Ejemplo n.º 1
0
err_t bli_check_matrix_strides( dim_t m, dim_t n, inc_t rs, inc_t cs, inc_t is )
{
	err_t e_val = BLIS_SUCCESS;

	// Note: A lot of thought went into designing these checks. Do NOT change
	// them unless you absolutely know what you are doing! Particularly, do
	// not try to merge the general and row-/column-major sections. It might
	// be possible, but it would be a lot less readable.

	// Prohibit negative dimensions.
	if ( m < 0 || n < 0 )
		return BLIS_NEGATIVE_DIMENSION;

	// Overwrite rs and cs with the absolute value of each. We can do this
	// since the checks below are not dependent on the sign of the strides.
	rs = bli_abs( rs );
	cs = bli_abs( cs );
	is = bli_abs( is );

	// The default case (whereby we interpret rs == cs == 0 as a request for
	// column-major order) is handled prior to calling this function, so the
	// only time we should see zero strides here is if the matrix is empty.
	if ( m == 0 || n == 0 ) return e_val;

	// Disallow row, column, or imaginary strides of zero.
	if ( ( rs == 0 || cs == 0 || is == 0 ) )
		return BLIS_INVALID_DIM_STRIDE_COMBINATION;

	// Check stride consistency in cases of general stride.
	if ( rs != 1 && cs != 1 )
	{
		// We apply different tests depending on which way the strides
		// "tilt".
		if ( rs == cs )
		{
			// If rs == cs, then we must be dealing with an m-by-1 or a
			// 1-by-n matrix and thus at least one of the dimensions, m
			// or n, must be unit (even if the other is zero).
			if ( m != 1 && n != 1 )
				return BLIS_INVALID_DIM_STRIDE_COMBINATION;
		}
		else if ( rs < cs )
		{
			// For column-major tilt, cs must be equal or larger than m * rs.
			if ( m * rs > cs )
				return BLIS_INVALID_DIM_STRIDE_COMBINATION;
		}
		else if ( cs < rs )
		{
			// For row-major tilt, rs must be equal or larger than n * cs.
			if ( n * cs > rs )
				return BLIS_INVALID_DIM_STRIDE_COMBINATION;
		}
	}
	else // check stride consistency of row-/column-storage cases.
	{
		if ( rs == 1 && cs == 1 )
		{
			// If rs == cs == 1, then we must be dealing with an m-by-1, a
			// 1-by-n, or a 1-by-1 matrix and thus at least one of the
			// dimensions, m or n, must be unit (even if the other is zero).
			if ( m != 1 && n != 1 )
				return BLIS_INVALID_DIM_STRIDE_COMBINATION;
		}
		else if ( rs == 1 )
		{
			// For column-major storage, don't allow the column stride to be
			// less than the m dimension.
			if ( cs < m )
				return BLIS_INVALID_COL_STRIDE;
		}
		else if ( cs == 1 )
		{
			// For row-major storage, don't allow the row stride to be less
			// than the n dimension.
			if ( rs < n )
				return BLIS_INVALID_ROW_STRIDE;
		}
	}

	return e_val;
}
Ejemplo n.º 2
0
void bli_trsm_l_blk_var4( obj_t*  alpha,
                          obj_t*  a,
                          obj_t*  b,
                          obj_t*  beta,
                          obj_t*  c,
                          trsm_t* cntl )
{
    obj_t a1, a1_pack;
    obj_t b_pack;
    obj_t c1;

    dim_t i;
    dim_t bm_alg;
    dim_t m_trans;
    dim_t offB;

    // Initialize all pack objects that are passed into packm_init().
    bli_obj_init_pack( &a1_pack );
    bli_obj_init_pack( &b_pack );

    // Query dimension in partitioning direction.
    m_trans = bli_obj_length_after_trans( *a );

    // Use the diagonal offset of A to skip over the zero region.
    offB = bli_abs( bli_obj_diag_offset_after_trans( *a ) );

    // Initialize object for packing B.
    bli_packm_init( b, &b_pack,
                    cntl_sub_packm_b( cntl ) );

