Ejemplo n.º 1
0
Archivo: bio.c Proyecto: ambakshi/redis
/* Wait until the number of pending jobs of the specified type are
 * less or equal to the specified number.
 *
 * This function may block for long time, it should only be used to perform
 * the following tasks:
 *
 * 1) To avoid that the main thread is pushing jobs of a given time so fast
 *    that the background thread can't process them at the same speed.
 *    So before creating a new job of a given type the main thread should
 *    call something like: bioWaitPendingJobsLE(job_type,10000);
 * 2) In order to perform special operations that make it necessary to be sure
 *    no one is touching shared resourced in the background.
 */
void bioWaitPendingJobsLE(int type, unsigned long long num) {
    unsigned long long iteration = 0;

    /* We poll the jobs queue aggressively to start, and gradually relax
     * the polling speed if it is going to take too much time. */
    while(1) {
        iteration++;
        if (iteration > 1000 && iteration <= 10000) {
            usleep(100);
        } else if (iteration > 10000) {
            usleep(1000);
        }
        if (bioPendingJobsOfType(type) <= num) break;
    }
}
Ejemplo n.º 2
0
/* Write the append only file buffer on disk.
 *
 * Since we are required to write the AOF before replying to the client,
 * and the only way the client socket can get a write is entering when the
 * the event loop, we accumulate all the AOF writes in a memory
 * buffer and write it on disk using this function just before entering
 * the event loop again.
 *
 * About the 'force' argument:
 *
 * When the fsync policy is set to 'everysec' we may delay the flush if there
 * is still an fsync() going on in the background thread, since for instance
 * on Linux write(2) will be blocked by the background fsync anyway.
 * When this happens we remember that there is some aof buffer to be
 * flushed ASAP, and will try to do that in the serverCron() function.
 *
 * However if force is set to 1 we'll write regardless of the background
 * fsync. */
void flushAppendOnlyFile(int force) {
    ssize_t nwritten;
    int sync_in_progress = 0;

    if (sdslen(server.aof_buf) == 0) return;

    if (server.aof_fsync == AOF_FSYNC_EVERYSEC)
        sync_in_progress = bioPendingJobsOfType(REDIS_BIO_AOF_FSYNC) != 0;

    if (server.aof_fsync == AOF_FSYNC_EVERYSEC && !force) {
        /* With this append fsync policy we do background fsyncing.
         * If the fsync is still in progress we can try to delay
         * the write for a couple of seconds. */
        if (sync_in_progress) {
            if (server.aof_flush_postponed_start == 0) {
                /* No previous write postponinig, remember that we are
                 * postponing the flush and return. */
                server.aof_flush_postponed_start = server.unixtime;
                return;
            } else if (server.unixtime - server.aof_flush_postponed_start < 2) {
                /* We were already waiting for fsync to finish, but for less
                 * than two seconds this is still ok. Postpone again. */
                return;
            }
            /* Otherwise fall trough, and go write since we can't wait
             * over two seconds. */
            server.aof_delayed_fsync++;
            redisLog(REDIS_NOTICE,"Asynchronous AOF fsync is taking too long (disk is busy?). Writing the AOF buffer without waiting for fsync to complete, this may slow down Redis.");
        }
    }
    /* If you are following this code path, then we are going to write so
     * set reset the postponed flush sentinel to zero. */
    server.aof_flush_postponed_start = 0;

    /* We want to perform a single write. This should be guaranteed atomic
     * at least if the filesystem we are writing is a real physical one.
     * While this will save us against the server being killed I don't think
     * there is much to do about the whole server stopping for power problems
     * or alike */
    nwritten = write(server.aof_fd,server.aof_buf,sdslen(server.aof_buf));
    if (nwritten != (signed)sdslen(server.aof_buf)) {
        /* Ooops, we are in troubles. The best thing to do for now is
         * aborting instead of giving the illusion that everything is
         * working as expected. */
        if (nwritten == -1) {
            redisLog(REDIS_WARNING,"Exiting on error writing to the append-only file: %s",strerror(errno));
        } else {
            redisLog(REDIS_WARNING,"Exiting on short write while writing to "
                                   "the append-only file: %s (nwritten=%ld, "
                                   "expected=%ld)",
                                   strerror(errno),
                                   (long)nwritten,
                                   (long)sdslen(server.aof_buf));

            if (ftruncate(server.aof_fd, server.aof_current_size) == -1) {
                redisLog(REDIS_WARNING, "Could not remove short write "
                         "from the append-only file.  Redis may refuse "
                         "to load the AOF the next time it starts.  "
                         "ftruncate: %s", strerror(errno));
            }
        }
        exit(1);
    }
    server.aof_current_size += nwritten;

