Ejemplo n.º 1
0
int axp202_set_rapid_time(int time)
{
    int val;    
    switch (time) {
    case 360: val = 0x00; break;
    case 480: val = 0x01; break;
    case 600: val = 0x02; break;
    case 720: val = 0x03; break;
    default:
        printf("%s, wrong rapid charge timeout:%d\n", __func__, time);    
        return -1;
    }
    return axp_update(0x34, val, 0x03);
}
Ejemplo n.º 2
0
int axp202_set_trickle_time(int time)
{
    int val;
    switch (time) {
    case 40: val = 0x00; break;
    case 50: val = 0x40; break;
    case 60: val = 0x80; break;
    case 70: val = 0xc0; break;
    default:
        printf("%s, wrong trickle charge timeout:%d\n", __func__, time);    
        return -1;
    }
    return axp_update(0x34, val, 0xc0);
}
Ejemplo n.º 3
0
int axp202_set_full_charge_voltage(int voltage)
{
    int val;

    switch (voltage) {
    case 4100000: val = 0x00; break;
    case 4150000: val = 0x20; break;
    case 4200000: val = 0x40; break;
    case 4360000: val = 0x60; break;
    default :
        printf("%s, wrong charge target voltage:%d\n", __func__, voltage);    
        return -1;
    }
    return axp_update(0x33, val, 0x60);
}
Ejemplo n.º 4
0
static void axp_set_charge(struct axp_charger *charger)
{
	uint8_t val=0x00;
	uint8_t tmp=0x00;

	if(charger->chgvol < AXP81X_CHARGE_VOLTAGE_LEVEL1){
		val &= ~(3 << 5);
	}else if (charger->chgvol<AXP81X_CHARGE_VOLTAGE_LEVEL2){
		val &= ~(3 << 5);
		val |= 1 << 5;
	}else if (charger->chgvol<AXP81X_CHARGE_VOLTAGE_LEVEL3){
		val &= ~(3 << 5);
		val |= 1 << 6;
	}else
		val |= 3 << 5;

	spin_lock(&charger->charger_lock);
	if(charger->chgcur == 0)
		charger->chgen = 0;

	if(charger->chgcur< 200000)
		charger->chgcur = 200000;
	else if(charger->chgcur > 2800000)
		charger->chgcur = 2800000;
	spin_unlock(&charger->charger_lock);

	val |= (charger->chgcur - 200000) / 200000 ;
	if(charger ->chgend == 10)
		val &= ~(1 << 4);
	else
		val |= 1 << 4;

	val &= 0x7F;
	val |= charger->chgen << 7;
	spin_lock(&charger->charger_lock);
	if(charger->chgpretime < 30)
		charger->chgpretime = 30;
	if(charger->chgcsttime < 360)
		charger->chgcsttime = 360;
	spin_unlock(&charger->charger_lock);

	tmp = ((((charger->chgpretime - 40) / 10) << 6)  \
	| ((charger->chgcsttime - 360) / 120));
	axp_write(charger->master, AXP81X_CHARGE_CONTROL1,val);
	axp_update(charger->master, AXP81X_CHARGE_CONTROL2,tmp,0xC2);
}
Ejemplo n.º 5
0
static void axp_earlysuspend(struct early_suspend *h)
{
	uint8_t tmp;

	DBG_PSY_MSG(DEBUG_SPLY, "======early suspend=======\n");

#if defined (CONFIG_AXP_CHGCHANGE)
	early_suspend_flag = 1;
	if(axp81x_config.pmu_earlysuspend_chgcur == 0)
		axp_clr_bits(axp_charger->master,AXP81X_CHARGE_CONTROL1,0x80);
	else
		axp_set_bits(axp_charger->master,AXP81X_CHARGE_CONTROL1,0x80);
	if(axp81x_config.pmu_earlysuspend_chgcur >= 300000 && axp81x_config.pmu_earlysuspend_chgcur <= 2550000){
		tmp = (axp81x_config.pmu_earlysuspend_chgcur -200001)/150000;
		axp_update(axp_charger->master, AXP81X_CHARGE_CONTROL1, tmp,0x0F);
	}
#endif
}
Ejemplo n.º 6
0
/* AXP common operations */
static int axp_set_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV,unsigned *selector)
{
	struct axp_regulator_info *info = rdev_get_drvdata(rdev);
	struct device *axp_dev = to_axp_dev(rdev);
	uint8_t val, mask;
	

	if (check_range(info, min_uV, max_uV)) {
		pr_err("invalid voltage range (%d, %d) uV\n", min_uV, max_uV);
		return -EINVAL;
	}

	val = (min_uV - info->min_uV + info->step1_uV - 1) / info->step1_uV;
	val <<= info->vol_shift;
	mask = ((1 << info->vol_nbits) - 1)  << info->vol_shift;

	return axp_update(axp_dev, info->vol_reg, val, mask);
}
Ejemplo n.º 7
0
/* AXP common operations */
static int axp_set_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV)
{
	struct axp_regulator_info *info = rdev_get_drvdata(rdev);
	struct device *axp_dev = to_axp_dev(rdev);
	uint8_t val, mask;


	if (check_range(info, min_uV, max_uV)) {
		pr_err("invalid voltage range (%d, %d) uV\n", min_uV, max_uV);
		return -EINVAL;
	}