    // Fuse the first iteration with incremental packing and computation.
    {
        obj_t b_inc, b_pack_inc;
        obj_t c1_inc;

        dim_t j;
        dim_t bn_inc;
        dim_t n_trans;

        // Query dimension in partitioning direction.
        n_trans = bli_obj_width( b_pack );

        // Determine the current algorithmic blocksize.
        bm_alg = bli_determine_blocksize_f( offB, m_trans, a,
                                            cntl_blocksize( cntl ) );

        // Acquire partitions for A1 and C1.
        bli_acquire_mpart_t2b( BLIS_SUBPART1,
                               offB, bm_alg, a, &a1 );
        bli_acquire_mpart_t2b( BLIS_SUBPART1,
                               offB, bm_alg, c, &c1 );

        // Initialize objects for packing A1 and C1.
        bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) );

        // Pack A1 and scale by alpha (if instructed).
        bli_packm_int( alpha, &a1, &a1_pack, cntl_sub_packm_a( cntl ) );

        // Partition along the n dimension.
        for ( j = 0; j < n_trans; j += bn_inc )
        {
            // Determine the current incremental packing blocksize.
            bn_inc = bli_determine_blocksize_f( j, n_trans, b,
                                                cntl_blocksize_aux( cntl ) );

            // Acquire partitions.
            bli_acquire_mpart_l2r( BLIS_SUBPART1,
                                   j, bn_inc, b, &b_inc );
            bli_acquire_mpart_l2r( BLIS_SUBPART1,
                                   j, bn_inc, &b_pack, &b_pack_inc );
            bli_acquire_mpart_l2r( BLIS_SUBPART1,
                                   j, bn_inc, &c1, &c1_inc );

            // Pack B1 and scale by alpha (if instructed).
            bli_packm_int( alpha, &b_inc, &b_pack_inc, cntl_sub_packm_b( cntl ) );

            // Perform trsm subproblem.
            bli_trsm_int( BLIS_LEFT,
                          alpha,
                          &a1_pack,
                          &b_pack_inc,
                          beta,
                          &c1_inc,
                          cntl_sub_trsm( cntl ) );
        }

        // Unpack B to the corresponding region of C. (Note that B and C1 are
        // conformal since A1 is square.)
        //bli_unpackm_int( &b_pack, &c1,
        //                 cntl_sub_unpackm_c( cntl ) );
    }

    // Partition along the remaining portion of the m dimension.
    for ( i = offB + bm_alg; i < m_trans; i += bm_alg )
    {
        // Determine the current algorithmic blocksize.
        bm_alg = bli_determine_blocksize_f( i, m_trans, a,
                                            cntl_blocksize( cntl ) );

        // Acquire partitions for A1 and C1.
        bli_acquire_mpart_t2b( BLIS_SUBPART1,
                               i, bm_alg, a, &a1 );
        bli_acquire_mpart_t2b( BLIS_SUBPART1,
                               i, bm_alg, c, &c1 );

        // Initialize object for packing A1.
        bli_packm_init( &a1, &a1_pack,
                        cntl_sub_packm_a( cntl ) );

        // Pack A1 and scale by alpha (if instructed).
        bli_packm_int( alpha,
                       &a1, &a1_pack,
                       cntl_sub_packm_a( cntl ) );

        // Perform trsm subproblem.
        if ( bli_obj_intersects_diag( a1_pack ) )
            bli_trsm_int( BLIS_LEFT,
                          alpha,
                          &a1_pack,
                          &b_pack,
                          beta,
                          &c1,
                          cntl_sub_trsm( cntl ) );
        else
            bli_gemm_int( &BLIS_MINUS_ONE,
                          &a1_pack,
                          &b_pack,
                          &BLIS_ONE,
                          &c1,
                          cntl_sub_gemm( cntl ) );
    }

