Ejemplo n.º 1
0
static irqreturn_t ppi_irq_err(int irq, void *dev_id)
{
	struct ppi_if *ppi = dev_id;
	const struct ppi_info *info = ppi->info;

	switch (info->type) {
	case PPI_TYPE_PPI:
	{
		struct bfin_ppi_regs *reg = info->base;
		unsigned short status;

		status = bfin_read16(&reg->status);
		bfin_write16(&reg->status, 0xff00);
		break;
	}
	case PPI_TYPE_EPPI:
	{
		struct bfin_eppi_regs *reg = info->base;
		bfin_write16(&reg->status, 0xffff);
		break;
	}
	default:
		break;
	}

	return IRQ_HANDLED;
}
Ejemplo n.º 2
0
int do_gpio(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	if (argc != 3) {
 show_usage:
		printf("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	/* parse the behavior */
	ulong port_cmd = 0;
	switch (argv[1][0]) {
		case 'i': break;
		case 's': port_cmd = (PORTFIO_SET - PORTFIO); break;
		case 'c': port_cmd = (PORTFIO_CLEAR - PORTFIO); break;
		case 't': port_cmd = (PORTFIO_TOGGLE - PORTFIO); break;
		default:  goto show_usage;
	}

	/* parse the pin with format: [p]<fgh><#> */
	const char *str_pin = argv[2];

	/* grab the [p]<fgh> portion */
	ulong port_base;
	if (*str_pin == 'p') ++str_pin;
	switch (*str_pin) {
		case 'f': port_base = PORTFIO; break;
		case 'g': port_base = PORTGIO; break;
		case 'h': port_base = PORTHIO; break;
		default:  goto show_usage;
	}

	/* grab the <#> portion */
	ulong pin = simple_strtoul(str_pin+1, NULL, 10);
	ulong pin_mask = (1 << pin);
	if (pin > 15)
		goto show_usage;

	/* finally, let's do it: set direction and exec command */
	switch (*str_pin) {
		case 'f': bfin_write_PORTF_FER(bfin_read_PORTF_FER() & ~pin_mask); break;
		case 'g': bfin_write_PORTG_FER(bfin_read_PORTG_FER() & ~pin_mask); break;
		case 'h': bfin_write_PORTH_FER(bfin_read_PORTH_FER() & ~pin_mask); break;
	}

	ulong port_dir = port_base + (PORTFIO_DIR - PORTFIO);
	if (argv[1][0] == 'i')
		bfin_write16(port_dir, bfin_read16(port_dir) & ~pin_mask);
	else {
		bfin_write16(port_dir, bfin_read16(port_dir) | pin_mask);
		bfin_write16(port_base + port_cmd, pin_mask);
	}

	printf("gpio: pin %li on port %c has been %c\n", pin, *str_pin, argv[1][0]);

	return 0;
}
Ejemplo n.º 3
0
static int ppi_set_params(struct ppi_if *ppi, struct ppi_params *params)
{
	const struct ppi_info *info = ppi->info;
	int dma32 = 0;
	int dma_config, bytes_per_line, lines_per_frame;

	bytes_per_line = params->width * params->bpp / 8;
	lines_per_frame = params->height;
	if (params->int_mask == 0xFFFFFFFF)
		ppi->err_int = false;
	else
		ppi->err_int = true;

	dma_config = (DMA_FLOW_STOP | WNR | RESTART | DMA2D | DI_EN);
	ppi->ppi_control = params->ppi_control & ~PORT_EN;
	switch (info->type) {
	case PPI_TYPE_PPI:
	{
		struct bfin_ppi_regs *reg = info->base;

		if (params->ppi_control & DMA32)
			dma32 = 1;

		bfin_write16(&reg->control, ppi->ppi_control);
		bfin_write16(&reg->count, bytes_per_line - 1);
		bfin_write16(&reg->frame, lines_per_frame);
		break;
	}
	case PPI_TYPE_EPPI:
	{
		struct bfin_eppi_regs *reg = info->base;

		if ((params->ppi_control & PACK_EN)
			|| (params->ppi_control & 0x38000) > DLEN_16)
			dma32 = 1;

