Ejemplo n.º 1
0
void
_arb_poly_revert_series_lagrange_fast(arb_ptr Qinv, arb_srcptr Q, long Qlen, long n, long prec)
{
    long i, j, k, m;
    arb_ptr R, S, T, tmp;
    arb_t t;

    if (n <= 2)
    {
        if (n >= 1)
            arb_zero(Qinv);
        if (n == 2)
            arb_inv(Qinv + 1, Q + 1, prec);
        return;
    }

    m = n_sqrt(n);

    arb_init(t);
    R = _arb_vec_init((n - 1) * m);
    S = _arb_vec_init(n - 1);
    T = _arb_vec_init(n - 1);

    arb_zero(Qinv);
    arb_inv(Qinv + 1, Q + 1, prec);

    _arb_poly_inv_series(Ri(1), Q + 1, FLINT_MIN(Qlen, n) - 1, n - 1, prec);
    for (i = 2; i <= m; i++)
        _arb_poly_mullow(Ri(i), Ri((i + 1) / 2), n - 1, Ri(i / 2), n - 1, n - 1, prec);

    for (i = 2; i < m; i++)
        arb_div_ui(Qinv + i, Ri(i) + i - 1, i, prec);

    _arb_vec_set(S, Ri(m), n - 1);

    for (i = m; i < n; i += m)
    {
        arb_div_ui(Qinv + i, S + i - 1, i, prec);

        for (j = 1; j < m && i + j < n; j++)
        {
            arb_mul(t, S + 0, Ri(j) + i + j - 1, prec);
            for (k = 1; k <= i + j - 1; k++)
                arb_addmul(t, S + k, Ri(j) + i + j - 1 - k, prec);
            arb_div_ui(Qinv + i + j, t, i + j, prec);
        }

        if (i + 1 < n)
        {
            _arb_poly_mullow(T, S, n - 1, Ri(m), n - 1, n - 1, prec);
            tmp = S; S = T; T = tmp;
        }
    }

    arb_clear(t);
    _arb_vec_clear(R, (n - 1) * m);
    _arb_vec_clear(S, n - 1);
    _arb_vec_clear(T, n - 1);
}
Ejemplo n.º 2
0
int
f_pol(arb_t max, const arb_t t, params_t * p, slong prec)
{
    slong k;
    acb_t z;
    arb_t tmp;

    acb_init(z);
    arb_init(tmp);

    arb_one(max);

    for (k = 0; k < p->len; k++)
    {
        acb_sub_arb(z, p->z + k, t, prec);
        acb_abs(tmp, z, prec);
        if (arb_contains_zero(tmp))
            return 0;
        arb_mul(max, max, tmp, prec);
    }

    arb_inv(max, max, prec);

    arb_clear(tmp);
    acb_clear(z);
    return 1;
}
Ejemplo n.º 3
0
void
arb_sech(arb_t res, const arb_t x, slong prec)
{
    if (arf_cmpabs_2exp_si(arb_midref(x), 0) > 0)
    {
        arb_t t;
        arb_init(t);

        if (arf_sgn(arb_midref(x)) > 0)
        {
            arb_neg(t, x);
            arb_exp(t, t, prec + 4);
        }
        else
        {
            arb_exp(t, x, prec + 4);
        }

        arb_mul(res, t, t, prec + 4);
        arb_add_ui(res, res, 1, prec + 4);
        arb_div(res, t, res, prec);
        arb_mul_2exp_si(res, res, 1);
        arb_clear(t);
    }
    else
    {
        arb_cosh(res, x, prec + 4);
        arb_inv(res, res, prec);
    }
}
Ejemplo n.º 4
0
void
custom_rate_mixture_get_prob(arb_t prob, const custom_rate_mixture_t x,
        slong idx, slong prec)
{
    if (x->mode == RATE_MIXTURE_UNDEFINED)
    {
        flint_fprintf(stderr, "internal error: undefined rate mixture\n");
        abort();
    }
    else if (x->mode == RATE_MIXTURE_NONE)
    {
        arb_one(prob);
    }
    else if (x->mode == RATE_MIXTURE_UNIFORM)
    {
        /*
         * This code branch involves a division that could
         * unnecessarily lose exactness in some situations.
         */
        arb_set_si(prob, x->n);
        arb_inv(prob, prob, prec);
    }
    else if (x->mode == RATE_MIXTURE_CUSTOM)
    {
        arb_set_d(prob, x->prior[idx]);
    }
    else
    {
        flint_fprintf(stderr, "internal error: "
                      "unrecognized rate mixture mode\n");
        abort();
    }
}
Ejemplo n.º 5
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("csch....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 1000 * arb_test_multiplier(); iter++)
    {
        arb_t x, a, b;
        slong prec1, prec2;