    // If any packing buffers were acquired within packm, release them back
    // to the memory manager.
    bli_obj_release_pack( &a1_pack );
    bli_obj_release_pack( &b_pack );
}
Ejemplo n.º 3
0
void bli_trsm_blk_var1f( obj_t*  a,
                         obj_t*  b,
                         obj_t*  c,
                         trsm_t* cntl,
                         trsm_thrinfo_t* thread )
{
    obj_t b_pack_s;
    obj_t a1_pack_s;

	obj_t a1, c1;
	obj_t* b_pack = NULL;
	obj_t* a1_pack = NULL;

	dim_t i;
	dim_t b_alg;
	dim_t m_trans;
	dim_t offA;

    // Initialize object for packing B.
    if( thread_am_ochief( thread ) ) {
	    bli_obj_init_pack( &b_pack_s );
        bli_packm_init( b, &b_pack_s,
                        cntl_sub_packm_b( cntl ) );
    }
    b_pack = thread_obroadcast( thread, &b_pack_s );

    // Initialize object for packing B.
    if( thread_am_ichief( thread ) ) {
        bli_obj_init_pack( &a1_pack_s );
    }
    a1_pack = thread_ibroadcast( thread, &a1_pack_s );

	// Pack B1 (if instructed).
	bli_packm_int( b, b_pack,
	               cntl_sub_packm_b( cntl ),
                   trsm_thread_sub_opackm( thread ) );

	// Set the default length of and offset to the non-zero part of A.
	m_trans  = bli_obj_length_after_trans( *a );
	offA     = 0;

	// If A is lower triangular, we have to adjust where the non-zero part of
	// A begins.
	if ( bli_obj_is_lower( *a ) )
		offA = bli_abs( bli_obj_diag_offset_after_trans( *a ) );

    dim_t start, end;
    num_t dt = bli_obj_execution_datatype( *a );
    bli_get_range_t2b( thread, offA, m_trans,
                       //bli_lcm( bli_info_get_default_nr( BLIS_TRSM, dt ), bli_info_get_default_mr( BLIS_TRSM, dt ) ),
                       bli_info_get_default_mc( BLIS_TRSM, dt ),
                       &start, &end );

	// Partition along the remaining portion of the m dimension.
	for ( i = start; i < end; i += b_alg )
	{
		// Determine the current algorithmic blocksize.
		b_alg = bli_determine_blocksize_f( i, end, a,
		                                   cntl_blocksize( cntl ) );

		// Acquire partitions for A1 and C1.
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, b_alg, a, &a1 );
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, b_alg, c, &c1 );

		// Initialize object for packing A1.
        if( thread_am_ichief( thread ) ) {
            bli_packm_init( &a1, a1_pack,
                            cntl_sub_packm_a( cntl ) );
        }
        thread_ibarrier( thread );

		// Pack A1 (if instructed).
		bli_packm_int( &a1, a1_pack,
		               cntl_sub_packm_a( cntl ),
                       trsm_thread_sub_ipackm( thread ) );

		// Perform trsm subproblem.
		bli_trsm_int( &BLIS_ONE,
		              a1_pack,
		              b_pack,
		              &BLIS_ONE,
		              &c1,
		              cntl_sub_trsm( cntl ),
                      trsm_thread_sub_trsm( thread ) );
        thread_ibarrier( thread );
	}

	// If any packing buffers were acquired within packm, release them back
	// to the memory manager.
    thread_obarrier( thread );
    if( thread_am_ochief( thread ) )
    	bli_packm_release( b_pack, cntl_sub_packm_b( cntl ) );
    if( thread_am_ichief( thread ) )
    	bli_packm_release( a1_pack, cntl_sub_packm_a( cntl ) );
}
Ejemplo n.º 4
0
void bli_trmm_lu_blk_var4( obj_t*  alpha,
                           obj_t*  a,
                           obj_t*  b,
                           obj_t*  beta,
                           obj_t*  c,
                           trmm_t* cntl )
{
    obj_t a1, a1_pack;
    obj_t b_pack;
    obj_t c1, c1_pack;

    dim_t i;
    dim_t bm_alg;
    dim_t mT_trans;

    // Initialize all pack objects that are passed into packm_init().
    bli_obj_init_pack( &a1_pack );
    bli_obj_init_pack( &b_pack );
    bli_obj_init_pack( &c1_pack );