		bfin_write32(&reg->control, ppi->ppi_control);
		bfin_write16(&reg->line, bytes_per_line + params->blank_clocks);
		bfin_write16(&reg->frame, lines_per_frame);
		bfin_write16(&reg->hdelay, 0);
		bfin_write16(&reg->vdelay, 0);
		bfin_write16(&reg->hcount, bytes_per_line);
		bfin_write16(&reg->vcount, lines_per_frame);
		break;
	}
	default:
		return -EINVAL;
	}

	if (dma32) {
		dma_config |= WDSIZE_32;
		set_dma_x_count(info->dma_ch, bytes_per_line >> 2);
		set_dma_x_modify(info->dma_ch, 4);
		set_dma_y_modify(info->dma_ch, 4);
	} else {
Ejemplo n.º 4
0
static irqreturn_t ppi_irq_err(int irq, void *dev_id)
{
	struct ppi_if *ppi = dev_id;
	const struct ppi_info *info = ppi->info;

	switch (info->type) {
	case PPI_TYPE_PPI:
	{
		struct bfin_ppi_regs *reg = info->base;
		unsigned short status;

		/* register on bf561 is cleared when read 
		 * others are W1C
		 */
		status = bfin_read16(&reg->status);
		if (status & 0x3000)
			ppi->err = true;
		bfin_write16(&reg->status, 0xff00);
		break;
	}
	case PPI_TYPE_EPPI:
	{
		struct bfin_eppi_regs *reg = info->base;
		unsigned short status;

		status = bfin_read16(&reg->status);
		if (status & 0x2)
			ppi->err = true;
		bfin_write16(&reg->status, 0xffff);
		break;
	}
	case PPI_TYPE_EPPI3:
	{
		struct bfin_eppi3_regs *reg = info->base;
		unsigned long stat;

		stat = bfin_read32(&reg->stat);
		if (stat & 0x2)
			ppi->err = true;
		bfin_write32(&reg->stat, 0xc0ff);
		break;
	}
	default:
		break;
	}

	return IRQ_HANDLED;
}
Ejemplo n.º 5
0
static int ppi_start(struct ppi_if *ppi)
{
	const struct ppi_info *info = ppi->info;

	/* enable DMA */
	enable_dma(info->dma_ch);

	/* enable PPI */
	ppi->ppi_control |= PORT_EN;
	switch (info->type) {
	case PPI_TYPE_PPI:
	{
		struct bfin_ppi_regs *reg = info->base;
		bfin_write16(&reg->control, ppi->ppi_control);
		break;
	}
	case PPI_TYPE_EPPI:
	{
		struct bfin_eppi_regs *reg = info->base;
		bfin_write32(&reg->control, ppi->ppi_control);
		break;
	}
	case PPI_TYPE_EPPI3:
	{
		struct bfin_eppi3_regs *reg = info->base;
		bfin_write32(&reg->ctl, ppi->ppi_control);
		break;
	}
	default:
		return -EINVAL;
	}

	SSYNC();
	return 0;
}
Ejemplo n.º 6
0
static int ppi_stop(struct ppi_if *ppi)
{
	const struct ppi_info *info = ppi->info;

	
	ppi->ppi_control &= ~PORT_EN;
	switch (info->type) {
	case PPI_TYPE_PPI:
	{
		struct bfin_ppi_regs *reg = info->base;
		bfin_write16(&reg->control, ppi->ppi_control);
		break;
	}
	case PPI_TYPE_EPPI:
	{
		struct bfin_eppi_regs *reg = info->base;
		bfin_write32(&reg->control, ppi->ppi_control);
		break;
	}
	default:
		return -EINVAL;
	}

	
	clear_dma_irqstat(info->dma_ch);
	disable_dma(info->dma_ch);

	SSYNC();
	return 0;
}
Ejemplo n.º 7
0
void __init early_dma_memcpy(void *pdst, const void *psrc, size_t size)
{
	unsigned long dst = (unsigned long)pdst;
	unsigned long src = (unsigned long)psrc;
	struct dma_register *dst_ch, *src_ch;

	early_shadow_stamp();