        prec1 = 2 + n_randint(state, 200);
        prec2 = prec1 + 30;

        arb_init(x);
        arb_init(a);
        arb_init(b);

        arb_randtest_special(x, state, 1 + n_randint(state, 300), 100);
        arb_randtest_special(a, state, 1 + n_randint(state, 300), 100);
        arb_randtest_special(b, state, 1 + n_randint(state, 300), 100);

        if (n_randint(state, 2))
        {
            arb_csch(a, x, prec1);
        }
        else
        {
            arb_set(a, x);
            arb_csch(a, a, prec1);
        }

        arb_sinh(b, x, prec2);
        arb_inv(b, b, prec2);

        /* check consistency */
        if (!arb_overlaps(a, b))
        {
            flint_printf("FAIL: overlap\n\n");
            flint_printf("x = "); arb_printn(x, 20, 0); flint_printf("\n\n");
            flint_printf("a = "); arb_printn(a, 20, 0); flint_printf("\n\n");
            flint_printf("b = "); arb_printn(b, 20, 0); flint_printf("\n\n");
            flint_abort();
        }

        arb_clear(x);
        arb_clear(a);
        arb_clear(b);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Ejemplo n.º 6
0
int
f_1x2(arb_t max, const arb_t t, params_t * p, slong prec)
{
    arb_mul(max, t, t, prec);
    arb_add_si(max, max, 1, prec);
    arb_inv(max, max, prec);
    return 1;
}
Ejemplo n.º 7
0
Archivo: t-rsqrt.c Proyecto: isuruf/arb
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("rsqrt....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 100000; iter++)
    {
        arb_t a, b, c;
        slong prec = 2 + n_randint(state, 200);

        arb_init(a);
        arb_init(b);
        arb_init(c);

        arb_randtest(a, state, 1 + n_randint(state, 200), 10);

        arb_rsqrt(b, a, prec);

        arb_inv(c, b, prec);
        arb_mul(c, c, c, prec);

        if (!arb_contains(c, a))
        {
            flint_printf("FAIL: containment\n\n");
            flint_printf("a = "); arb_print(a); flint_printf("\n\n");
            flint_printf("b = "); arb_print(b); flint_printf("\n\n");
            flint_printf("c = "); arb_print(c); flint_printf("\n\n");
            abort();
        }

        arb_rsqrt(a, a, prec);

        if (!arb_equal(a, b))
        {
            flint_printf("FAIL: aliasing\n\n");
            abort();
        }

        arb_clear(a);
        arb_clear(b);
        arb_clear(c);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Ejemplo n.º 8
0
static void
bound_I(arb_ptr I, const arb_t A, const arb_t B, const arb_t C, slong len, slong wp)
{
    slong k;

    arb_t D, Dk, L, T, Bm1;

    arb_init(D);
    arb_init(Dk);
    arb_init(Bm1);
    arb_init(T);
    arb_init(L);

    arb_sub_ui(Bm1, B, 1, wp);
    arb_one(L);

    /* T = 1 / (A^Bm1 * Bm1) */
    arb_inv(T, A, wp);
    arb_pow(T, T, Bm1, wp);
    arb_div(T, T, Bm1, wp);

    if (len > 1)
    {
        arb_log(D, A, wp);
        arb_add(D, D, C, wp);
        arb_mul(D, D, Bm1, wp);
        arb_set(Dk, D);
    }

    for (k = 0; k < len; k++)
    {
        if (k > 0)
        {
            arb_mul_ui(L, L, k, wp);
            arb_add(L, L, Dk, wp);
            arb_mul(Dk, Dk, D, wp);
        }

        arb_mul(I + k, L, T, wp);
        arb_div(T, T, Bm1, wp);
    }

    arb_clear(D);
    arb_clear(Dk);
    arb_clear(Bm1);
    arb_clear(T);
    arb_clear(L);
}
Ejemplo n.º 9
0
int
f_aj(arb_t m, const arb_t t, params_t * p, slong prec)
{
    slong k;
    acb_t z, zu;
    arb_t abs;