	val = (min_uV - info->min_uV + info->step_uV - 1) / info->step_uV;
	val <<= info->vol_shift;
	mask = ((1 << info->vol_nbits) - 1)  << info->vol_shift;
	//printk("rdev.desc.name = %s\n",rdev->desc->name);
	//printk("reg=[%x],val=%d,mask=%d,line=%d\n",info->vol_reg,val,mask,__LINE__);
	return axp_update(axp_dev, info->vol_reg, val, mask);
}
Ejemplo n.º 8
0
static void axp81x_shutdown(struct platform_device *dev)
{
	uint8_t tmp;
	struct axp_charger *charger = platform_get_drvdata(dev);

	cancel_delayed_work_sync(&charger->work);
#if defined (CONFIG_AXP_CHGCHANGE)
	if(axp81x_config.pmu_shutdown_chgcur == 0)
		axp_clr_bits(charger->master,AXP81X_CHARGE_CONTROL1,0x80);
	else
		axp_set_bits(charger->master,AXP81X_CHARGE_CONTROL1,0x80);
	printk("pmu_shutdown_chgcur = %d\n", axp81x_config.pmu_shutdown_chgcur);
	if(axp81x_config.pmu_shutdown_chgcur >= 300000 && axp81x_config.pmu_shutdown_chgcur <= 2550000){
		tmp = (axp81x_config.pmu_shutdown_chgcur -200001)/150000;
		charger->chgcur = tmp *150000 + 300000;
		axp_update(charger->master, AXP81X_CHARGE_CONTROL1, tmp, 0x0F);
	}
#endif
	return;
}
Ejemplo n.º 9
0
static int axp81x_resume(struct platform_device *dev)
{
	struct axp_charger *charger = platform_get_drvdata(dev);
	int pre_rest_vol;
	uint8_t val,tmp;

	axp_enable_irq(charger);
	pre_rest_vol = charger->rest_vol;
	axp_read(charger->master, AXP81X_CAP,&val);
	charger->rest_vol = val & 0x7f;
	if(charger->rest_vol - pre_rest_vol){
		printk("battery vol change: %d->%d \n", pre_rest_vol, charger->rest_vol);
		pre_rest_vol = charger->rest_vol;
		axp_write(charger->master,AXP81X_DATA_BUFFER1,charger->rest_vol | 0x80);
	}
#if defined (CONFIG_AXP_CHGCHANGE)
	if(axp81x_config.pmu_runtime_chgcur == 0)
		axp_clr_bits(charger->master,AXP81X_CHARGE_CONTROL1,0x80);
	else
		axp_set_bits(charger->master,AXP81X_CHARGE_CONTROL1,0x80);
	printk("pmu_runtime_chgcur = %d\n", axp81x_config.pmu_runtime_chgcur);
	if(axp81x_config.pmu_runtime_chgcur >= 300000 && axp81x_config.pmu_runtime_chgcur <= 2550000){
		tmp = (axp81x_config.pmu_runtime_chgcur -200001)/150000;
		charger->chgcur = tmp *150000 + 300000;
		axp_update(charger->master, AXP81X_CHARGE_CONTROL1, tmp,0x0F);
	}else if(axp81x_config.pmu_runtime_chgcur < 300000){
		axp_clr_bits(axp_charger->master, AXP81X_CHARGE_CONTROL1,0x0F);
	}else{
		axp_set_bits(axp_charger->master, AXP81X_CHARGE_CONTROL1,0x0F);
	}
#endif
	charger->disvbat = 0;
	charger->disibat = 0;
	axp_charger_update_state(charger);
	axp_charger_update(charger, &axp81x_config);
	power_supply_changed(&charger->batt);
	power_supply_changed(&charger->ac);
	power_supply_changed(&charger->usb);
	schedule_delayed_work(&charger->work, charger->interval);
	return 0;
}
Ejemplo n.º 10
0
static int axp81x_suspend(struct platform_device *dev, pm_message_t state)
{
	uint8_t tmp, ret;
	struct axp_charger *charger = platform_get_drvdata(dev);

	ret = axp_disable_irq(charger);
	if (ret < 0)
		return ret;
	cancel_delayed_work_sync(&charger->work);
#if defined (CONFIG_AXP_CHGCHANGE)
	if(axp81x_config.pmu_suspend_chgcur == 0)
		axp_clr_bits(charger->master,AXP81X_CHARGE_CONTROL1,0x80);
	else
		axp_set_bits(charger->master,AXP81X_CHARGE_CONTROL1,0x80);
	printk("pmu_suspend_chgcur = %d\n", axp81x_config.pmu_suspend_chgcur);
	if(axp81x_config.pmu_suspend_chgcur >= 300000 && axp81x_config.pmu_suspend_chgcur <= 2550000){
		tmp = (axp81x_config.pmu_suspend_chgcur -200001)/150000;
		charger->chgcur = tmp *150000 + 300000;
		axp_update(charger->master, AXP81X_CHARGE_CONTROL1, tmp,0x0F);
	}
#endif
	return 0;
}
Ejemplo n.º 11
0
int axp81x_chg_current_limit(int current_limit)
{
	uint8_t tmp = 0;
#if defined (CONFIG_AXP_CHGCHANGE)
	if(current_limit == 0)
		axp_clr_bits(axp_charger->master,AXP81X_CHARGE_CONTROL1,0x80);
	else
		axp_set_bits(axp_charger->master,AXP81X_CHARGE_CONTROL1,0x80);
	DBG_PSY_MSG(DEBUG_SPLY, "current_limit = %d\n", current_limit);
	if(current_limit >= AXP81X_CHARGE_CURRENT_MIN && current_limit <= AXP81X_CHARGE_CURRENT_MAX){
		tmp = (current_limit -AXP81X_CHARGE_CURRENT_STEP)/AXP81X_CHARGE_CURRENT_STEP;
		spin_lock(&axp_charger->charger_lock);
		axp_charger->chgcur = tmp *AXP81X_CHARGE_CURRENT_STEP + AXP81X_CHARGE_CURRENT_MIN;
		spin_unlock(&axp_charger->charger_lock);
		axp_update(axp_charger->master, AXP81X_CHARGE_CONTROL1, tmp,0x0F);
	}else if(current_limit < AXP81X_CHARGE_CURRENT_MIN){
		axp_clr_bits(axp_charger->master, AXP81X_CHARGE_CONTROL1,0x0F);
	}else{
		axp_set_bits(axp_charger->master, AXP81X_CHARGE_CONTROL1,0x0F);
	}
#endif
	return 0;
}
Ejemplo n.º 12
0
static int axp_set_aldo12_voltage(struct regulator_dev *rdev,
				  int min_uV, int max_uV)
{
	struct axp_regulator_info *info = rdev_get_drvdata(rdev);
	struct device *axp_dev = to_axp_dev(rdev);
	uint8_t val, mask;
	int i;