	/* We assume that everything is 4 byte aligned, so include
	 * a basic sanity check
	 */
	BUG_ON(dst % 4);
	BUG_ON(src % 4);
	BUG_ON(size % 4);

	src_ch = 0;
	/* Find an avalible memDMA channel */
	while (1) {
		if (src_ch == (struct dma_register *)MDMA_S0_NEXT_DESC_PTR) {
			dst_ch = (struct dma_register *)MDMA_D1_NEXT_DESC_PTR;
			src_ch = (struct dma_register *)MDMA_S1_NEXT_DESC_PTR;
		} else {
			dst_ch = (struct dma_register *)MDMA_D0_NEXT_DESC_PTR;
			src_ch = (struct dma_register *)MDMA_S0_NEXT_DESC_PTR;
		}

		if (!bfin_read16(&src_ch->cfg))
			break;
		else if (bfin_read16(&dst_ch->irq_status) & DMA_DONE) {
			bfin_write16(&src_ch->cfg, 0);
			break;
		}
	}

	/* Force a sync in case a previous config reset on this channel
	 * occurred.  This is needed so subsequent writes to DMA registers
	 * are not spuriously lost/corrupted.
	 */
	__builtin_bfin_ssync();

	/* Destination */
	bfin_write32(&dst_ch->start_addr, dst);
	bfin_write16(&dst_ch->x_count, size >> 2);
	bfin_write16(&dst_ch->x_modify, 1 << 2);
	bfin_write16(&dst_ch->irq_status, DMA_DONE | DMA_ERR);

	/* Source */
	bfin_write32(&src_ch->start_addr, src);
	bfin_write16(&src_ch->x_count, size >> 2);
	bfin_write16(&src_ch->x_modify, 1 << 2);
	bfin_write16(&src_ch->irq_status, DMA_DONE | DMA_ERR);

	/* Enable */
	bfin_write16(&src_ch->cfg, DMAEN | WDSIZE_32);
	bfin_write16(&dst_ch->cfg, WNR | DI_EN | DMAEN | WDSIZE_32);

	/* Since we are atomic now, don't use the workaround ssync */
	__builtin_bfin_ssync();
}
Ejemplo n.º 8
0
static int sport_set(void *mmr, u64 val)
{
	unsigned long flags;
	local_irq_save(flags);
	if (sport_width(mmr) <= 16)
		bfin_write16(mmr, val);
	else
		bfin_write32(mmr, val);
	local_irq_restore(flags);
	return 0;
}
Ejemplo n.º 9
0
/*
 * This function read or write data to endpoint fifo
 * Blackfin use DMA polling method to avoid buffer alignment issues
 *
 * ep		- Endpoint number
 * length	- Number of bytes to write to FIFO
 * fifo_data	- Pointer to data buffer to be read/write
 * is_write	- Flag for read or write
 */
void rw_fifo(u8 ep, u32 length, void *fifo_data, int is_write)
{
	struct bfin_musb_dma_regs *regs;
	u32 val = (u32)fifo_data;

	blackfin_dcache_flush_invalidate_range(fifo_data, fifo_data + length);

	regs = (void *)USB_DMA_INTERRUPT;
	regs += ep;

	/* Setup DMA address register */
	bfin_write16(&regs->addr_low, val);
	SSYNC();

	bfin_write16(&regs->addr_high, val >> 16);
	SSYNC();

	/* Setup DMA count register */
	bfin_write16(&regs->count_low, length);
	bfin_write16(&regs->count_high, 0);
	SSYNC();

	/* Enable the DMA */
	val = (ep << 4) | DMA_ENA | INT_ENA;
	if (is_write)
		val |= DIRECTION;
	bfin_write16(&regs->control, val);
	SSYNC();

	/* Wait for compelete */
	while (!(bfin_read_USB_DMA_INTERRUPT() & (1 << ep)))
		continue;

	/* acknowledge dma interrupt */
	bfin_write_USB_DMA_INTERRUPT(1 << ep);
	SSYNC();

