc[i] = motor_thrust + output_band;
		}
	}

	// Write out actual thrust
	motor_pwm[0] = (uint16_t) motor_calc[0];
	motor_pwm[1] = (uint16_t) motor_calc[1];
	motor_pwm[2] = (uint16_t) motor_calc[2];
	motor_pwm[3] = (uint16_t) motor_calc[3];

	// Keep motors spinning while armed

	motor_pwm[0] = (motor_pwm[0] > 0) ? motor_pwm[0] : 10;
	motor_pwm[1] = (motor_pwm[1] > 0) ? motor_pwm[1] : 10;
	motor_pwm[2] = (motor_pwm[2] > 0) ? motor_pwm[2] : 10;
	motor_pwm[3] = (motor_pwm[3] > 0) ? motor_pwm[3] : 10;

	/* Failsafe logic - should never be necessary */
	motor_pwm[0] = (motor_pwm[0] <= 512) ? motor_pwm[0] : 512;
	motor_pwm[1] = (motor_pwm[1] <= 512) ? motor_pwm[1] : 512;
	motor_pwm[2] = (motor_pwm[2] <= 512) ? motor_pwm[2] : 512;
	motor_pwm[3] = (motor_pwm[3] <= 512) ? motor_pwm[3] : 512;

	//SEND MOTOR COMMANDS
	if (motor_skip_counter % 5 == 0) {
		uint8_t motorSpeedBuf[5] = {1, 2, 3, 4, 5};
		ar_get_motor_packet(motorSpeedBuf, motor_pwm[0], motor_pwm[1], motor_pwm[2], motor_pwm[3]);
		write(ardrone_write, motorSpeedBuf, 5);
	}

	motor_skip_counter++;

//		now_time = hrt_absolute_time() / 1000000;
//		if(now_time - last_time > 0)
//		{
//			printf("Counter: %ld\n",control_counter);
//			last_time = now_time;
//			control_counter = 0;
//		}
}