    arb_init(abs);
    acb_init(z);
    acb_init(zu);

    arb_const_pi(abs, prec);
    arb_mul_2exp_si(abs, abs, -2); /* Pi/4 */

    arb_set(acb_realref(z), t);
    arb_set(acb_imagref(z), abs);

    acb_sinh(z, z, prec);
    arb_mul_2exp_si(abs, abs, 1); /* Pi/2 */
    acb_mul_arb(z, z, abs, prec);
    acb_tanh(z, z, prec);

    arb_one(m);
    for (k = 0; k < p->len; k++)
    {
        acb_sub(zu, z, p->z + k, prec);
        if (acb_contains_zero(zu))
        {
            arb_clear(abs);
            acb_clear(zu);
            acb_clear(z);
            return 0;
        }
        acb_abs(abs, zu, prec);
        arb_mul(m, m, abs, prec);
    }
    arb_inv(m, m, prec);

    arb_clear(abs);
    acb_clear(zu);
    acb_clear(z);
    return 1;
}
Ejemplo n.º 10
0
void
_arb_poly_inv_series(arb_ptr Qinv,
    arb_srcptr Q, slong Qlen, slong len, slong prec)
{
    arb_inv(Qinv, Q, prec);

    if (Qlen == 1)
    {
        _arb_vec_zero(Qinv + 1, len - 1);
    }
    else if (len == 2)
    {
        arb_div(Qinv + 1, Qinv, Q, prec);
        arb_mul(Qinv + 1, Qinv + 1, Q + 1, prec);
        arb_neg(Qinv + 1, Qinv + 1);
    }
    else
    {
        slong Qnlen, Wlen, W2len;
        arb_ptr W;

        W = _arb_vec_init(len);

        NEWTON_INIT(1, len)
        NEWTON_LOOP(m, n)

        Qnlen = FLINT_MIN(Qlen, n);
        Wlen = FLINT_MIN(Qnlen + m - 1, n);
        W2len = Wlen - m;
        MULLOW(W, Q, Qnlen, Qinv, m, Wlen, prec);
        MULLOW(Qinv + m, Qinv, m, W + m, W2len, n - m, prec);
        _arb_vec_neg(Qinv + m, Qinv + m, n - m);

        NEWTON_END_LOOP
        NEWTON_END

        _arb_vec_clear(W, len);
    }
}
Ejemplo n.º 11
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("euler_product_real_ui....");
    fflush(stdout);
    flint_randinit(state);

    for (iter = 0; iter < 3000 * arb_test_multiplier(); iter++)
    {
        arb_t res1, res2;
        ulong s;
        slong prec1, prec2, accuracy;
        int choice, reciprocal1, reciprocal2;

        if (iter % 10 == 0)
        {
            s = n_randtest(state);
            prec1 = 2 + n_randint(state, 300);
            prec2 = 2 + n_randint(state, 300);
        }
        else
        {
            s = 6 + n_randint(state, 1 << n_randint(state, 12));
            prec1 = 2 + n_randint(state, 12 * s);
            prec2 = 2 + n_randint(state, 12 * s);
        }

        if (n_randint(state, 30)  == 0)
            prec1 = 2 + n_randint(state, 4000);

        choice = n_randint(state, 7);
        reciprocal1 = n_randint(state, 2);
        reciprocal2 = n_randint(state, 2);

        arb_init(res1);
        arb_init(res2);
        arb_randtest(res1, state, 200, 100);

        _acb_dirichlet_euler_product_real_ui(res1, s, chi[choice] + 1,
            chi[choice][0], reciprocal1, prec1);
        _acb_dirichlet_euler_product_real_ui(res2, s, chi[choice] + 1,
            chi[choice][0], reciprocal2, prec2);

        if (reciprocal1 != reciprocal2)
            arb_inv(res2, res2, prec2);

        if (!arb_overlaps(res1, res2))
        {
            flint_printf("FAIL: overlap\n\n");
            flint_printf("s = %wu\n\n", s);
            flint_printf("chi: %d\n", choice);
            flint_printf("res1 = "); arb_printd(res1, prec1 / 3.33); flint_printf("\n\n");
            flint_printf("res2 = "); arb_printd(res2, prec2 / 3.33); flint_printf("\n\n");
            abort();
        }