	/* Reset DMA */
	bfin_write16(&regs->control, 0);
	SSYNC();
}
Ejemplo n.º 10
0
void __init early_dma_memcpy(void *pdst, const void *psrc, size_t size)
{
	unsigned long dst = (unsigned long)pdst;
	unsigned long src = (unsigned long)psrc;
	struct dma_register *dst_ch, *src_ch;

	early_shadow_stamp();

	BUG_ON(dst % 4);
	BUG_ON(src % 4);
	BUG_ON(size % 4);

	src_ch = 0;
	
	while (1) {
		if (src_ch == (struct dma_register *)MDMA_S0_NEXT_DESC_PTR) {
			dst_ch = (struct dma_register *)MDMA_D1_NEXT_DESC_PTR;
			src_ch = (struct dma_register *)MDMA_S1_NEXT_DESC_PTR;
		} else {
			dst_ch = (struct dma_register *)MDMA_D0_NEXT_DESC_PTR;
			src_ch = (struct dma_register *)MDMA_S0_NEXT_DESC_PTR;
		}

		if (!bfin_read16(&src_ch->cfg))
			break;
		else if (bfin_read16(&dst_ch->irq_status) & DMA_DONE) {
			bfin_write16(&src_ch->cfg, 0);
			break;
		}
	}

	__builtin_bfin_ssync();

	
	bfin_write32(&dst_ch->start_addr, dst);
	bfin_write16(&dst_ch->x_count, size >> 2);
	bfin_write16(&dst_ch->x_modify, 1 << 2);
	bfin_write16(&dst_ch->irq_status, DMA_DONE | DMA_ERR);

	
	bfin_write32(&src_ch->start_addr, src);
	bfin_write16(&src_ch->x_count, size >> 2);
	bfin_write16(&src_ch->x_modify, 1 << 2);
	bfin_write16(&src_ch->irq_status, DMA_DONE | DMA_ERR);

	
	bfin_write16(&src_ch->cfg, DMAEN | WDSIZE_32);
	bfin_write16(&dst_ch->cfg, WNR | DI_EN | DMAEN | WDSIZE_32);

	
	__builtin_bfin_ssync();
}
Ejemplo n.º 11
0
void serial_putc(const char c)
{
	/* send a \r for compatibility */
	if (c == '\n')
		serial_putc('\r');

	WATCHDOG_RESET();

	/* wait for the hardware fifo to clear up */
	while (!(uart_lsr_read() & THRE))
		continue;

	/* queue the character for transmission */
	bfin_write16(&pUART->thr, c);
	SSYNC();

	WATCHDOG_RESET();
}
Ejemplo n.º 12
0
long probe_kernel_write(void *dst, const void *src, size_t size)
{
	unsigned long ldst = (unsigned long)dst;
	int mem_type;

	mem_type = validate_memory_access_address(ldst, size);
	if (mem_type < 0)
		return mem_type;

	if (ldst >= SYSMMR_BASE) {
		if (size == 2 && ldst % 2 == 0) {
			u16 mmr;
			memcpy(&mmr, src, sizeof(mmr));
			bfin_write16(dst, mmr);
			return 0;
		} else if (size == 4 && ldst % 4 == 0) {
			u32 mmr;
			memcpy(&mmr, src, sizeof(mmr));
			bfin_write32(dst, mmr);
			return 0;
		}
	} else {
		switch (mem_type) {
		case BFIN_MEM_ACCESS_CORE:
		case BFIN_MEM_ACCESS_CORE_ONLY:
			return __probe_kernel_write(dst, src, size);
			
		case BFIN_MEM_ACCESS_DMA:
			if (dma_memcpy(dst, src, size))
				return 0;
			break;
		case BFIN_MEM_ACCESS_ITEST:
			if (isram_memcpy(dst, src, size))
				return 0;
			break;
		}
	}

	return -EFAULT;
}
Ejemplo n.º 13
0
static inline void serial_init(void)
{
#ifdef __ADSPBF54x__
# ifdef BFIN_BOOT_UART_USE_RTS
#  define BFIN_UART_USE_RTS 1
# else
#  define BFIN_UART_USE_RTS 0
# endif
	if (BFIN_UART_USE_RTS && CONFIG_BFIN_BOOT_MODE == BFIN_BOOT_UART) {
		size_t i;