	if (check_range(info, min_uV, max_uV)) {
		pr_err("invalid voltage range (%d, %d) uV\n", min_uV, max_uV);
		return -EINVAL;
	}

	for(i = 0,val = 0; i < sizeof(axp15_aldo12_data);i++){
		if(min_uV <= axp15_aldo12_data[i] * 1000){
			val = i;
			break;
		}
	}
	val <<= info->vol_shift;
	mask = ((1 << info->vol_nbits) - 1)  << info->vol_shift;
	return axp_update(axp_dev, info->vol_reg, val, mask);
}
Ejemplo n.º 13
0
static void axp_power_off(void)
{
	uint8_t val;

	preempt_count() = 0;

#if defined (CONFIG_AW_AXP18)
	axp_set_bits(&axp->dev, POWER18_ONOFF, 0x80);
#endif

#if defined (CONFIG_AW_AXP19)
	axp_set_bits(&axp->dev, POWER19_OFF_CTL, 0x80);
#endif

#if defined (CONFIG_AW_AXP20)
	if(pmu_pwroff_vol >= 2600 && pmu_pwroff_vol <= 3300){
		if (pmu_pwroff_vol > 3200){
			val = 0x7;
		}
		else if (pmu_pwroff_vol > 3100){
			val = 0x6;
		}
		else if (pmu_pwroff_vol > 3000){
			val = 0x5;
		}
		else if (pmu_pwroff_vol > 2900){
			val = 0x4;
		}
		else if (pmu_pwroff_vol > 2800){
			val = 0x3;
		}
		else if (pmu_pwroff_vol > 2700){
			val = 0x2;
		}
		else if (pmu_pwroff_vol > 2600){
			val = 0x1;
		}
		else
			val = 0x0;

		axp_update(&axp->dev, POWER20_VOFF_SET, val, 0x7);
	}
	val = 0xff;

	axp_read(&axp->dev, POWER20_COULOMB_CTL, &val);
	val &= 0x3f;
	axp_write(&axp->dev, POWER20_COULOMB_CTL, val);
	val |= 0x80;
	val &= 0xbf;
	axp_write(&axp->dev, POWER20_COULOMB_CTL, val);

    //led auto
    axp_clr_bits(&axp->dev,0x32,0x38);
	axp_clr_bits(&axp->dev,0xb9,0x80);

    printk("[axp] send power-off command!\n");
    mdelay(20);
    if(power_start != 1){
		axp_read(&axp->dev, POWER20_STATUS, &val);
		if(val & 0xF0){
	    	axp_read(&axp->dev, POWER20_MODE_CHGSTATUS, &val);
	    	if(val & 0x20){
            	printk("[axp] set flag!\n");
	        	axp_write(&axp->dev, POWER20_DATA_BUFFERC, 0x0f);
            	mdelay(20);
		    	printk("[axp] reboot!\n");
			machine_restart(NULL);
		    	printk("[axp] warning!!! arch can't ,reboot, maybe some error happend!\n");
	    	}
		}
	}
    axp_write(&axp->dev, POWER20_DATA_BUFFERC, 0x00);
    mdelay(20);
	axp_set_bits(&axp->dev, POWER20_OFF_CTL, 0x80);
    mdelay(20);
    printk("[axp] warning!!! axp can't power-off, maybe some error happend!\n");

#endif
}
Ejemplo n.º 14
0
static ssize_t workmode_store(struct device *dev,
                              struct device_attribute *attr, const char *buf, size_t count)
{
    struct regulator_dev *rdev = dev_get_drvdata(dev);
    struct axp_regulator_info *info = rdev_get_drvdata(rdev);
    struct device *axp_dev = to_axp_dev(rdev);
    char mode;
    uint8_t val;
    if(  buf[0] > '0' && buf[0] < '9' )// 1/AUTO: auto mode; 2/PWM: pwm mode;
        mode = buf[0];
    else
        mode = buf[1];

    switch(mode) {
    case 'U':
    case 'u':
    case '1':
        val = 0;
        break;
    case 'W':
    case 'w':
    case '2':
        val = 1;
        break;
    case 'F':
    case 'f':
    case '4':
        val = 2;
        break;
    default:
        val = 3;
        break;
    }