    /* Re-use AOF buffer when it is small enough. The maximum comes from the
     * arena size of 4k minus some overhead (but is otherwise arbitrary). */
    if ((sdslen(server.aof_buf)+sdsavail(server.aof_buf)) < 4000) {
        sdsclear(server.aof_buf);
    } else {
        sdsfree(server.aof_buf);
        server.aof_buf = sdsempty();
    }

    /* Don't fsync if no-appendfsync-on-rewrite is set to yes and there are
     * children doing I/O in the background. */
    if (server.aof_no_fsync_on_rewrite &&
        (server.aof_child_pid != -1 || server.rdb_child_pid != -1))
            return;

    /* Perform the fsync if needed. */
    if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
        /* aof_fsync is defined as fdatasync() for Linux in order to avoid
         * flushing metadata. */
        aof_fsync(server.aof_fd); /* Let's try to get this data on the disk */
        server.aof_last_fsync = server.unixtime;
    } else if ((server.aof_fsync == AOF_FSYNC_EVERYSEC &&
                server.unixtime > server.aof_last_fsync)) {
        if (!sync_in_progress) aof_background_fsync(server.aof_fd);
        server.aof_last_fsync = server.unixtime;
    }
}
Ejemplo n.º 3
0
Archivo: evict.c Proyecto: Xwuming/misc
int freeMemoryIfNeeded(void) {
    size_t mem_reported, mem_used, mem_tofree, mem_freed;
    int slaves = listLength(server.slaves);
    mstime_t latency, eviction_latency;
    long long delta;

    /* Check if we are over the memory usage limit. If we are not, no need
     * to subtract the slaves output buffers. We can just return ASAP. */
    mem_reported = zmalloc_used_memory();
    if (mem_reported <= server.maxmemory) return C_OK;

    /* Remove the size of slaves output buffers and AOF buffer from the
     * count of used memory. */
    mem_used = mem_reported;
    if (slaves) {
        listIter li;
        listNode *ln;

        listRewind(server.slaves,&li);
        while((ln = listNext(&li))) {
            client *slave = listNodeValue(ln);
            unsigned long obuf_bytes = getClientOutputBufferMemoryUsage(slave);
            if (obuf_bytes > mem_used)
                mem_used = 0;
            else
                mem_used -= obuf_bytes;
        }
    }
    if (server.aof_state != AOF_OFF) {
        mem_used -= sdslen(server.aof_buf);
        mem_used -= aofRewriteBufferSize();
    }

    /* Check if we are still over the memory limit. */
    if (mem_used <= server.maxmemory) return C_OK;

    /* Compute how much memory we need to free. */
    mem_tofree = mem_used - server.maxmemory;
    mem_freed = 0;

    if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
        goto cant_free; /* We need to free memory, but policy forbids. */

    latencyStartMonitor(latency);
    while (mem_freed < mem_tofree) {
        int j, k, i, keys_freed = 0;
        static int next_db = 0;
        sds bestkey = NULL;
        int bestdbid;
        redisDb *db;
        dict *dict;
        dictEntry *de;

        if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_LRU ||
            server.maxmemory_policy == MAXMEMORY_VOLATILE_LRU)
        {
            struct evictionPoolEntry *pool = EvictionPoolLRU;

            while(bestkey == NULL) {
                unsigned long total_keys = 0, keys;

                /* We don't want to make local-db choices when expiring keys,
                 * so to start populate the eviction pool sampling keys from
                 * every DB. */
                for (i = 0; i < server.dbnum; i++) {
                    db = server.db+i;
                    dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_LRU) ?
                            db->dict : db->expires;
                    if ((keys = dictSize(dict)) != 0) {
                        evictionPoolPopulate(i, dict, db->dict, pool);
                        total_keys += keys;
                    }
                }
                if (!total_keys) break; /* No keys to evict. */

                /* Go backward from best to worst element to evict. */
                for (k = EVPOOL_SIZE-1; k >= 0; k--) {
                    if (pool[k].key == NULL) continue;
                    bestdbid = pool[k].dbid;

                    if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_LRU) {
                        de = dictFind(server.db[pool[k].dbid].dict,
                            pool[k].key);
                    } else {
                        de = dictFind(server.db[pool[k].dbid].expires,
                            pool[k].key);
                    }