    // Query dimension in partitioning direction. Use the diagonal offset
    // to stop short of the zero region.
    mT_trans = bli_abs( bli_obj_diag_offset_after_trans( *a ) ) +
               bli_obj_width_after_trans( *a );

    // Scale C by beta (if instructed).
    bli_scalm_int( beta,
                   c,
                   cntl_sub_scalm( cntl ) );

    // Initialize object for packing B.
    bli_packm_init( b, &b_pack,
                    cntl_sub_packm_b( cntl ) );

    // Fuse the first iteration with incremental packing and computation.
    {
        obj_t b_inc, b_pack_inc;
        obj_t c1_pack_inc;

        dim_t j;
        dim_t bn_inc;
        dim_t n_trans;

        // Query dimension in partitioning direction.
        n_trans = bli_obj_width( b_pack );

        // Determine the current algorithmic blocksize.
        bm_alg = bli_determine_blocksize_f( 0, mT_trans, a,
                                            cntl_blocksize( cntl ) );

        // Acquire partitions for A1 and C1.
        bli_acquire_mpart_t2b( BLIS_SUBPART1,
                               0, bm_alg, a, &a1 );
        bli_acquire_mpart_t2b( BLIS_SUBPART1,
                               0, bm_alg, c, &c1 );

        // Initialize objects for packing A1 and C1.
        bli_packm_init( &a1, &a1_pack, cntl_sub_packm_a( cntl ) );
        bli_packm_init( &c1, &c1_pack, cntl_sub_packm_c( cntl ) );

        // Pack A1 and scale by alpha (if instructed).
        bli_packm_int( alpha, &a1, &a1_pack, cntl_sub_packm_a( cntl ) );

        // Pack C1 and scale by beta (if instructed).
        bli_packm_int( beta,  &c1, &c1_pack, cntl_sub_packm_c( cntl ) );

        // Partition along the n dimension.
        for ( j = 0; j < n_trans; j += bn_inc )
        {
            // Determine the current incremental packing blocksize.
            bn_inc = bli_determine_blocksize_f( j, n_trans, b,
                                                cntl_blocksize_aux( cntl ) );

            // Acquire partitions.
            bli_acquire_mpart_l2r( BLIS_SUBPART1,
                                   j, bn_inc, b, &b_inc );
            bli_acquire_mpart_l2r( BLIS_SUBPART1,
                                   j, bn_inc, &b_pack, &b_pack_inc );
            bli_acquire_mpart_l2r( BLIS_SUBPART1,
                                   j, bn_inc, &c1_pack, &c1_pack_inc );

            // Pack B1 and scale by alpha (if instructed).
            bli_packm_int( alpha, &b_inc, &b_pack_inc, cntl_sub_packm_b( cntl ) );

            // Perform trmm subproblem.
            bli_trmm_int( BLIS_LEFT,
                          alpha,
                          &a1_pack,
                          &b_pack_inc,
                          beta,
                          &c1_pack_inc,
                          cntl_sub_trmm( cntl ) );
        }

        // Unpack C1 (if C1 was packed).
        bli_unpackm_int( &c1_pack, &c1, cntl_sub_unpackm_c( cntl ) );
    }


    // Partition along the remaining portion of the m dimension.
    for ( i = bm_alg; i < mT_trans; i += bm_alg )
    {
        // Determine the current algorithmic blocksize.
        bm_alg = bli_determine_blocksize_f( i, mT_trans, a,
                                            cntl_blocksize( cntl ) );

        // Acquire partitions for A1 and C1.
        bli_acquire_mpart_t2b( BLIS_SUBPART1,
                               i, bm_alg, a, &a1 );
        bli_acquire_mpart_t2b( BLIS_SUBPART1,
                               i, bm_alg, c, &c1 );

        // Initialize objects for packing A1 and C1.
        bli_packm_init( &a1, &a1_pack,
                        cntl_sub_packm_a( cntl ) );
        bli_packm_init( &c1, &c1_pack,
                        cntl_sub_packm_c( cntl ) );

        // Pack A1 and scale by alpha (if instructed).
        bli_packm_int( alpha,
                       &a1, &a1_pack,
                       cntl_sub_packm_a( cntl ) );