    if(info->desc.id == AXP18_ID_BUCK1) {
        if(val == 0)
            axp_clr_bits(axp_dev, AXP18_BUCKMODE,0x80);
        else if(val == 1)
            axp_update(axp_dev, AXP18_BUCKMODE,0x80,0x84);
        else if(val == 2)
            axp_update(axp_dev,AXP18_BUCKMODE,0x84,0x84);
        else
            return -EINVAL;
    }
    else if(info->desc.id == AXP18_ID_BUCK2) {
        if(val == 0)
            axp_clr_bits(axp_dev, AXP19_BUCKMODE,0x40);
        else if(val == 1)
            axp_update(axp_dev, AXP18_BUCKMODE,0x40,0x42);
        else if(val == 2)
            axp_update(axp_dev,AXP18_BUCKMODE,0x42,0x42);
        else
            return -EINVAL;
    }
    else if(info->desc.id == AXP18_ID_BUCK3) {
        if(val == 0)
            axp_clr_bits(axp_dev, AXP18_BUCKMODE,0x20);
        else if(val == 1)
            axp_update(axp_dev, AXP19_BUCKMODE,0x20,0x21);
        else if(val == 2)
            axp_update(axp_dev, AXP19_BUCKMODE,0x21,0x21);
        else
            return -EINVAL;
    }
    else
        return -ENXIO;
    return count;
}
Ejemplo n.º 15
0
static void axp_usb(struct work_struct *work)
{
	int var;
	uint8_t tmp,val;

	DBG_PSY_MSG(DEBUG_CHG, "[axp_usb]axp_usbcurflag = %d\n",axp_usbcurflag);

	axp_read(axp_charger->master, AXP_CHARGE_STATUS, &val);
	if ((val & 0x02)) { /* usb and ac in short*/
		if((val & 0x10) == 0x00){/*usb or usb adapter can not be used*/
			DBG_PSY_MSG(DEBUG_CHG, "USB not insert!\n");
			tmp = 0x10;
			axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
		}else if(CHARGE_USB_20 == axp_usbcurflag){
			DBG_PSY_MSG(DEBUG_CHG, "set usbcur_pc %d mA\n",axp_config->pmu_usbcur_pc);
			if(axp_config->pmu_usbcur_pc){
				var = axp_config->pmu_usbcur_pc;
				if(var < 500) {
					tmp = 0x00;   /* 100mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 900) {
					tmp = 0x10;   /* 500mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 1500) {
					tmp = 0x20;   /* 900mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 2000) {
					tmp = 0x30;   /* 1500mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 2500) {
					tmp = 0x40;   /* 2000mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 3000) {
					tmp = 0x50;   /* 2500mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 3500) {
					tmp = 0x60;   /* 3000mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 3500) {
					tmp = 0x70;   /* 3500mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else {
					tmp = 0x80;   /* 4000mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				}
			} else {
				tmp = 0x10;   /* 500mA */
				axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
			}
		}else if (CHARGE_USB_30 == axp_usbcurflag){
			tmp = 0x20; /* 900mA */
			axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
		}else {
			DBG_PSY_MSG(DEBUG_CHG, "set usbcur %d mA\n",axp_config->pmu_usbcur);
			if((axp_config->pmu_usbcur) && (axp_config->pmu_usbcur_limit)){
				var = axp_config->pmu_usbcur;
				if(var < 500) {
					tmp = 0x00;   /* 100mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 900) {
					tmp = 0x10;   /* 500mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 1500) {
					tmp = 0x20;   /* 900mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 2000) {
					tmp = 0x30;   /* 1500mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 2500) {
					tmp = 0x40;   /* 2000mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 3000) {
					tmp = 0x50;   /* 2500mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 3500) {
					tmp = 0x60;   /* 3000mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 4000) {
					tmp = 0x70;   /* 3500mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else {
					tmp = 0x80;   /* 4000mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				}
			} else {
				tmp = 0x50;   /* 2500mA */
				DBG_PSY_MSG(DEBUG_CHG, "%s: %d,set usbcur 2500 mA\n",__func__, __LINE__);
				axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
			}
		}

		if(!vbus_curr_limit_debug){ //usb current not limit
			DBG_PSY_MSG(DEBUG_CHG, "vbus_curr_limit_debug = %d\n",vbus_curr_limit_debug);
			tmp = 0x50;   /* 2500mA */
			axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
		}

