Ejemplo n.º 1
0
Archivo: inv.c Proyecto: isuruf/arb
int
arb_mat_inv(arb_mat_t X, const arb_mat_t A, slong prec)
{
    if (X == A)
    {
        int r;
        arb_mat_t T;
        arb_mat_init(T, arb_mat_nrows(A), arb_mat_ncols(A));
        r = arb_mat_inv(T, A, prec);
        arb_mat_swap(T, X);
        arb_mat_clear(T);
        return r;
    }

    arb_mat_one(X);
    return arb_mat_solve(X, A, X, prec);
}
Ejemplo n.º 2
0
int arb_mat_generalized_eigenproblem_symmetric_positive_definite(arb_mat_t D, arb_mat_t P, const arb_mat_t A, const arb_mat_t B, slong prec) {
    // solve the generalized eigenvalue problem Ax = lambda * Bx, where B
    // is symmetric positive definite and A is symmetric.
    //
    // Returns 0 on success.
    //
    // If there is a problem inverting the Cholesky factorization of B, returns -1.
    // If the eigenvalues are not distinct (or cannot be certified as distinct),
    // returns 1. In this case the returned eigenvalues will be correct, but
    // some eigenvectors will be nonsense, or will be accurate eigenvectors but with
    // infinite radius, or something like that.

    int dim = arb_mat_nrows(B);
    arb_mat_t L;
    arb_mat_t X;
    arb_mat_init(L, dim, dim);
    arb_mat_init(X, dim, dim);

    arb_mat_cholesky(L, B, prec);
    int result = arb_mat_inv(L, L, prec);
    if(!result) {
        arb_mat_clear(L);
        arb_mat_clear(X);
        return -1;
    }
    arb_mat_mul(X, L, A, prec);
    arb_mat_transpose(L, L);
    arb_mat_mul(X, X, L, prec);
    result = arb_mat_jacobi(D, P, X, prec);
    arb_mat_mul(P, L, P, prec);
    //arb_mat_transpose(P, P);

    arb_mat_clear(L);
    arb_mat_clear(X);
    return result;
}
Ejemplo n.º 3
0
int main()
{
    slong iter;
    flint_rand_t state;

    flint_printf("inv....");
    fflush(stdout);

    flint_randinit(state);

    for (iter = 0; iter < 100000 * arb_test_multiplier(); iter++)
    {
        fmpq_mat_t Q, Qinv;
        arb_mat_t A, Ainv;
        slong n, qbits, prec;
        int q_invertible, r_invertible, r_invertible2;

        n = n_randint(state, 8);
        qbits = 1 + n_randint(state, 30);
        prec = 2 + n_randint(state, 200);

        fmpq_mat_init(Q, n, n);
        fmpq_mat_init(Qinv, n, n);

        arb_mat_init(A, n, n);
        arb_mat_init(Ainv, n, n);

        fmpq_mat_randtest(Q, state, qbits);
        q_invertible = fmpq_mat_inv(Qinv, Q);

        if (!q_invertible)
        {
            arb_mat_set_fmpq_mat(A, Q, prec);
            r_invertible = arb_mat_inv(Ainv, A, prec);
            if (r_invertible)
            {
                flint_printf("FAIL: matrix is singular over Q but not over R\n");
                flint_printf("n = %wd, prec = %wd\n", n, prec);
                flint_printf("\n");

                flint_printf("Q = \n"); fmpq_mat_print(Q); flint_printf("\n\n");
                flint_printf("A = \n"); arb_mat_printd(A, 15); flint_printf("\n\n");
                flint_printf("Ainv = \n"); arb_mat_printd(Ainv, 15); flint_printf("\n\n");
                abort();
            }
        }
        else
        {
            /* now this must converge */
            while (1)
            {
                arb_mat_set_fmpq_mat(A, Q, prec);
                r_invertible = arb_mat_inv(Ainv, A, prec);

                if (r_invertible)
                {
                    break;
                }
                else
                {
                    if (prec > 10000)
                    {
                        flint_printf("FAIL: failed to converge at 10000 bits\n");
                        flint_printf("Q = \n"); fmpq_mat_print(Q); flint_printf("\n\n");
                        flint_printf("A = \n"); arb_mat_printd(A, 15); flint_printf("\n\n");
                        abort();
                    }
                    prec *= 2;
                }
            }

            if (!arb_mat_contains_fmpq_mat(Ainv, Qinv))
            {
                flint_printf("FAIL (containment, iter = %wd)\n", iter);
                flint_printf("n = %wd, prec = %wd\n", n, prec);
                flint_printf("\n");

                flint_printf("Q = \n"); fmpq_mat_print(Q); flint_printf("\n\n");
                flint_printf("Qinv = \n"); fmpq_mat_print(Qinv); flint_printf("\n\n");

                flint_printf("A = \n"); arb_mat_printd(A, 15); flint_printf("\n\n");
                flint_printf("Ainv = \n"); arb_mat_printd(Ainv, 15); flint_printf("\n\n");

                abort();
            }

            /* test aliasing */
            r_invertible2 = arb_mat_inv(A, A, prec);
            if (!arb_mat_equal(A, Ainv) || r_invertible != r_invertible2)
            {
                flint_printf("FAIL (aliasing)\n");
                flint_printf("A = \n"); arb_mat_printd(A, 15); flint_printf("\n\n");
                flint_printf("Ainv = \n"); arb_mat_printd(Ainv, 15); flint_printf("\n\n");
                abort();
            }
        }

        fmpq_mat_clear(Q);
        fmpq_mat_clear(Qinv);
        arb_mat_clear(A);
        arb_mat_clear(Ainv);
    }

    flint_randclear(state);
    flint_cleanup();
    flint_printf("PASS\n");
    return EXIT_SUCCESS;
}