        // Pack C1 and scale by beta (if instructed).
        bli_packm_int( beta,
                       &c1, &c1_pack,
                       cntl_sub_packm_c( cntl ) );

        // Perform trmm subproblem.
        if ( bli_obj_intersects_diag( a1_pack ) )
            bli_trmm_int( BLIS_LEFT,
                          alpha,
                          &a1_pack,
                          &b_pack,
                          beta,
                          &c1_pack,
                          cntl_sub_trmm( cntl ) );
        else
            bli_gemm_int( alpha,
                          &a1_pack,
                          &b_pack,
                          &BLIS_ONE,
                          &c1_pack,
                          cntl_sub_gemm( cntl ) );

        // Unpack C1 (if C1 was packed).
        bli_unpackm_int( &c1_pack, &c1,
                         cntl_sub_unpackm_c( cntl ) );
    }

    // If any packing buffers were acquired within packm, release them back
    // to the memory manager.
    bli_obj_release_pack( &a1_pack );
    bli_obj_release_pack( &b_pack );
    bli_obj_release_pack( &c1_pack );
}
Ejemplo n.º 5
0
void bli_trsm_blk_var1f( obj_t*  a,
                         obj_t*  b,
                         obj_t*  c,
                         trsm_t* cntl )
{
	obj_t a1, a1_pack;
	obj_t b_pack;
	obj_t c1;

	dim_t i;
	dim_t b_alg;
	dim_t m_trans;
	dim_t offA;

	// Initialize all pack objects that are passed into packm_init().
	bli_obj_init_pack( &a1_pack );
	bli_obj_init_pack( &b_pack );

	// Set the default length of and offset to the non-zero part of A.
	m_trans  = bli_obj_length_after_trans( *a );
	offA     = 0;

	// If A is lower triangular, we have to adjust where the non-zero part of
	// A begins.
	if ( bli_obj_is_lower( *a ) )
		offA = bli_abs( bli_obj_diag_offset_after_trans( *a ) );

	// Initialize object for packing B.
	bli_packm_init( b, &b_pack,
	                cntl_sub_packm_b( cntl ) );

	// Pack B1 (if instructed).
	bli_packm_int( b, &b_pack,
	               cntl_sub_packm_b( cntl ) );

	// Partition along the remaining portion of the m dimension.
	for ( i = offA; i < m_trans; i += b_alg )
	{
		// Determine the current algorithmic blocksize.
		b_alg = bli_determine_blocksize_f( i, m_trans, a,
		                                   cntl_blocksize( cntl ) );

		// Acquire partitions for A1 and C1.
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, b_alg, a, &a1 );
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, b_alg, c, &c1 );

		// Initialize object for packing A1.
		bli_packm_init( &a1, &a1_pack,
		                cntl_sub_packm_a( cntl ) );

		// Pack A1 (if instructed).
		bli_packm_int( &a1, &a1_pack,
		               cntl_sub_packm_a( cntl ) );

		// Perform trsm subproblem.
		bli_trsm_int( &BLIS_ONE,
		              &a1_pack,
		              &b_pack,
		              &BLIS_ONE,
		              &c1,
		              cntl_sub_trsm( cntl ) );
	}

	// If any packing buffers were acquired within packm, release them back
	// to the memory manager.
	bli_obj_release_pack( &a1_pack );
	bli_obj_release_pack( &b_pack );
}
Ejemplo n.º 6
0
void bli_trmm_lu_blk_var1( obj_t*  alpha,
                           obj_t*  a,
                           obj_t*  b,
                           obj_t*  beta,
                           obj_t*  c,
                           trmm_t* cntl )
{
	obj_t a1, a1_pack;
	obj_t b_pack;
	obj_t c1, c1_pack;

	dim_t i;
	dim_t b_alg;
	dim_t mT_trans;

	// Initialize all pack objects that are passed into packm_init().
	bli_obj_init_pack( &a1_pack );
	bli_obj_init_pack( &b_pack );
	bli_obj_init_pack( &c1_pack );