        if (s >= 6 && prec1 < 2 * s * log(s))
        {
            accuracy = arb_rel_accuracy_bits(res1);

            if (accuracy < prec1 - 4)
            {
                flint_printf("FAIL: accuracy = %wd, prec = %wd\n\n", accuracy, prec1);
                flint_printf("res1 = "); arb_printd(res1, prec1 / 3.33); flint_printf("\n\n");
                abort();
            }
        }

        if (s == 10)
        {
            arf_set_d(arb_midref(res2), L10[choice]);
            mag_set_d(arb_radref(res2), 1e-15);
            if (reciprocal1)
                arb_inv(res2, res2, 53);

            if (!arb_overlaps(res1, res2))
            {
                flint_printf("FAIL: overlap (2)\n\n");
                flint_printf("s = %wu\n\n", s);
                flint_printf("chi: %d\n", choice);
                flint_printf("res1 = "); arb_printd(res1, prec1 / 3.33); flint_printf("\n\n");
                flint_printf("res2 = "); arb_printd(res2, prec2 / 3.33); flint_printf("\n\n");
                abort();
            }
        }

        arb_clear(res1);
        arb_clear(res2);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}
Ejemplo n.º 12
0
void
_arb_poly_inv_series(arb_ptr Qinv,
    arb_srcptr Q, slong Qlen, slong len, slong prec)
{
    Qlen = FLINT_MIN(Qlen, len);

    arb_inv(Qinv, Q, prec);

    if (Qlen == 1)
    {
        _arb_vec_zero(Qinv + 1, len - 1);
    }
    else if (len == 2)
    {
        arb_mul(Qinv + 1, Qinv, Qinv, prec);
        arb_mul(Qinv + 1, Qinv + 1, Q + 1, prec);
        arb_neg(Qinv + 1, Qinv + 1);
    }
    else
    {
        slong i, j, blen;

        /* The basecase algorithm is faster for much larger Qlen or len than
           this, but unfortunately also much less numerically stable. */
        if (Qlen == 2 || len <= 8)
            blen = len;
        else
            blen = FLINT_MIN(len, 4);

        for (i = 1; i < blen; i++)
        {
            arb_mul(Qinv + i, Q + 1, Qinv + i - 1, prec);

            for (j = 2; j < FLINT_MIN(i + 1, Qlen); j++)
                arb_addmul(Qinv + i, Q + j, Qinv + i - j, prec);

            if (!arb_is_one(Qinv))
                arb_mul(Qinv + i, Qinv + i, Qinv, prec);

            arb_neg(Qinv + i, Qinv + i);
        }

        if (len > blen)
        {
            slong Qnlen, Wlen, W2len;
            arb_ptr W;

            W = _arb_vec_init(len);

            NEWTON_INIT(blen, len)
            NEWTON_LOOP(m, n)

            Qnlen = FLINT_MIN(Qlen, n);
            Wlen = FLINT_MIN(Qnlen + m - 1, n);
            W2len = Wlen - m;
            MULLOW(W, Q, Qnlen, Qinv, m, Wlen, prec);
            MULLOW(Qinv + m, Qinv, m, W + m, W2len, n - m, prec);
            _arb_vec_neg(Qinv + m, Qinv + m, n - m);

            NEWTON_END_LOOP
            NEWTON_END

            _arb_vec_clear(W, len);
        }
    }
}
Ejemplo n.º 13
0
void
_arb_poly_zeta_series(arb_ptr res, arb_srcptr h, long hlen, const arb_t a, int deflate, long len, long prec)
{
    long i;
    acb_t cs, ca;
    acb_ptr z;
    arb_ptr t, u;

    if (arb_contains_nonpositive(a))
    {
        _arb_vec_indeterminate(res, len);
        return;
    }

    hlen = FLINT_MIN(hlen, len);

    z = _acb_vec_init(len);
    t = _arb_vec_init(len);
    u = _arb_vec_init(len);
    acb_init(cs);
    acb_init(ca);