		if(CHARGE_USB_20 == axp_usbvolflag){
			DBG_PSY_MSG(DEBUG_CHG, "set usbvol_pc %d mV\n",axp_config->pmu_usbvol_pc);
			if(axp_config->pmu_usbvol_pc){
				var = axp_config->pmu_usbvol_pc * 1000;
				if(var >= 4000000 && var <=4700000){
					tmp = (var - 4000000)/100000;
					val = tmp << 3;
					axp_update(axp_charger->master, AXP_CHARGE_VBUS, val,0x38);
				}else
					DBG_PSY_MSG(DEBUG_CHG, "set usb limit voltage error,%d mV\n",axp_config->pmu_usbvol_pc);
			}
		}else if(CHARGE_USB_30 == axp_usbvolflag) {
			val = 7 << 3;
			axp_update(axp_charger->master, AXP_CHARGE_VBUS, val,0x38);
		}else {
			DBG_PSY_MSG(DEBUG_CHG, "set usbvol %d mV\n",axp_config->pmu_usbvol);
			if((axp_config->pmu_usbvol) && (axp_config->pmu_usbvol_limit)){
				var = axp_config->pmu_usbvol * 1000;
				if(var >= 4000000 && var <=4700000){
					tmp = (var - 4000000)/100000;
					val = tmp << 3;
					axp_update(axp_charger->master, AXP_CHARGE_VBUS, val,0x38);
				}else
					DBG_PSY_MSG(DEBUG_CHG, "set usb limit voltage error,%d mV\n",axp_config->pmu_usbvol);
			}
		}
	}else {
		if((val & 0x50) == 0x00){/*usb and ac can not be used*/
			DBG_PSY_MSG(DEBUG_CHG, "USB not insert!\n");
			tmp = 0x10; /* 500mA */
			axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
			tmp = 0x0; /* 1500mA */
			axp_update(axp_charger->master, AXP_CHARGE_AC, tmp,0x07);
		}else if(CHARGE_USB_20 == axp_usbcurflag){
			DBG_PSY_MSG(DEBUG_CHG, "set usbcur_pc %d mA\n",axp_config->pmu_usbcur_pc);
			if(axp_config->pmu_usbcur_pc){
				var = axp_config->pmu_usbcur_pc;
				if(var < 500) {
					tmp = 0x00;   /* 100mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 900) {
					tmp = 0x10;   /* 500mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 1500) {
					tmp = 0x20;   /* 900mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 2000) {
					tmp = 0x30;   /* 1500mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 2500) {
					tmp = 0x40;   /* 2000mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 3000) {
					tmp = 0x50;   /* 2500mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 3500) {
					tmp = 0x60;   /* 3000mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else if (var < 4000) {
					tmp = 0x70;   /* 3500mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				} else {
					tmp = 0x80;   /* 4000mA */
					axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
				}
			} else {
				tmp = 0x10;   /* 500mA */
				axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
			}
		}else if (CHARGE_USB_30 == axp_usbcurflag){
			tmp = 0x20; /* 900mA */
			axp_update(axp_charger->master, AXP_CHARGE_CONTROL3, tmp,0xf0);
		}else {
			DBG_PSY_MSG(DEBUG_CHG, "set usbcur %d mA\n",axp_config->pmu_usbcur);
			if((axp_config->pmu_usbcur) && (axp_config->pmu_usbcur_limit)){
				var = axp_config->pmu_usbcur;
				if (var < 2000) {
					tmp = 0x01;   /* 1500mA */
					axp_update(axp_charger->master, AXP_CHARGE_AC, tmp,0x07);
				} else if (var < 2500) {
					tmp = 0x02;   /* 2000mA */
					axp_update(axp_charger->master, AXP_CHARGE_AC, tmp,0x07);
				} else if (var < 3000) {
					tmp = 0x03;   /* 2500mA */
					axp_update(axp_charger->master, AXP_CHARGE_AC, tmp,0x07);
				} else if (var < 3500) {
					tmp = 0x04;   /* 3000mA */
					axp_update(axp_charger->master, AXP_CHARGE_AC, tmp,0x07);
				} else if (var < 3500) {
					tmp = 0x05;   /* 3500mA */
					axp_update(axp_charger->master, AXP_CHARGE_AC, tmp,0x07);
				} else {
					tmp = 0x06;   /* 4000mA */
					axp_update(axp_charger->master, AXP_CHARGE_AC, tmp,0x07);
				}
			} else {
				tmp = 0x05;   /* 4000mA */
				axp_update(axp_charger->master, AXP_CHARGE_AC, tmp,0x07);
			}
		}

		if(!vbus_curr_limit_debug){ //usb current not limit
			DBG_PSY_MSG(DEBUG_CHG, "vbus_curr_limit_debug = %d\n",vbus_curr_limit_debug);
			tmp = 0x03;   /* 2500mA */
			axp_update(axp_charger->master, AXP_CHARGE_AC, tmp,0xf0);
		}

		if(CHARGE_USB_20 == axp_usbvolflag){
			DBG_PSY_MSG(DEBUG_CHG, "set usbvol_pc %d mV\n",axp_config->pmu_usbvol_pc);
			if(axp_config->pmu_usbvol_pc){
				var = axp_config->pmu_usbvol_pc * 1000;
				if(var >= 4000000 && var <=4700000){
					tmp = (var - 4000000)/100000;
					val = tmp << 3;
					axp_update(axp_charger->master, AXP_CHARGE_VBUS, val,0x38);
				}else
					DBG_PSY_MSG(DEBUG_CHG, "set usb limit voltage error,%d mV\n",axp_config->pmu_usbvol_pc);
			}
		}else if(CHARGE_USB_30 == axp_usbvolflag) {
			val |= 7 << 3;
			axp_update(axp_charger->master, AXP_CHARGE_VBUS, val,0x38);
		}else {
			DBG_PSY_MSG(DEBUG_CHG, "set usbvol %d mV\n",axp_config->pmu_usbvol);
			if((axp_config->pmu_usbvol) && (axp_config->pmu_usbvol_limit)){
				var = axp_config->pmu_usbvol * 1000;
				if(var >= 4000000 && var <=4700000){
					tmp = (var - 4000000)/100000;
					val = tmp << 3;
					axp_update(axp_charger->master, AXP_CHARGE_AC, val,0x38);
				}else
					DBG_PSY_MSG(DEBUG_CHG, "set usb limit voltage error,%d mV\n",axp_config->pmu_usbvol);
			}
		}
	}
}
Ejemplo n.º 16
0
void axp20_power_off(int power_start)
{
	uint8_t val;
	struct axp_dev *axp;
	axp = axp_dev_lookup(AXP20);
	if (NULL == axp) {
		printk("%s: axp data is null\n", __func__);
		return;
	}
	if(axp20_config.pmu_pwroff_vol >= 2600 && axp20_config.pmu_pwroff_vol <= 3300){
		if (axp20_config.pmu_pwroff_vol > 3200){
			val = 0x7;
		}
		else if (axp20_config.pmu_pwroff_vol > 3100){
			val = 0x6;
		}
		else if (axp20_config.pmu_pwroff_vol > 3000){
			val = 0x5;
		}
		else if (axp20_config.pmu_pwroff_vol > 2900){
			val = 0x4;
		}
		else if (axp20_config.pmu_pwroff_vol > 2800){
			val = 0x3;
		}
		else if (axp20_config.pmu_pwroff_vol > 2700){
			val = 0x2;
		}
		else if (axp20_config.pmu_pwroff_vol > 2600){
			val = 0x1;
		}
		else
			val = 0x0;