                    /* Remove the entry from the pool. */
                    if (pool[k].key != pool[k].cached)
                        sdsfree(pool[k].key);
                    pool[k].key = NULL;
                    pool[k].idle = 0;

                    /* If the key exists, is our pick. Otherwise it is
                     * a ghost and we need to try the next element. */
                    if (de) {
                        bestkey = dictGetKey(de);
                        break;
                    } else {
                        /* Ghost... Iterate again. */
                    }
                }
            }
        }

        /* volatile-random and allkeys-random policy */
        else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
                 server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
        {
            /* When evicting a random key, we try to evict a key for
             * each DB, so we use the static 'next_db' variable to
             * incrementally visit all DBs. */
            for (i = 0; i < server.dbnum; i++) {
                j = (++next_db) % server.dbnum;
                db = server.db+j;
                dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
                        db->dict : db->expires;
                if (dictSize(dict) != 0) {
                    de = dictGetRandomKey(dict);
                    bestkey = dictGetKey(de);
                    bestdbid = j;
                    break;
                }
            }
        }

        /* volatile-ttl */
        else if (server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) {
            long bestttl = 0; /* Initialized to avoid warning. */

            /* In this policy we scan a single DB per iteration (visiting
             * a different DB per call), expiring the key with the smallest
             * TTL among the few sampled.
             *
             * Note that this algorithm makes local-DB choices, and should
             * use a pool and code more similr to the one used in the
             * LRU eviction policies in the future. */
            for (i = 0; i < server.dbnum; i++) {
                j = (++next_db) % server.dbnum;
                db = server.db+j;
                dict = db->expires;
                if (dictSize(dict) != 0) {
                    for (k = 0; k < server.maxmemory_samples; k++) {
                        sds thiskey;
                        long thisttl;

                        de = dictGetRandomKey(dict);
                        thiskey = dictGetKey(de);
                        thisttl = (long) dictGetVal(de);

                        /* Keys expiring sooner (smaller unix timestamp) are
                         * better candidates for deletion */
                        if (bestkey == NULL || thisttl < bestttl) {
                            bestkey = thiskey;
                            bestttl = thisttl;
                            bestdbid = j;
                        }
                    }
                }
            }
        }

        /* Finally remove the selected key. */
        if (bestkey) {
            db = server.db+bestdbid;
            robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
            propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
            /* We compute the amount of memory freed by db*Delete() alone.
             * It is possible that actually the memory needed to propagate
             * the DEL in AOF and replication link is greater than the one
             * we are freeing removing the key, but we can't account for
             * that otherwise we would never exit the loop.
             *
             * AOF and Output buffer memory will be freed eventually so
             * we only care about memory used by the key space. */
            delta = (long long) zmalloc_used_memory();
            latencyStartMonitor(eviction_latency);
            if (server.lazyfree_lazy_eviction)
                dbAsyncDelete(db,keyobj);
            else
                dbSyncDelete(db,keyobj);
            latencyEndMonitor(eviction_latency);
            latencyAddSampleIfNeeded("eviction-del",eviction_latency);
            latencyRemoveNestedEvent(latency,eviction_latency);
            delta -= (long long) zmalloc_used_memory();
            mem_freed += delta;
            server.stat_evictedkeys++;
            notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
                keyobj, db->id);
            decrRefCount(keyobj);
            keys_freed++;

            /* When the memory to free starts to be big enough, we may
             * start spending so much time here that is impossible to
             * deliver data to the slaves fast enough, so we force the
             * transmission here inside the loop. */
            if (slaves) flushSlavesOutputBuffers();
        }

        if (!keys_freed) {
            latencyEndMonitor(latency);
            latencyAddSampleIfNeeded("eviction-cycle",latency);
            goto cant_free; /* nothing to free... */
        }
    }
    latencyEndMonitor(latency);
    latencyAddSampleIfNeeded("eviction-cycle",latency);
    return C_OK;