		/* force RTS rather than relying on auto RTS */
		bfin_write16(&pUART->mcr, bfin_read16(&pUART->mcr) | FCPOL);

		/* Wait for the line to clear up.  We cannot rely on UART
		 * registers as none of them reflect the status of the RSR.
		 * Instead, we'll sleep for ~10 bit times at 9600 baud.
		 * We can precalc things here by assuming boot values for
		 * PLL rather than loading registers and calculating.
		 *	baud    = SCLK / (16 ^ (1 - EDBO) * Divisor)
		 *	EDB0    = 0
		 *	Divisor = (SCLK / baud) / 16
		 *	SCLK    = baud * 16 * Divisor
		 *	SCLK    = (0x14 * CONFIG_CLKIN_HZ) / 5
		 *	CCLK    = (16 * Divisor * 5) * (9600 / 10)
		 * In reality, this will probably be just about 1 second delay,
		 * so assuming 9600 baud is OK (both as a very low and too high
		 * speed as this will buffer things enough).
		 */
#define _NUMBITS (10)                                   /* how many bits to delay */
#define _LOWBAUD (9600)                                 /* low baud rate */
#define _SCLK    ((0x14 * CONFIG_CLKIN_HZ) / 5)         /* SCLK based on PLL */
#define _DIVISOR ((_SCLK / _LOWBAUD) / 16)              /* UART DLL/DLH */
#define _NUMINS  (3)                                    /* how many instructions in loop */
#define _CCLK    (((16 * _DIVISOR * 5) * (_LOWBAUD / _NUMBITS)) / _NUMINS)
		i = _CCLK;
		while (i--)
			asm volatile("" : : : "memory");
	}
Ejemplo n.º 14
0
static int ppi_set_params(struct ppi_if *ppi, struct ppi_params *params)
{
	const struct ppi_info *info = ppi->info;
	int dma32 = 0;
	int dma_config, bytes_per_line;
	int hcount, hdelay, samples_per_line;

	bytes_per_line = params->width * params->bpp / 8;
	/* convert parameters unit from pixels to samples */
	hcount = params->width * params->bpp / params->dlen;
	hdelay = params->hdelay * params->bpp / params->dlen;
	samples_per_line = params->line * params->bpp / params->dlen;
	if (params->int_mask == 0xFFFFFFFF)
		ppi->err_int = false;
	else
		ppi->err_int = true;

	dma_config = (DMA_FLOW_STOP | RESTART | DMA2D | DI_EN_Y);
	ppi->ppi_control = params->ppi_control & ~PORT_EN;
	if (!(ppi->ppi_control & PORT_DIR))
		dma_config |= WNR;
	switch (info->type) {
	case PPI_TYPE_PPI:
	{
		struct bfin_ppi_regs *reg = info->base;

		if (params->ppi_control & DMA32)
			dma32 = 1;

		bfin_write16(&reg->control, ppi->ppi_control);
		bfin_write16(&reg->count, samples_per_line - 1);
		bfin_write16(&reg->frame, params->frame);
		break;
	}
	case PPI_TYPE_EPPI:
	{
		struct bfin_eppi_regs *reg = info->base;

		if ((params->ppi_control & PACK_EN)
			|| (params->ppi_control & 0x38000) > DLEN_16)
			dma32 = 1;

		bfin_write32(&reg->control, ppi->ppi_control);
		bfin_write16(&reg->line, samples_per_line);
		bfin_write16(&reg->frame, params->frame);
		bfin_write16(&reg->hdelay, hdelay);
		bfin_write16(&reg->vdelay, params->vdelay);
		bfin_write16(&reg->hcount, hcount);
		bfin_write16(&reg->vcount, params->height);
		break;
	}
	case PPI_TYPE_EPPI3:
	{
		struct bfin_eppi3_regs *reg = info->base;

		if ((params->ppi_control & PACK_EN)
			|| (params->ppi_control & 0x70000) > DLEN_16)
			dma32 = 1;