		axp_update(axp->dev, POWER20_VOFF_SET, val, 0x7);
	}
	val = 0xff;
	if (!use_cou){
		axp_read(axp->dev, POWER20_COULOMB_CTL, &val);
		val &= 0x3f;
		axp_write(axp->dev, POWER20_COULOMB_CTL, val);
		val |= 0x80;
		val &= 0xbf;
		axp_write(axp->dev, POWER20_COULOMB_CTL, val);
	}
	//led auto
	axp_clr_bits(axp->dev,0x32,0x38);
	axp_clr_bits(axp->dev,0xb9,0x80);

	printk("[axp] send power-off command!\n");
	mdelay(20);
	if(axp20_config.power_start != 1){
		axp_write(axp->dev, POWER20_INTSTS3, 0x03);
		axp_read(axp->dev, POWER20_STATUS, &val);
		if(val & 0xF0){
			axp_read(axp->dev, POWER20_MODE_CHGSTATUS, &val);
		    	if(val & 0x20){
				printk("[axp] set flag!\n");
		        	axp_write(axp->dev, POWER20_DATA_BUFFERC, 0x0f);
	            		mdelay(20);
			    	printk("[axp] reboot!\n");
			    	machine_restart(NULL);
			    	printk("[axp] warning!!! arch can't ,reboot, maybe some error happend!\n");
		    	}
		}
	}
	axp_write(axp->dev, POWER20_DATA_BUFFERC, 0x00);
	//axp_write(&axp->dev, 0xf4, 0x06);
	//axp_write(&axp->dev, 0xf2, 0x04);
	//axp_write(&axp->dev, 0xff, 0x01);
	//axp_write(&axp->dev, 0x04, 0x01);
	//axp_clr_bits(&axp->dev, 0x03, 0xc0);
	//axp_write(&axp->dev, 0xff, 0x00);
	//mdelay(20);
	axp_set_bits(axp->dev, POWER20_OFF_CTL, 0x80);
	mdelay(20);
	printk("[axp] warning!!! axp can't power-off, maybe some error happend!\n");
}
Ejemplo n.º 17
0
s32 axp81x_usb_ac_current_limit(struct axp_charger *charger, aw_charge_type port_type, u32 current_limit)
{
	u8 tmp = 0;

	if( (CHARGE_USB_20 == port_type) || (CHARGE_USB_30 == port_type)) {
		if(current_limit < 500) {
			tmp = 0x00;   /* 100mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_CONTROL3, tmp,0xf0);
		} else if (current_limit < 900) {
			tmp = 0x10;   /* 500mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_CONTROL3, tmp,0xf0);
		} else if (current_limit < 1500) {
			tmp = 0x20;   /* 900mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_CONTROL3, tmp,0xf0);
		} else if (current_limit < 2000) {
			tmp = 0x30;   /* 1500mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_CONTROL3, tmp,0xf0);
		} else if (current_limit < 2500) {
			tmp = 0x40;   /* 2000mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_CONTROL3, tmp,0xf0);
		} else if (current_limit < 3000) {
			tmp = 0x50;   /* 2500mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_CONTROL3, tmp,0xf0);
		} else if (current_limit < 3500) {
			tmp = 0x60;   /* 3000mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_CONTROL3, tmp,0xf0);
		} else if (current_limit < 4000) {
			tmp = 0x70;   /* 3500mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_CONTROL3, tmp,0xf0);
		} else {
			tmp = 0x80;   /* 4000mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_CONTROL3, tmp,0xf0);
		}
	}else if (CHARGE_AC == port_type) {
#ifdef BPI-M3
#else
		current_limit =4000;
#endif
		if (current_limit < 2000) {
			tmp = 0x00;   /* 1500mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_AC, tmp,0x07);
		} else if (current_limit < 2500) {
			tmp = 0x01;   /* 2000mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_AC, tmp,0x07);
		} else if (current_limit < 3000) {
			tmp = 0x02;   /* 2500mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_AC, tmp,0x07);
		} else if (current_limit < 3500) {
			tmp = 0x03;   /* 3000mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_AC, tmp,0x07);
		} else if (current_limit < 4000) {
			tmp = 0x04;   /* 3500mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_AC, tmp,0x07);
		} else {
			tmp = 0x05;   /* 4000mA */
			axp_update(axp_charger->master, AXP81X_CHARGE_AC, tmp,0x07);
		}
	} else
		return -1;

	return 0;
}
Ejemplo n.º 18
0
int axp81x_init(struct axp_charger *charger)
{
	int ret = 0, var = 0;
	uint8_t val = 0;
	uint8_t ocv_cap[63];
	int Cur_CoulombCounter,rdc;

	ret = axp_battery_first_init(charger);
	if (ret)
		goto err_charger_init;