cant_free:
    /* We are here if we are not able to reclaim memory. There is only one
     * last thing we can try: check if the lazyfree thread has jobs in queue
     * and wait... */
    while(bioPendingJobsOfType(BIO_LAZY_FREE)) {
        if (((mem_reported - zmalloc_used_memory()) + mem_freed) >= mem_tofree)
            break;
        usleep(1000);
    }
    return C_ERR;
}
Ejemplo n.º 4
0
/* Write the append only file buffer on disk.
 *
 * Since we are required to write the AOF before replying to the client,
 * and the only way the client socket can get a write is entering when the
 * the event loop, we accumulate all the AOF writes in a memory
 * buffer and write it on disk using this function just before entering
 * the event loop again.
 *
 * About the 'force' argument:
 *
 * When the fsync policy is set to 'everysec' we may delay the flush if there
 * is still an fsync() going on in the background thread, since for instance
 * on Linux write(2) will be blocked by the background fsync anyway.
 * When this happens we remember that there is some aof buffer to be
 * flushed ASAP, and will try to do that in the serverCron() function.
 *
 * However if force is set to 1 we'll write regardless of the background
 * fsync. */
#define AOF_WRITE_LOG_ERROR_RATE 30 /* Seconds between errors logging. */
void flushAppendOnlyFile(int force) {
    ssize_t nwritten;
    int sync_in_progress = 0;

    if (sdslen(server.aof_buf) == 0) return;

    if (server.aof_fsync == AOF_FSYNC_EVERYSEC)
        sync_in_progress = bioPendingJobsOfType(REDIS_BIO_AOF_FSYNC) != 0;

    if (server.aof_fsync == AOF_FSYNC_EVERYSEC && !force) {
        /* With this append fsync policy we do background fsyncing.
         * If the fsync is still in progress we can try to delay
         * the write for a couple of seconds. */
        if (sync_in_progress) {
            if (server.aof_flush_postponed_start == 0) {
                /* No previous write postponinig, remember that we are
                 * postponing the flush and return. */
                server.aof_flush_postponed_start = server.unixtime;
                return;
            } else if (server.unixtime - server.aof_flush_postponed_start < 2) {
                /* We were already waiting for fsync to finish, but for less
                 * than two seconds this is still ok. Postpone again. */
                return;
            }
            /* Otherwise fall trough, and go write since we can't wait
             * over two seconds. */
            server.aof_delayed_fsync++;
            redisLog(REDIS_NOTICE,"Asynchronous AOF fsync is taking too long (disk is busy?). Writing the AOF buffer without waiting for fsync to complete, this may slow down Redis.");
        }
    }
    /* If you are following this code path, then we are going to write so
     * set reset the postponed flush sentinel to zero. */
    server.aof_flush_postponed_start = 0;

    /* We want to perform a single write. This should be guaranteed atomic
     * at least if the filesystem we are writing is a real physical one.
     * While this will save us against the server being killed I don't think
     * there is much to do about the whole server stopping for power problems
     * or alike */
    nwritten = write(server.aof_fd,server.aof_buf,sdslen(server.aof_buf));
    if (nwritten != (signed)sdslen(server.aof_buf)) {
        static time_t last_write_error_log = 0;
        int can_log = 0;

        /* Limit logging rate to 1 line per AOF_WRITE_LOG_ERROR_RATE seconds. */
        if ((server.unixtime - last_write_error_log) > AOF_WRITE_LOG_ERROR_RATE) {
            can_log = 1;
            last_write_error_log = server.unixtime;
        }

        /* Lof the AOF write error and record the error code. */
        if (nwritten == -1) {
            if (can_log) {
                redisLog(REDIS_WARNING,"Error writing to the AOF file: %s",
                    strerror(errno));
                server.aof_last_write_errno = errno;
            }
        } else {
            if (can_log) {
                redisLog(REDIS_WARNING,"Short write while writing to "
                                       "the AOF file: (nwritten=%lld, "
                                       "expected=%lld)",
                                       (long long)nwritten,
                                       (long long)sdslen(server.aof_buf));
            }

            if (ftruncate(server.aof_fd, server.aof_current_size) == -1) {
                if (can_log) {
                    redisLog(REDIS_WARNING, "Could not remove short write "
                             "from the append-only file.  Redis may refuse "
                             "to load the AOF the next time it starts.  "
                             "ftruncate: %s", strerror(errno));
                }
            } else {
                /* If the ftrunacate() succeeded we can set nwritten to
                 * -1 since there is no longer partial data into the AOF. */
                nwritten = -1;
            }
            server.aof_last_write_errno = ENOSPC;
        }