	// If A is [upper] triangular, use the diagonal offset of A to determine
	// the length of the non-zero region.
	if ( bli_obj_is_triangular( *a ) )
		mT_trans = bli_abs( bli_obj_diag_offset_after_trans( *a ) ) +
		           bli_obj_width_after_trans( *a );
	else // if ( bli_obj_is_general( *a )
		mT_trans = bli_obj_length_after_trans( *a );

	// Scale C by beta (if instructed).
	bli_scalm_int( beta,
	               c,
	               cntl_sub_scalm( cntl ) );

	// Initialize object for packing B.
	bli_packm_init( b, &b_pack,
	                cntl_sub_packm_b( cntl ) );

	// Pack B and scale by alpha (if instructed).
	bli_packm_int( alpha,
	               b, &b_pack,
	               cntl_sub_packm_b( cntl ) );

	// Partition along the m dimension.
	for ( i = 0; i < mT_trans; i += b_alg )
	{
		// Determine the current algorithmic blocksize.
		b_alg = bli_determine_blocksize_f( i, mT_trans, a,
		                                   cntl_blocksize( cntl ) );

		// Acquire partitions for A1 and C1.
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, b_alg, a, &a1 );
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, b_alg, c, &c1 );

		// Initialize objects for packing A1 and C1.
		bli_packm_init( &a1, &a1_pack,
		                cntl_sub_packm_a( cntl ) );
		bli_packm_init( &c1, &c1_pack,
		                cntl_sub_packm_c( cntl ) );

		// Pack A1 and scale by alpha (if instructed).
		bli_packm_int( alpha,
		               &a1, &a1_pack,
		               cntl_sub_packm_a( cntl ) );

		// Pack C1 and scale by beta (if instructed).
		bli_packm_int( beta,
		               &c1, &c1_pack,
		               cntl_sub_packm_c( cntl ) );

		// Perform trmm subproblem.
		bli_trmm_int( BLIS_LEFT,
		              alpha,
		              &a1_pack,
		              &b_pack,
		              beta,
		              &c1_pack,
		              cntl_sub_trmm( cntl ) );

		// Unpack C1 (if C1 was packed).
		bli_unpackm_int( &c1_pack, &c1,
		                 cntl_sub_unpackm_c( cntl ) );
	}

	// If any packing buffers were acquired within packm, release them back
	// to the memory manager.
	bli_obj_release_pack( &a1_pack );
	bli_obj_release_pack( &b_pack );
	bli_obj_release_pack( &c1_pack );
}
Ejemplo n.º 7
0
void bli_obj_alloc_buffer( inc_t  rs,
                           inc_t  cs,
                           inc_t  is,
                           obj_t* obj )
{
	dim_t  n_elem = 0;
	dim_t  m, n;
	siz_t  elem_size;
	siz_t  buffer_size;
	void*  p;

	// Query the dimensions of the object we are allocating.
	m = bli_obj_length( *obj );
	n = bli_obj_width( *obj );

	// Query the size of one element.
	elem_size = bli_obj_elem_size( *obj );

	// Adjust the strides, if needed, before doing anything else
	// (particularly, before doing any error checking).
	bli_adjust_strides( m, n, elem_size, &rs, &cs, &is );

	if ( bli_error_checking_is_enabled() )
		bli_obj_alloc_buffer_check( rs, cs, is, obj );

	// Determine how much object to allocate.
	if ( m == 0 || n == 0 )
	{
		// For empty objects, set n_elem to zero. Row and column strides
		// should remain unchanged (because alignment is not needed).
		n_elem = 0;
	}
	else
	{
		// The number of elements to allocate is given by the distance from
		// the element with the lowest address (usually {0, 0}) to the element
		// with the highest address (usually {m-1, n-1}), plus one for the
		// highest element itself.
		n_elem = (m-1) * bli_abs( rs ) + (n-1) * bli_abs( cs ) + 1;
	}

	// Handle the special case where imaginary stride is larger than
	// normal.
	if ( bli_obj_is_complex( *obj ) )
	{
		// Notice that adding is/2 works regardless of whether the
		// imaginary stride is unit, something between unit and
		// 2*n_elem, or something bigger than 2*n_elem.
		n_elem = bli_abs( is ) / 2 + n_elem;
	}

