Ejemplo n.º 1
0
error bignum_mult(bignum *tmp, bignum *r, const bignum *a, const bignum *b)
{
  if (r == a || r == b)
  {
    error err = bignum_mul(tmp, a, b);
    if (err)
      return err;
    return bignum_dup(r, tmp);
  }

  return bignum_mul(r, a, b);
}
Ejemplo n.º 2
0
static _rs_inline obj long_mul( INT_64 a, INT_64 b )
{
    int am, bm;
    if((am = search_one(a))<0 ||
            (bm = search_one(b))<0)
        return ZERO;
    if(am + bm <= 63)
        return int_64_compact( int_64_mul(a,b) );
    return bignum_mul(int64_to_bignum(a), int64_to_bignum(b));
}
Ejemplo n.º 3
0
/**
 * Algo de karatsuba pour la multiplication de grands entiers
 */
bignum* bignum_mul(bignum a, bignum b) {
    int len_a = bignum_len(a);
    int len_b = bignum_len(b);

    // Multiplication stupide pour les petits nombres
    if(len_a < 2 || len_b < 2) {
        return bignum_dumb_mul(a, b);
    }
    int max = MAX(len_a, len_b);
    int max_middle = max/2;

    bignum* high_a = bignum_init();
    bignum* high_b = bignum_init();
    bignum* low_a = bignum_init();
    bignum* low_b = bignum_init();

    bignum_split(a, max-max_middle, high_a, low_a);
    bignum_split(b, max-max_middle, high_b, low_b);

    bignum* z2 = bignum_mul(*high_a, *high_b);
    bignum* z0 = bignum_mul(*low_a, *low_b);

    // Je voudrais de l'operator overloading : (z2*10^(max))+((z1-z2-z0)*10^(max_middle))+(z0)
    bignum* sum_a = bignum_add(*low_a, *high_a);
    bignum* sum_b = bignum_add(*low_b, *high_b);

    bignum_destoroyah(high_a);
    bignum_destoroyah(high_b);
    bignum_destoroyah(low_a);
    bignum_destoroyah(low_b);

    // z1 = (sum_a*sum_b) - z2 - z0
    bignum* mul_of_sum = bignum_mul(*sum_a, *sum_b);
    bignum* diff_a = bignum_sub(*mul_of_sum,*z2);
    bignum* z1 = bignum_sub(*diff_a, *z0);

    bignum_destoroyah(mul_of_sum);
    bignum_destoroyah(diff_a);
    bignum_destoroyah(sum_a);
    bignum_destoroyah(sum_b);

    //arrondir pour avoir la bonne puissance de 10 dans les shifts.
    float inter = (float)max;
    inter = inter/2.0f;
    inter += 0.5f;
    max_middle = (int) inter;
    if(max%2 == 1){
        max++;
    }

    //r1 = z2*10^(max)
    bignum* r1 = bignum_copy(z2);
    bignum_shift_left(r1, max);

    //r2 = z1
    bignum* r2 = bignum_copy(z1);
    //r2 = r2*10^(max_middle)
    bignum_shift_left(r2, max_middle);
    //r3 = r2 + z0
    bignum* r3 = bignum_add(*r2, *z0);

    //bignum_destoroyah(z0);
    bignum_destoroyah(r2);
    //rf = r1+r3
    bignum* rf = bignum_add(*r1, *r3);

    bignum_destoroyah(r1);
    bignum_destoroyah(r3);

    bignum_destoroyah(z0);
    bignum_destoroyah(z1);
    bignum_destoroyah(z2);
    return rf;
}
Ejemplo n.º 4
0
/**
 * crypto_rsa_exptmod - RSA modular exponentiation
 * @in: Input data
 * @inlen: Input data length
 * @out: Buffer for output data
 * @outlen: Maximum size of the output buffer and used size on success
 * @key: RSA key
 * @use_private: 1 = Use RSA private key, 0 = Use RSA public key
 * Returns: 0 on success, -1 on failure
 */
int crypto_rsa_exptmod(const u8 *in, size_t inlen, u8 *out, size_t *outlen,
		       struct crypto_rsa_key *key, int use_private)
{
	struct bignum *tmp, *a = NULL, *b = NULL;
	int ret = -1;
	size_t modlen;

	if (use_private && !key->private_key)
		return -1;

	tmp = bignum_init();
	if (tmp == NULL)
		return -1;

	if (bignum_set_unsigned_bin(tmp, in, inlen) < 0)
		goto error;
	if (bignum_cmp(key->n, tmp) < 0) {
		/* Too large input value for the RSA key modulus */
		goto error;
	}

	if (use_private) {
		/*
		 * Decrypt (or sign) using Chinese remainer theorem to speed
		 * up calculation. This is equivalent to tmp = tmp^d mod n
		 * (which would require more CPU to calculate directly).
		 *
		 * dmp1 = (1/e) mod (p-1)
		 * dmq1 = (1/e) mod (q-1)
		 * iqmp = (1/q) mod p, where p > q
		 * m1 = c^dmp1 mod p
		 * m2 = c^dmq1 mod q
		 * h = q^-1 (m1 - m2) mod p
		 * m = m2 + hq
		 */
		a = bignum_init();
		b = bignum_init();
		if (a == NULL || b == NULL)
			goto error;

		/* a = tmp^dmp1 mod p */
		if (bignum_exptmod(tmp, key->dmp1, key->p, a) < 0)
			goto error;

		/* b = tmp^dmq1 mod q */
		if (bignum_exptmod(tmp, key->dmq1, key->q, b) < 0)
			goto error;

		/* tmp = (a - b) * (1/q mod p) (mod p) */
		if (bignum_sub(a, b, tmp) < 0 ||
		    bignum_mulmod(tmp, key->iqmp, key->p, tmp) < 0)
			goto error;

		/* tmp = b + q * tmp */
		if (bignum_mul(tmp, key->q, tmp) < 0 ||
		    bignum_add(tmp, b, tmp) < 0)
			goto error;
	} else {
		/* Encrypt (or verify signature) */
		/* tmp = tmp^e mod N */
		if (bignum_exptmod(tmp, key->e, key->n, tmp) < 0)
			goto error;
	}

	modlen = crypto_rsa_get_modulus_len(key);
	if (modlen > *outlen) {
		*outlen = modlen;
		goto error;
	}

	if (bignum_get_unsigned_bin_len(tmp) > modlen)
		goto error; /* should never happen */

	*outlen = modlen;
	os_memset(out, 0, modlen);
	if (bignum_get_unsigned_bin(
		    tmp, out +
		    (modlen - bignum_get_unsigned_bin_len(tmp)), NULL) < 0)
		goto error;

	ret = 0;

error:
	bignum_deinit(tmp);
	bignum_deinit(a);
	bignum_deinit(b);
	return ret;
}