    /* use reflection formula */
    if (arf_sgn(arb_midref(h)) < 0 && arb_is_one(a))
    {
        /* zeta(s) = (2*pi)**s * sin(pi*s/2) / pi * gamma(1-s) * zeta(1-s) */
        arb_t pi;
        arb_ptr f, s1, s2, s3, s4;

        arb_init(pi);
        f = _arb_vec_init(2);
        s1 = _arb_vec_init(len);
        s2 = _arb_vec_init(len);
        s3 = _arb_vec_init(len);
        s4 = _arb_vec_init(len);

        arb_const_pi(pi, prec);

        /* s1 = (2*pi)**s */
        arb_mul_2exp_si(pi, pi, 1);
        _arb_poly_pow_cpx(s1, pi, h, len, prec);
        arb_mul_2exp_si(pi, pi, -1);

        /* s2 = sin(pi*s/2) / pi */
        arb_set(f, h);
        arb_one(f + 1);
        arb_mul_2exp_si(f, f, -1);
        arb_mul_2exp_si(f + 1, f + 1, -1);
        _arb_poly_sin_pi_series(s2, f, 2, len, prec);
        _arb_vec_scalar_div(s2, s2, len, pi, prec);

        /* s3 = gamma(1-s) */
        arb_sub_ui(f, h, 1, prec);
        arb_neg(f, f);
        arb_set_si(f + 1, -1);
        _arb_poly_gamma_series(s3, f, 2, len, prec);

        /* s4 = zeta(1-s) */
        arb_sub_ui(f, h, 1, prec);
        arb_neg(f, f);
        acb_set_arb(cs, f);
        acb_one(ca);
        _acb_poly_zeta_cpx_series(z, cs, ca, 0, len, prec);
        for (i = 0; i < len; i++)
            arb_set(s4 + i, acb_realref(z + i));
        for (i = 1; i < len; i += 2)
            arb_neg(s4 + i, s4 + i);

        _arb_poly_mullow(u, s1, len, s2, len, len, prec);
        _arb_poly_mullow(s1, s3, len, s4, len, len, prec);
        _arb_poly_mullow(t, u, len, s1, len, len, prec);

        /* add 1/(1-(s+t)) = 1/(1-s) + t/(1-s)^2 + ... */
        if (deflate)
        {
            arb_sub_ui(u, h, 1, prec);
            arb_neg(u, u);
            arb_inv(u, u, prec);
            for (i = 1; i < len; i++)
                arb_mul(u + i, u + i - 1, u, prec);
            _arb_vec_add(t, t, u, len, prec);
        }

        arb_clear(pi);
        _arb_vec_clear(f, 2);
        _arb_vec_clear(s1, len);
        _arb_vec_clear(s2, len);
        _arb_vec_clear(s3, len);
        _arb_vec_clear(s4, len);
    }
    else
    {
        acb_set_arb(cs, h);
        acb_set_arb(ca, a);
        _acb_poly_zeta_cpx_series(z, cs, ca, deflate, len, prec);
        for (i = 0; i < len; i++)
            arb_set(t + i, acb_realref(z + i));
    }

    /* compose with nonconstant part */
    arb_zero(u);
    _arb_vec_set(u + 1, h + 1, hlen - 1);
    _arb_poly_compose_series(res, t, len, u, hlen, len, prec);

    _acb_vec_clear(z, len);
    _arb_vec_clear(t, len);
    _arb_vec_clear(u, len);
    acb_init(cs);
    acb_init(ca);
}
Ejemplo n.º 14
0
void
acb_inv(acb_t res, const acb_t z, slong prec)
{
    mag_t am, bm;
    slong hprec;

#define a arb_midref(acb_realref(z))
#define b arb_midref(acb_imagref(z))
#define x arb_radref(acb_realref(z))
#define y arb_radref(acb_imagref(z))

    /* choose precision for the floating-point approximation of a^2+b^2 so
       that the double rounding result in less than
       2 ulp error; also use at least MAG_BITS bits since the
       value will be recycled for error bounds */
    hprec = FLINT_MAX(prec + 3, MAG_BITS);

    if (arb_is_zero(acb_imagref(z)))
    {
        arb_inv(acb_realref(res), acb_realref(z), prec);
        arb_zero(acb_imagref(res));
        return;
    }

    if (arb_is_zero(acb_realref(z)))
    {
        arb_inv(acb_imagref(res), acb_imagref(z), prec);
        arb_neg(acb_imagref(res), acb_imagref(res));
        arb_zero(acb_realref(res));
        return;
    }