	/* usb /ac voltage limit */
	if(axp81x_config.pmu_usbvol){
		axp81x_usb_ac_vol_limit(charger, CHARGE_AC, axp81x_config.pmu_usbvol);
	}
	if(axp81x_config.pmu_usbvol_pc){
		axp81x_usb_ac_vol_limit(charger, CHARGE_USB_20, axp81x_config.pmu_usbvol_pc);
	}

	/* ac current limit */
	if(axp81x_config.pmu_usbcur){
		axp81x_usb_ac_current_limit(charger, CHARGE_AC, axp81x_config.pmu_usbcur);
	} else {
#ifdef BPI-M3
		axp81x_usb_ac_current_limit(charger, CHARGE_AC, 2500);
#else
		axp81x_usb_ac_current_limit(charger, CHARGE_AC, 4000);
#endif
	}
#ifdef BPI-M3
#else
printk("BPI-M3: set PMIC AC 4000mA\n");
	axp81x_usb_ac_current_limit(charger, CHARGE_AC, 4000);
#endif

	axp81x_chg_current_limit(axp81x_config.pmu_runtime_chgcur);

	/* set lowe power warning/shutdown level */
	axp_write(charger->master, AXP81X_WARNING_LEVEL,((axp81x_config.pmu_battery_warning_level1-5) << 4)+axp81x_config.pmu_battery_warning_level2);
	ocv_cap[0]  = axp81x_config.pmu_bat_para1;
	ocv_cap[1]  = 0xC1;
	ocv_cap[2]  = axp81x_config.pmu_bat_para2;
	ocv_cap[3]  = 0xC2;
	ocv_cap[4]  = axp81x_config.pmu_bat_para3;
	ocv_cap[5]  = 0xC3;
	ocv_cap[6]  = axp81x_config.pmu_bat_para4;
	ocv_cap[7]  = 0xC4;
	ocv_cap[8]  = axp81x_config.pmu_bat_para5;
	ocv_cap[9]  = 0xC5;
	ocv_cap[10] = axp81x_config.pmu_bat_para6;
	ocv_cap[11] = 0xC6;
	ocv_cap[12] = axp81x_config.pmu_bat_para7;
	ocv_cap[13] = 0xC7;
	ocv_cap[14] = axp81x_config.pmu_bat_para8;
	ocv_cap[15] = 0xC8;
	ocv_cap[16] = axp81x_config.pmu_bat_para9;
	ocv_cap[17] = 0xC9;
	ocv_cap[18] = axp81x_config.pmu_bat_para10;
	ocv_cap[19] = 0xCA;
	ocv_cap[20] = axp81x_config.pmu_bat_para11;
	ocv_cap[21] = 0xCB;
	ocv_cap[22] = axp81x_config.pmu_bat_para12;
	ocv_cap[23] = 0xCC;
	ocv_cap[24] = axp81x_config.pmu_bat_para13;
	ocv_cap[25] = 0xCD;
	ocv_cap[26] = axp81x_config.pmu_bat_para14;
	ocv_cap[27] = 0xCE;
	ocv_cap[28] = axp81x_config.pmu_bat_para15;
	ocv_cap[29] = 0xCF;
	ocv_cap[30] = axp81x_config.pmu_bat_para16;
	ocv_cap[31] = 0xD0;
	ocv_cap[32] = axp81x_config.pmu_bat_para17;
	ocv_cap[33] = 0xD1;
	ocv_cap[34] = axp81x_config.pmu_bat_para18;
	ocv_cap[35] = 0xD2;
	ocv_cap[36] = axp81x_config.pmu_bat_para19;
	ocv_cap[37] = 0xD3;
	ocv_cap[38] = axp81x_config.pmu_bat_para20;
	ocv_cap[39] = 0xD4;
	ocv_cap[40] = axp81x_config.pmu_bat_para21;
	ocv_cap[41] = 0xD5;
	ocv_cap[42] = axp81x_config.pmu_bat_para22;
	ocv_cap[43] = 0xD6;
	ocv_cap[44] = axp81x_config.pmu_bat_para23;
	ocv_cap[45] = 0xD7;
	ocv_cap[46] = axp81x_config.pmu_bat_para24;
	ocv_cap[47] = 0xD8;
	ocv_cap[48] = axp81x_config.pmu_bat_para25;
	ocv_cap[49] = 0xD9;
	ocv_cap[50] = axp81x_config.pmu_bat_para26;
	ocv_cap[51] = 0xDA;
	ocv_cap[52] = axp81x_config.pmu_bat_para27;
	ocv_cap[53] = 0xDB;
	ocv_cap[54] = axp81x_config.pmu_bat_para28;
	ocv_cap[55] = 0xDC;
	ocv_cap[56] = axp81x_config.pmu_bat_para29;
	ocv_cap[57] = 0xDD;
	ocv_cap[58] = axp81x_config.pmu_bat_para30;
	ocv_cap[59] = 0xDE;
	ocv_cap[60] = axp81x_config.pmu_bat_para31;
	ocv_cap[61] = 0xDF;
	ocv_cap[62] = axp81x_config.pmu_bat_para32;
	axp_writes(charger->master, 0xC0,63,ocv_cap);
	/* pok open time set */
	if(axp81x_config.pmu_pekon_time < 1000)
		val = 0x00;
	else if(axp81x_config.pmu_pekon_time < 2000){
		val = 0x40;
	}else if(axp81x_config.pmu_pekon_time < 3000){
		val = 0x80;
	}else {
		val = 0xc0;
	}
	axp_update(charger->master, AXP81X_POK_SET, val, 0xc0);
	var = axp81x_config.pmu_peklong_time;
	/* pok long time set*/
	if(axp81x_config.pmu_peklong_time < 1000)
		var = 1000;
	if(axp81x_config.pmu_peklong_time > 2500)
		var = 2500;
	val = (((var - 1000) / 500) << 4);
	axp_update(charger->master, AXP81X_POK_SET, val, 0x30);
	/* pek offlevel poweroff en set*/
	if(axp81x_config.pmu_pekoff_en)
		var = 1;
	else
		var = 0;
	val = (var << 3);
	axp_update(charger->master, AXP81X_POK_SET, val, 0x8);
	/*Init offlevel restart or not */
	if(axp81x_config.pmu_pekoff_func)
		axp_set_bits(charger->master,AXP81X_POK_SET,0x04); //restart
	else
		axp_clr_bits(charger->master,AXP81X_POK_SET,0x04); //not restart