		bfin_write32(&reg->ctl, ppi->ppi_control);
		bfin_write32(&reg->line, samples_per_line);
		bfin_write32(&reg->frame, params->frame);
		bfin_write32(&reg->hdly, hdelay);
		bfin_write32(&reg->vdly, params->vdelay);
		bfin_write32(&reg->hcnt, hcount);
		bfin_write32(&reg->vcnt, params->height);
		if (params->int_mask)
			bfin_write32(&reg->imsk, params->int_mask & 0xFF);
		break;
	}
	default:
		return -EINVAL;
	}

	if (dma32) {
		dma_config |= WDSIZE_32 | PSIZE_32;
		set_dma_x_count(info->dma_ch, bytes_per_line >> 2);
		set_dma_x_modify(info->dma_ch, 4);
		set_dma_y_modify(info->dma_ch, 4);
	} else {
Ejemplo n.º 15
0
void init_clocks(void)
{
	/* Kill any active DMAs as they may trigger external memory accesses
	 * in the middle of reprogramming things, and that'll screw us up.
	 * For example, any automatic DMAs left by U-Boot for splash screens.
	 */
	size_t i;
	for (i = 0; i < MAX_DMA_CHANNELS; ++i) {
		struct dma_register *dma = dma_io_base_addr[i];
		dma->cfg = 0;
	}

	do_sync();

#ifdef SIC_IWR0
	bfin_write_SIC_IWR0(IWR_ENABLE(0));
# ifdef SIC_IWR1
	/* BF52x system reset does not properly reset SIC_IWR1 which
	 * will screw up the bootrom as it relies on MDMA0/1 waking it
	 * up from IDLE instructions.  See this report for more info:
	 * http://blackfin.uclinux.org/gf/tracker/4323
	 */
	if (ANOMALY_05000435)
		bfin_write_SIC_IWR1(IWR_ENABLE(10) | IWR_ENABLE(11));
	else
		bfin_write_SIC_IWR1(IWR_DISABLE_ALL);
# endif
# ifdef SIC_IWR2
	bfin_write_SIC_IWR2(IWR_DISABLE_ALL);
# endif
#else
	bfin_write_SIC_IWR(IWR_ENABLE(0));
#endif
	do_sync();
#ifdef EBIU_SDGCTL
	bfin_write_EBIU_SDGCTL(bfin_read_EBIU_SDGCTL() | SRFS);
	do_sync();
#endif

#ifdef CLKBUFOE
	bfin_write16(VR_CTL, bfin_read_VR_CTL() | CLKBUFOE);
	do_sync();
	__asm__ __volatile__("IDLE;");
#endif
	bfin_write_PLL_LOCKCNT(0x300);
	do_sync();
	bfin_write16(PLL_CTL, PLL_CTL_VAL);
	__asm__ __volatile__("IDLE;");
	bfin_write_PLL_DIV(CONFIG_CCLK_ACT_DIV | CONFIG_SCLK_DIV);
#ifdef EBIU_SDGCTL
	bfin_write_EBIU_SDRRC(mem_SDRRC);
	bfin_write_EBIU_SDGCTL((bfin_read_EBIU_SDGCTL() & SDGCTL_WIDTH) | mem_SDGCTL);
#else
	bfin_write_EBIU_RSTCTL(bfin_read_EBIU_RSTCTL() & ~(SRREQ));
	do_sync();
	bfin_write_EBIU_RSTCTL(bfin_read_EBIU_RSTCTL() | 0x1);
	bfin_write_EBIU_DDRCTL0(mem_DDRCTL0);
	bfin_write_EBIU_DDRCTL1(mem_DDRCTL1);
	bfin_write_EBIU_DDRCTL2(mem_DDRCTL2);
#ifdef CONFIG_MEM_EBIU_DDRQUE
	bfin_write_EBIU_DDRQUE(CONFIG_MEM_EBIU_DDRQUE);
#endif
#endif
	do_sync();
	bfin_read16(0);
}
Ejemplo n.º 16
0
static void uart_lsr_clear(void)
{
	bfin_write16(&pUART->lsr, bfin_read16(&pUART->lsr) | -1);
}