    if (!acb_is_finite(z))
    {
        acb_indeterminate(res);
        return;
    }

    if (mag_is_zero(x) && mag_is_zero(y))
    {
        int inexact;

        arf_t a2b2;
        arf_init(a2b2);

        inexact = arf_sosq(a2b2, a, b, hprec, ARF_RND_DOWN);

        if (arf_is_special(a2b2))
        {
            acb_indeterminate(res);
        }
        else
        {
            _arb_arf_div_rounded_den(acb_realref(res), a, a2b2, inexact, prec);
            _arb_arf_div_rounded_den(acb_imagref(res), b, a2b2, inexact, prec);
            arf_neg(arb_midref(acb_imagref(res)), arb_midref(acb_imagref(res)));
        }

        arf_clear(a2b2);
        return;
    }

    mag_init(am);
    mag_init(bm);

    /* first bound |a|-x, |b|-y */
    arb_get_mag_lower(am, acb_realref(z));
    arb_get_mag_lower(bm, acb_imagref(z));

    if ((mag_is_zero(am) && mag_is_zero(bm)))
    {
        acb_indeterminate(res);
    }
    else
    {
        /*
        The propagated error in the real part is given exactly by

             (a+x')/((a+x')^2+(b+y'))^2 - a/(a^2+b^2) = P / Q,

             P = [(b^2-a^2) x' - a (x'^2+y'^2 + 2y'b)]
             Q = [(a^2+b^2)((a+x')^2+(b+y')^2)]

        where |x'| <= x and |y'| <= y, and analogously for the imaginary part.
        */
        mag_t t, u, v, w;
        arf_t a2b2;
        int inexact;

        mag_init(t);
        mag_init(u);
        mag_init(v);
        mag_init(w);

        arf_init(a2b2);

        inexact = arf_sosq(a2b2, a, b, hprec, ARF_RND_DOWN);

        /* compute denominator */
        /* t = (|a|-x)^2 + (|b|-x)^2 (lower bound) */
        mag_mul_lower(t, am, am);
        mag_mul_lower(u, bm, bm);
        mag_add_lower(t, t, u);
        /* u = a^2 + b^2 (lower bound) */
        arf_get_mag_lower(u, a2b2);
        /* t = ((|a|-x)^2 + (|b|-x)^2)(a^2 + b^2) (lower bound) */
        mag_mul_lower(t, t, u);

        /* compute numerator */
        /* real: |a^2-b^2| x  + |a| ((x^2 + y^2) + 2 |b| y)) */
        /* imag: |a^2-b^2| y  + |b| ((x^2 + y^2) + 2 |a| x)) */
        /* am, bm = upper bounds for a, b */
        arf_get_mag(am, a);
        arf_get_mag(bm, b);

        /* v = x^2 + y^2 */
        mag_mul(v, x, x);
        mag_addmul(v, y, y);

        /* u = |a| ((x^2 + y^2) + 2 |b| y) */
        mag_mul_2exp_si(u, bm, 1);
        mag_mul(u, u, y);
        mag_add(u, u, v);
        mag_mul(u, u, am);

        /* v = |b| ((x^2 + y^2) + 2 |a| x) */
        mag_mul_2exp_si(w, am, 1);
        mag_addmul(v, w, x);
        mag_mul(v, v, bm);

        /* w = |b^2 - a^2| (upper bound) */
        if (arf_cmpabs(a, b) >= 0)
            mag_mul(w, am, am);
        else
            mag_mul(w, bm, bm);

        mag_addmul(u, w, x);
        mag_addmul(v, w, y);

        mag_div(arb_radref(acb_realref(res)), u, t);
        mag_div(arb_radref(acb_imagref(res)), v, t);