	if(10 > axp81x_config.pmu_pekoff_delay_time)
		val = 0x00;
	else if(20 > axp81x_config.pmu_pekoff_delay_time)
		val = 0x01;
	else if(30 > axp81x_config.pmu_pekoff_delay_time)
		val = 0x02;
	else if(40 > axp81x_config.pmu_pekoff_delay_time)
		val = 0x03;
	else if(50 > axp81x_config.pmu_pekoff_delay_time)
		val = 0x04;
	else if(60 > axp81x_config.pmu_pekoff_delay_time)
		val = 0x05;
	else if(70 > axp81x_config.pmu_pekoff_delay_time)
		val = 0x06;
	else
		val = 0x07;
	axp_write(charger->master,AXP81X_POK_DELAY_SET,val);

	/* pek delay set */
	if (axp81x_config.pmu_pwrok_time < 32)
		val = ((axp81x_config.pmu_pwrok_time / 8) - 1);
	else
		val = ((axp81x_config.pmu_pwrok_time / 32) + 1);
	axp_update(charger->master, AXP81X_OFF_CTL, val, 0x3);

	//axp_read(charger->master,AXP81X_DCDC_MONITOR,&val);
	//if(axp81x_config.pmu_pwrok_shutdown_en)
	//	val |= 0x40;
	//axp_write(charger->master,AXP81X_DCDC_MONITOR,val);

	if(axp81x_config.pmu_reset_shutdown_en)
		axp_set_bits(charger->master,AXP81X_HOTOVER_CTL,0x01); //restart shutdown ldo/dcdc

	/* pek offlevel time set */
	if(axp81x_config.pmu_pekoff_time < 4000)
		var = 4000;
	if(axp81x_config.pmu_pekoff_time > 10000)
		var =10000;
	var = (axp81x_config.pmu_pekoff_time - 4000) / 2000 ;
	val = var ;
	axp_update(charger->master, AXP81X_POK_SET, val, 0x3);
	/*Init 16's Reset PMU en */
	if(axp81x_config.pmu_reset)
		axp_set_bits(charger->master,0x8F,0x08); //enable
	else
		axp_clr_bits(charger->master,0x8F,0x08); //disable
	/*Init IRQ wakeup en*/
	if(axp81x_config.pmu_IRQ_wakeup)
		axp_set_bits(charger->master,0x8F,0x80); //enable
	else
		axp_clr_bits(charger->master,0x8F,0x80); //disable
	/*Init N_VBUSEN status*/
	if(axp81x_config.pmu_vbusen_func)
		axp_set_bits(charger->master,0x8F,0x10); //output
	else
		axp_clr_bits(charger->master,0x8F,0x10); //input
	/*Init InShort status*/
	if(axp81x_config.pmu_inshort)
		axp_set_bits(charger->master,0x8F,0x60); //InShort
	else
		axp_clr_bits(charger->master,0x8F,0x60); //auto detect
	/*Init CHGLED function*/
	if(axp81x_config.pmu_chgled_func)
		axp_set_bits(charger->master,0x32,0x08); //control by charger
	else
		axp_clr_bits(charger->master,0x32,0x08); //drive MOTO
	/*set CHGLED Indication Type*/
	if(axp81x_config.pmu_chgled_type)
		axp_set_bits(charger->master,0x34,0x10); //Type B
	else
		axp_clr_bits(charger->master,0x34,0x10); //Type A
	/*Init PMU Over Temperature protection*/
	if(axp81x_config.pmu_hot_shutdowm)
		axp_set_bits(charger->master,0x8f,0x04); //enable
	else
		axp_clr_bits(charger->master,0x8f,0x04); //disable
	/*Init battery capacity correct function*/
	if(axp81x_config.pmu_batt_cap_correct)
		axp_set_bits(charger->master,0xb8,0x20); //enable
	else
		axp_clr_bits(charger->master,0xb8,0x20); //disable
	/* Init battery regulator enable or not when charge finish*/
	if(axp81x_config.pmu_bat_regu_en)
		axp_set_bits(charger->master,0x34,0x20); //enable
	else
		axp_clr_bits(charger->master,0x34,0x20); //disable
	if(!axp81x_config.pmu_batdeten)
		axp_clr_bits(charger->master,AXP81X_PDBC,0x40);
	else
		axp_set_bits(charger->master,AXP81X_PDBC,0x40);
	/* RDC initial */
	axp_read(charger->master, AXP81X_RDC0,&val);
	if((axp81x_config.pmu_battery_rdc) && (!(val & 0x40))){
		rdc = (axp81x_config.pmu_battery_rdc * 10000 + 5371) / 10742;
		axp_write(charger->master, AXP81X_RDC0, ((rdc >> 8) & 0x1F)|0x80);
		axp_write(charger->master,AXP81X_RDC1,rdc & 0x00FF);
	}