	// Compute the size of the total buffer to be allocated, which includes
	// padding if the leading dimension was increased for alignment purposes.
	buffer_size = ( siz_t )n_elem * elem_size;

	// Allocate the buffer.
	p = bli_malloc_user( buffer_size );

	// Set individual fields.
	bli_obj_set_buffer( p, *obj );
	bli_obj_set_strides( rs, cs, *obj );
	bli_obj_set_imag_stride( is, *obj );
}
Ejemplo n.º 8
0
void bli_trmm_blk_var1( obj_t*  alpha,
                        obj_t*  a,
                        obj_t*  b,
                        obj_t*  beta,
                        obj_t*  c,
                        trmm_t* cntl )
{
	obj_t a1, a1_pack;
	obj_t b_pack;
	obj_t c1, c1_pack;

	dim_t i;
	dim_t b_alg;
	dim_t m_trans;
	dim_t offA;

	// Initialize all pack objects that are passed into packm_init().
	bli_obj_init_pack( &a1_pack );
	bli_obj_init_pack( &b_pack );
	bli_obj_init_pack( &c1_pack );

	// Set the default length of and offset to the non-zero part of A.
	m_trans = bli_obj_length_after_trans( *a );
	offA    = 0;

	// If A is lower triangular, we have to adjust where the non-zero part of
	// A begins. If A is upper triangular, we have to adjust the length of
	// the non-zero part. If A is general/dense, then we keep the defaults.
	if      ( bli_obj_is_lower( *a ) )
		offA    = bli_abs( bli_obj_diag_offset_after_trans( *a ) );
	else if ( bli_obj_is_upper( *a ) )
		m_trans = bli_abs( bli_obj_diag_offset_after_trans( *a ) ) +
		          bli_obj_width_after_trans( *a );

	// Scale C by beta (if instructed).
	bli_scalm_int( beta,
	               c,
	               cntl_sub_scalm( cntl ) );

	// Initialize object for packing B.
	bli_packm_init( b, &b_pack,
	                cntl_sub_packm_b( cntl ) );

	// Pack B and scale by alpha (if instructed).
	bli_packm_int( alpha,
	               b, &b_pack,
	               cntl_sub_packm_b( cntl ) );

	// Partition along the m dimension.
	for ( i = offA; i < m_trans; i += b_alg )
	{
		// Determine the current algorithmic blocksize.
		b_alg = bli_determine_blocksize_f( i, m_trans, a,
		                                   cntl_blocksize( cntl ) );

		// Acquire partitions for A1 and C1.
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, b_alg, a, &a1 );
		bli_acquire_mpart_t2b( BLIS_SUBPART1,
		                       i, b_alg, c, &c1 );

		// Initialize objects for packing A1 and C1.
		bli_packm_init( &a1, &a1_pack,
		                cntl_sub_packm_a( cntl ) );
		bli_packm_init( &c1, &c1_pack,
		                cntl_sub_packm_c( cntl ) );

		// Pack A1 and scale by alpha (if instructed).
		bli_packm_int( alpha,
		               &a1, &a1_pack,
		               cntl_sub_packm_a( cntl ) );

		// Pack C1 and scale by beta (if instructed).
		bli_packm_int( beta,
		               &c1, &c1_pack,
		               cntl_sub_packm_c( cntl ) );

		// Perform trmm subproblem.
		bli_trmm_int( alpha,
		              &a1_pack,
		              &b_pack,
		              beta,
		              &c1_pack,
		              cntl_sub_trmm( cntl ) );

		// Unpack C1 (if C1 was packed).
		bli_unpackm_int( &c1_pack, &c1,
		                 cntl_sub_unpackm_c( cntl ) );
	}

	// If any packing buffers were acquired within packm, release them back
	// to the memory manager.
	bli_obj_release_pack( &a1_pack );
	bli_obj_release_pack( &b_pack );
	bli_obj_release_pack( &c1_pack );
}