        _arb_arf_div_rounded_den_add_err(acb_realref(res), a, a2b2, inexact, prec);
        _arb_arf_div_rounded_den_add_err(acb_imagref(res), b, a2b2, inexact, prec);
        arf_neg(arb_midref(acb_imagref(res)), arb_midref(acb_imagref(res)));

        mag_clear(t);
        mag_clear(u);
        mag_clear(v);
        mag_clear(w);

        arf_clear(a2b2);
    }

    mag_clear(am);
    mag_clear(bm);
#undef a
#undef b
#undef x
#undef y
}
Ejemplo n.º 15
0
void
arb_mat_inv_cho_precomp(arb_mat_t X, const arb_mat_t L, slong prec)
{
    slong n;

    if (arb_mat_nrows(X) != arb_mat_nrows(L) ||
        arb_mat_ncols(X) != arb_mat_ncols(L))
    {
        flint_printf("arb_mat_inv_cho_precomp: incompatible dimensions\n");
        abort();
    }

    if (arb_mat_is_empty(L))
        return;

    n = arb_mat_nrows(L);

    if (n == 1)
    {
        arb_inv(arb_mat_entry(X, 0, 0), arb_mat_entry(L, 0, 0), prec);
        _arb_sqr(arb_mat_entry(X, 0, 0), arb_mat_entry(X, 0, 0), prec);
        return;
    }

    if (X == L)
    {
        flint_printf("arb_mat_inv_cho_precomp: unsupported aliasing\n");
        abort();
    }

    /* invert a 2x2 or larger matrix given its L * L^T decomposition */
    {
        slong i, j, k;
        arb_struct *s;
        arb_mat_zero(X);
        s = _arb_vec_init(n);
        for (i = 0; i < n; i++)
        {
            arb_inv(s + i, arb_mat_entry(L, i, i), prec);
        }
        for (j = n-1; j >= 0; j--)
        {
            for (i = j; i >= 0; i--)
            {
                if (i == j)
                {
                    arb_set(arb_mat_entry(X, i, j), s + i);
                }
                else
                {
                    arb_zero(arb_mat_entry(X, i, j));
                }
                for (k = i + 1; k < n; k++)
                {
                    arb_submul(arb_mat_entry(X, i, j),
                               arb_mat_entry(L, k, i),
                               arb_mat_entry(X, k, j), prec);
                }
                arb_div(arb_mat_entry(X, i, j),
                        arb_mat_entry(X, i, j),
                        arb_mat_entry(L, i, i), prec);
                arb_set(arb_mat_entry(X, j, i),
                        arb_mat_entry(X, i, j));
            }
        }
        _arb_vec_clear(s, n);
    }
}
Ejemplo n.º 16
0
void
bernoulli_rev_init(bernoulli_rev_t iter, ulong nmax)
{
    long j;
    fmpz_t t;
    arb_t x;
    arf_t u;
    int round1, round2;
    long wp;

    nmax -= (nmax % 2);
    iter->n = nmax;

    iter->alloc = 0;
    if (nmax < BERNOULLI_REV_MIN)
        return;

    iter->prec = wp = bernoulli_global_prec(nmax);

    iter->max_power = bernoulli_zeta_terms(nmax, iter->prec);
    iter->alloc = iter->max_power + 1;
    iter->powers = _fmpz_vec_init(iter->alloc);
    fmpz_init(iter->pow_error);
    arb_init(iter->prefactor);
    arb_init(iter->two_pi_squared);

    arb_init(x);
    fmpz_init(t);
    arf_init(u);

    /* precompute powers */
    for (j = 3; j <= iter->max_power; j += 2)
    {
        arb_ui_pow_ui(x, j, nmax, bernoulli_power_prec(j, nmax, wp));
        arb_inv(x, x, bernoulli_power_prec(j, nmax, wp));
        round1 = arf_get_fmpz_fixed_si(t, arb_midref(x), -wp);
        fmpz_set(iter->powers + j, t);

        /* error: the radius, plus two roundings */
        arf_set_mag(u, arb_radref(x));
        round2 = arf_get_fmpz_fixed_si(t, u, -wp);
        fmpz_add_ui(t, t, (round1 != 0) + (round2 != 0));
        if (fmpz_cmp(iter->pow_error, t) < 0)
            fmpz_set(iter->pow_error, t);
    }

    /* precompute (2pi)^2 and 2*(n!)/(2pi)^n */
    arb_fac_ui(iter->prefactor, nmax, wp);
    arb_mul_2exp_si(iter->prefactor, iter->prefactor, 1);

    arb_const_pi(x, wp);
    arb_mul_2exp_si(x, x, 1);
    arb_mul(iter->two_pi_squared, x, x, wp);

    arb_pow_ui(x, iter->two_pi_squared, nmax / 2, wp);
    arb_div(iter->prefactor, iter->prefactor, x, wp);

    fmpz_clear(t);
    arb_clear(x);
    arf_clear(u);
}