        /* Handle the AOF write error. */
        if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
            /* We can't recover when the fsync policy is ALWAYS since the
             * reply for the client is already in the output buffers, and we
             * have the contract with the user that on acknowledged write data
             * is synched on disk. */
            redisLog(REDIS_WARNING,"Can't recover from AOF write error when the AOF fsync policy is 'always'. Exiting...");
            exit(1);
        } else {
            /* Recover from failed write leaving data into the buffer. However
             * set an error to stop accepting writes as long as the error
             * condition is not cleared. */
            server.aof_last_write_status = REDIS_ERR;

            /* Trim the sds buffer if there was a partial write, and there
             * was no way to undo it with ftruncate(2). */
            if (nwritten > 0) {
                server.aof_current_size += nwritten;
                sdsrange(server.aof_buf,nwritten,-1);
            }
            return; /* We'll try again on the next call... */
        }
    } else {
        /* Successful write(2). If AOF was in error state, restore the
         * OK state and log the event. */
        if (server.aof_last_write_status == REDIS_ERR) {
            redisLog(REDIS_WARNING,
                "AOF write error looks solved, Redis can write again.");
            server.aof_last_write_status = REDIS_OK;
        }
    }
    server.aof_current_size += nwritten;

    /* Re-use AOF buffer when it is small enough. The maximum comes from the
     * arena size of 4k minus some overhead (but is otherwise arbitrary). */
    if ((sdslen(server.aof_buf)+sdsavail(server.aof_buf)) < 4000) {
        sdsclear(server.aof_buf);
    } else {
        sdsfree(server.aof_buf);
        server.aof_buf = sdsempty();
    }

    /* Don't fsync if no-appendfsync-on-rewrite is set to yes and there are
     * children doing I/O in the background. */
    if (server.aof_no_fsync_on_rewrite &&
        (server.aof_child_pid != -1 || server.rdb_child_pid != -1))
            return;

    /* Perform the fsync if needed. */
    if (server.aof_fsync == AOF_FSYNC_ALWAYS) {
        /* aof_fsync is defined as fdatasync() for Linux in order to avoid
         * flushing metadata. */
        aof_fsync(server.aof_fd); /* Let's try to get this data on the disk */
        server.aof_last_fsync = server.unixtime;
    } else if ((server.aof_fsync == AOF_FSYNC_EVERYSEC &&
                server.unixtime > server.aof_last_fsync)) {
        if (!sync_in_progress) aof_background_fsync(server.aof_fd);
        server.aof_last_fsync = server.unixtime;
    }
}
Ejemplo n.º 5
0
int freeMemoryIfNeeded(void) {
    size_t mem_reported, mem_used, mem_tofree, mem_freed;
    mstime_t latency, eviction_latency;
    long long delta;
    int slaves = listLength(server.slaves);

    /* When clients are paused the dataset should be static not just from the
     * POV of clients not being able to write, but also from the POV of
     * expires and evictions of keys not being performed. */
    if (clientsArePaused()) return C_OK;

    /* Check if we are over the memory usage limit. If we are not, no need
     * to subtract the slaves output buffers. We can just return ASAP. */
    mem_reported = zmalloc_used_memory();
    if (mem_reported <= server.maxmemory) return C_OK;

    /* Remove the size of slaves output buffers and AOF buffer from the
     * count of used memory. */
    mem_used = mem_reported;
    size_t overhead = freeMemoryGetNotCountedMemory();
    mem_used = (mem_used > overhead) ? mem_used-overhead : 0;

    /* Check if we are still over the memory limit. */
    if (mem_used <= server.maxmemory) return C_OK;

    /* Compute how much memory we need to free. */
    mem_tofree = mem_used - server.maxmemory;
    mem_freed = 0;

    if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
        goto cant_free; /* We need to free memory, but policy forbids. */

    latencyStartMonitor(latency);
    while (mem_freed < mem_tofree) {
        int j, k, i, keys_freed = 0;
        static int next_db = 0;
        sds bestkey = NULL;
        int bestdbid;
        redisDb *db;
        dict *dict;
        dictEntry *de;

        if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
            server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
        {
            struct evictionPoolEntry *pool = EvictionPoolLRU;

            while(bestkey == NULL) {
                unsigned long total_keys = 0, keys;

                /* We don't want to make local-db choices when expiring keys,
                 * so to start populate the eviction pool sampling keys from
                 * every DB. */
                for (i = 0; i < server.dbnum; i++) {
                    db = server.db+i;
                    dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?
                            db->dict : db->expires;
                    if ((keys = dictSize(dict)) != 0) {
                        evictionPoolPopulate(i, dict, db->dict, pool);
                        total_keys += keys;
                    }
                }
                if (!total_keys) break; /* No keys to evict. */

                /* Go backward from best to worst element to evict. */
                for (k = EVPOOL_SIZE-1; k >= 0; k--) {
                    if (pool[k].key == NULL) continue;
                    bestdbid = pool[k].dbid;

                    if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) {
                        de = dictFind(server.db[pool[k].dbid].dict,
                            pool[k].key);
                    } else {
                        de = dictFind(server.db[pool[k].dbid].expires,
                            pool[k].key);
                    }

                    /* Remove the entry from the pool. */
                    if (pool[k].key != pool[k].cached)
                        sdsfree(pool[k].key);
                    pool[k].key = NULL;
                    pool[k].idle = 0;

                    /* If the key exists, is our pick. Otherwise it is
                     * a ghost and we need to try the next element. */
                    if (de) {
                        bestkey = dictGetKey(de);
                        break;
                    } else {
                        /* Ghost... Iterate again. */
                    }
                }
            }
        }

        /* volatile-random and allkeys-random policy */
        else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
                 server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
        {
            /* When evicting a random key, we try to evict a key for
             * each DB, so we use the static 'next_db' variable to
             * incrementally visit all DBs. */
            for (i = 0; i < server.dbnum; i++) {
                j = (++next_db) % server.dbnum;
                db = server.db+j;
                dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
                        db->dict : db->expires;
                if (dictSize(dict) != 0) {
                    de = dictGetRandomKey(dict);
                    bestkey = dictGetKey(de);
                    bestdbid = j;
                    break;
                }
            }
        }

        /* Finally remove the selected key. */
        if (bestkey) {
            db = server.db+bestdbid;
            robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
            propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
            /* We compute the amount of memory freed by db*Delete() alone.
             * It is possible that actually the memory needed to propagate
             * the DEL in AOF and replication link is greater than the one
             * we are freeing removing the key, but we can't account for
             * that otherwise we would never exit the loop.
             *
             * AOF and Output buffer memory will be freed eventually so
             * we only care about memory used by the key space. */
            delta = (long long) zmalloc_used_memory();
            latencyStartMonitor(eviction_latency);
            if (server.lazyfree_lazy_eviction)
                dbAsyncDelete(db,keyobj);
            else
                dbSyncDelete(db,keyobj);
            latencyEndMonitor(eviction_latency);
            latencyAddSampleIfNeeded("eviction-del",eviction_latency);
            latencyRemoveNestedEvent(latency,eviction_latency);
            delta -= (long long) zmalloc_used_memory();
            mem_freed += delta;
            server.stat_evictedkeys++;
            notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
                keyobj, db->id);
            decrRefCount(keyobj);
            keys_freed++;

            /* When the memory to free starts to be big enough, we may
             * start spending so much time here that is impossible to
             * deliver data to the slaves fast enough, so we force the
             * transmission here inside the loop. */
            if (slaves) flushSlavesOutputBuffers();

            /* Normally our stop condition is the ability to release
             * a fixed, pre-computed amount of memory. However when we
             * are deleting objects in another thread, it's better to
             * check, from time to time, if we already reached our target
             * memory, since the "mem_freed" amount is computed only
             * across the dbAsyncDelete() call, while the thread can
             * release the memory all the time. */
            if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) {
                overhead = freeMemoryGetNotCountedMemory();
                mem_used = zmalloc_used_memory();
                mem_used = (mem_used > overhead) ? mem_used-overhead : 0;
                if (mem_used <= server.maxmemory) {
                    mem_freed = mem_tofree;
                }
            }
        }

        if (!keys_freed) {
            latencyEndMonitor(latency);
            latencyAddSampleIfNeeded("eviction-cycle",latency);
            goto cant_free; /* nothing to free... */
        }
    }
    latencyEndMonitor(latency);
    latencyAddSampleIfNeeded("eviction-cycle",latency);
    return C_OK;

cant_free:
    /* We are here if we are not able to reclaim memory. There is only one
     * last thing we can try: check if the lazyfree thread has jobs in queue
     * and wait... */
    while(bioPendingJobsOfType(BIO_LAZY_FREE)) {
        if (((mem_reported - zmalloc_used_memory()) + mem_freed) >= mem_tofree)
            break;
        usleep(1000);
    }
    return C_ERR;
}