void libblis_test_scalv_check ( test_params_t* params, obj_t* beta, obj_t* y, obj_t* y_orig, double* resid ) { num_t dt = bli_obj_dt( y ); num_t dt_real = bli_obj_dt_proj_to_real( y ); dim_t m = bli_obj_vector_dim( y ); obj_t norm_y_r; obj_t nbeta; obj_t y2; double junk; // // Pre-conditions: // - y_orig is randomized. // Note: // - beta should have a non-zero imaginary component in the complex // cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // y := conjbeta(beta) * y_orig // // is functioning correctly if // // normf( y + -conjbeta(beta) * y_orig ) // // is negligible. // bli_obj_create( dt, m, 1, 0, 0, &y2 ); bli_copyv( y_orig, &y2 ); bli_obj_scalar_init_detached( dt, &nbeta ); bli_obj_scalar_init_detached( dt_real, &norm_y_r ); bli_copysc( beta, &nbeta ); bli_mulsc( &BLIS_MINUS_ONE, &nbeta ); bli_scalv( &nbeta, &y2 ); bli_addv( &y2, y ); bli_normfv( y, &norm_y_r ); bli_getsc( &norm_y_r, resid, &junk ); bli_obj_free( &y2 ); }
void libblis_test_axpyv_check ( test_params_t* params, obj_t* alpha, obj_t* x, obj_t* y, obj_t* y_orig, double* resid ) { num_t dt = bli_obj_dt( y ); num_t dt_real = bli_obj_dt_proj_to_real( y ); dim_t m = bli_obj_vector_dim( y ); obj_t x_temp, y_temp; obj_t norm; double junk; // // Pre-conditions: // - x is randomized. // - y_orig is randomized. // Note: // - alpha should have a non-zero imaginary component in the complex // cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // y := y_orig + alpha * conjx(x) // // is functioning correctly if // // normf( y - ( y_orig + alpha * conjx(x) ) ) // // is negligible. // bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m, 1, 0, 0, &x_temp ); bli_obj_create( dt, m, 1, 0, 0, &y_temp ); bli_copyv( x, &x_temp ); bli_copyv( y_orig, &y_temp ); bli_scalv( alpha, &x_temp ); bli_addv( &x_temp, &y_temp ); bli_subv( &y_temp, y ); bli_normfv( y, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &x_temp ); bli_obj_free( &y_temp ); }
void libblis_test_addv_impl( mt_impl_t impl, obj_t* x, obj_t* y ) { switch ( impl ) { case BLIS_TEST_SEQ_FRONT_END: bli_addv( x, y ); break; default: libblis_test_printf_error( "Invalid implementation type.\n" ); } }
void libblis_test_addv_impl( iface_t iface, obj_t* x, obj_t* y ) { switch ( iface ) { case BLIS_TEST_SEQ_FRONT_END: bli_addv( x, y ); break; default: libblis_test_printf_error( "Invalid interface type.\n" ); } }
int main( int argc, char** argv ) { obj_t alpha, beta, gamma; obj_t x, y, z, w, a; num_t dt; dim_t m, n; inc_t rs, cs; // // This file demonstrates working with vector objects and the level-1v // operations. // // // Example 1: Create vector objects and then broadcast (copy) scalar // values to all elements. // printf( "\n#\n# -- Example 1 --\n#\n\n" ); // Create a few vectors to work with. We make them all of the same length // so that we can perform operations between them. // NOTE: We've chosen to use row vectors here (1x4) instead of column // vectors (4x1) to allow for easier reading of standard output (less // scrolling). dt = BLIS_DOUBLE; m = 1; n = 4; rs = 0; cs = 0; bli_obj_create( dt, m, n, rs, cs, &x ); bli_obj_create( dt, m, n, rs, cs, &y ); bli_obj_create( dt, m, n, rs, cs, &z ); bli_obj_create( dt, m, n, rs, cs, &w ); bli_obj_create( dt, m, n, rs, cs, &a ); // Let's also create and initialize some scalar objects. bli_obj_create_1x1( dt, &alpha ); bli_obj_create_1x1( dt, &beta ); bli_obj_create_1x1( dt, &gamma ); bli_setsc( 2.0, 0.0, &alpha ); bli_setsc( 0.2, 0.0, &beta ); bli_setsc( 3.0, 0.0, &gamma ); bli_printm( "alpha:", &alpha, "%4.1f", "" ); bli_printm( "beta:", &beta, "%4.1f", "" ); bli_printm( "gamma:", &gamma, "%4.1f", "" ); // Vectors can set by "broadcasting" a constant to every element. bli_setv( &BLIS_ONE, &x ); bli_setv( &alpha, &y ); bli_setv( &BLIS_ZERO, &z ); // Note that we can use printv or printm to print vectors since vectors // are also matrices. We choose to use printm because it honors the // orientation of the vector (row or column) when printing, whereas // printv always prints vectors as column vectors regardless of their // they are 1 x n or n x 1. bli_printm( "x := 1.0", &x, "%4.1f", "" ); bli_printm( "y := alpha", &y, "%4.1f", "" ); bli_printm( "z := 0.0", &z, "%4.1f", "" ); // // Example 2: Randomize a vector object. // printf( "\n#\n# -- Example 2 --\n#\n\n" ); // Set a vector to random values. bli_randv( &w ); bli_printm( "w := randv()", &w, "%4.1f", "" ); // // Example 3: Perform various element-wise operations on vector objects. // printf( "\n#\n# -- Example 3 --\n#\n\n" ); // Copy a vector. bli_copyv( &w, &a ); bli_printm( "a := w", &a, "%4.1f", "" ); // Add and subtract vectors. bli_addv( &y, &a ); bli_printm( "a := a + y", &a, "%4.1f", "" ); bli_subv( &w, &a ); bli_printm( "a := a - w", &a, "%4.1f", "" ); // Scale a vector (destructive). bli_scalv( &beta, &a ); bli_printm( "a := beta * a", &a, "%4.1f", "" ); // Scale a vector (non-destructive). bli_scal2v( &gamma, &a, &z ); bli_printm( "z := gamma * a", &z, "%4.1f", "" ); // Scale and accumulate between vectors. bli_axpyv( &alpha, &w, &x ); bli_printm( "x := x + alpha * w", &x, "%4.1f", "" ); bli_xpbyv( &w, &BLIS_MINUS_ONE, &x ); bli_printm( "x := -1.0 * x + w", &x, "%4.1f", "" ); // Invert a vector element-wise. bli_invertv( &y ); bli_printm( "y := 1 / y", &y, "%4.1f", "" ); // Swap two vectors. bli_swapv( &x, &y ); bli_printm( "x (after swapping with y)", &x, "%4.1f", "" ); bli_printm( "y (after swapping with x)", &y, "%4.1f", "" ); // // Example 4: Perform contraction-like operations on vector objects. // printf( "\n#\n# -- Example 4 --\n#\n\n" ); // Perform a dot product. bli_dotv( &a, &z, &gamma ); bli_printm( "gamma := a * z (dot product)", &gamma, "%5.2f", "" ); // Perform an extended dot product. bli_dotxv( &alpha, &a, &z, &BLIS_ONE, &gamma ); bli_printm( "gamma := 1.0 * gamma + alpha * a * z (accumulate scaled dot product)", &gamma, "%5.2f", "" ); // Free the objects. bli_obj_free( &alpha ); bli_obj_free( &beta ); bli_obj_free( &gamma ); bli_obj_free( &x ); bli_obj_free( &y ); bli_obj_free( &z ); bli_obj_free( &w ); bli_obj_free( &a ); return 0; }
void libblis_test_syr2_check( obj_t* alpha, obj_t* x, obj_t* y, obj_t* a, obj_t* a_orig, double* resid ) { num_t dt = bli_obj_datatype( *a ); num_t dt_real = bli_obj_datatype_proj_to_real( *a ); dim_t m_a = bli_obj_length( *a ); obj_t xt, yt; obj_t t, v, w1, w2; obj_t tau, rho, norm; double junk; // // Pre-conditions: // - x is randomized. // - y is randomized. // - a is randomized and symmetric. // Note: // - alpha should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // A := A_orig + alpha * conjx(x) * conjy(y)^T + alpha * conjy(y) * conjx(x)^T // // is functioning correctly if // // normf( v - w ) // // is negligible, where // // v = A * t // w = ( A_orig + alpha * conjx(x) * conjy(y)^T + alpha * conjy(y) * conjx(x)^T ) * t // = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + alpha * conjy(y) * conjx(x)^T * t // = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + alpha * conjy(y) * rho // = A_orig * t + alpha * conjx(x) * conjy(y)^T * t + w1 // = A_orig * t + alpha * conjx(x) * rho + w1 // = A_orig * t + w2 + w1 // bli_mksymm( a ); bli_mksymm( a_orig ); bli_obj_set_struc( BLIS_GENERAL, *a ); bli_obj_set_struc( BLIS_GENERAL, *a_orig ); bli_obj_set_uplo( BLIS_DENSE, *a ); bli_obj_set_uplo( BLIS_DENSE, *a_orig ); bli_obj_scalar_init_detached( dt, &tau ); bli_obj_scalar_init_detached( dt, &rho ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m_a, 1, 0, 0, &t ); bli_obj_create( dt, m_a, 1, 0, 0, &v ); bli_obj_create( dt, m_a, 1, 0, 0, &w1 ); bli_obj_create( dt, m_a, 1, 0, 0, &w2 ); bli_obj_alias_to( *x, xt ); bli_obj_alias_to( *y, yt ); bli_setsc( 1.0/( double )m_a, -1.0/( double )m_a, &tau ); bli_setv( &tau, &t ); bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v ); bli_dotv( &xt, &t, &rho ); bli_mulsc( alpha, &rho ); bli_scal2v( &rho, y, &w1 ); bli_dotv( &yt, &t, &rho ); bli_mulsc( alpha, &rho ); bli_scal2v( &rho, x, &w2 ); bli_addv( &w2, &w1 ); bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w1 ); bli_subv( &w1, &v ); bli_normfv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w1 ); bli_obj_free( &w2 ); }
void libblis_test_her2_check( obj_t* alpha, obj_t* x, obj_t* y, obj_t* a, obj_t* a_orig, double* resid ) { num_t dt = bli_obj_datatype( *a ); num_t dt_real = bli_obj_datatype_proj_to_real( *a ); dim_t m_a = bli_obj_length( *a ); obj_t xh, yh, alphac; obj_t t, v, w1, w2; obj_t tau, rho, norm; double junk; // // Pre-conditions: // - x is randomized. // - y is randomized. // - a is randomized and Hermitian. // // Under these conditions, we assume that the implementation for // // A := A_orig + alpha * conjx(x) * conjy(y)^H + conj(alpha) * conjy(y) * conjx(x)^H // // is functioning correctly if // // fnorm( v - w ) // // is negligible, where // // v = A * t // w = ( A_orig + alpha * conjx(x) * conjy(y)^H + conj(alpha) * conjy(y) * conjx(x)^H ) * t // = A_orig * t + alpha * conjx(x) * conjy(y)^H * t + conj(alpha) * conjy(y) * conjx(x)^H * t // = A_orig * t + alpha * conjx(x) * conjy(y)^H * t + conj(alpha) * conjy(y) * rho // = A_orig * t + alpha * conjx(x) * conjy(y)^H * t + w1 // = A_orig * t + alpha * conjx(x) * rho + w1 // = A_orig * t + w2 + w1 // bli_mkherm( a ); bli_mkherm( a_orig ); bli_obj_set_struc( BLIS_GENERAL, *a ); bli_obj_set_struc( BLIS_GENERAL, *a_orig ); bli_obj_set_uplo( BLIS_DENSE, *a ); bli_obj_set_uplo( BLIS_DENSE, *a_orig ); bli_obj_scalar_init_detached( dt, &tau ); bli_obj_scalar_init_detached( dt, &rho ); bli_obj_scalar_init_detached( dt, &alphac ); bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m_a, 1, 0, 0, &t ); bli_obj_create( dt, m_a, 1, 0, 0, &v ); bli_obj_create( dt, m_a, 1, 0, 0, &w1 ); bli_obj_create( dt, m_a, 1, 0, 0, &w2 ); bli_obj_alias_with_conj( BLIS_CONJUGATE, *x, xh ); bli_obj_alias_with_conj( BLIS_CONJUGATE, *y, yh ); bli_obj_alias_with_conj( BLIS_CONJUGATE, *alpha, alphac ); bli_setsc( 1.0/( double )m_a, -1.0/( double )m_a, &tau ); bli_setv( &tau, &t ); bli_gemv( &BLIS_ONE, a, &t, &BLIS_ZERO, &v ); bli_dotv( &xh, &t, &rho ); bli_mulsc( &alphac, &rho ); bli_scal2v( &rho, y, &w1 ); bli_dotv( &yh, &t, &rho ); bli_mulsc( alpha, &rho ); bli_scal2v( &rho, x, &w2 ); bli_addv( &w2, &w1 ); bli_gemv( &BLIS_ONE, a_orig, &t, &BLIS_ONE, &w1 ); bli_subv( &w1, &v ); bli_fnormv( &v, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &t ); bli_obj_free( &v ); bli_obj_free( &w1 ); bli_obj_free( &w2 ); }
void libblis_test_axpy2v_check( obj_t* alpha1, obj_t* alpha2, obj_t* x, obj_t* y, obj_t* z, obj_t* z_orig, double* resid ) { num_t dt = bli_obj_datatype( *z ); num_t dt_real = bli_obj_datatype_proj_to_real( *z ); dim_t m = bli_obj_vector_dim( *z ); obj_t x_temp, y_temp, z_temp; obj_t norm; double junk; // // Pre-conditions: // - x is randomized. // - y is randomized. // - z_orig is randomized. // Note: // - alpha1, alpha2 should have a non-zero imaginary component in the // complex cases in order to more fully exercise the implementation. // // Under these conditions, we assume that the implementation for // // z := z_orig + alpha1 * conjx(x) + alpha2 * conjy(y) // // is functioning correctly if // // normf( z - v ) // // is negligible, where v contains z as computed by two calls to axpyv. // bli_obj_scalar_init_detached( dt_real, &norm ); bli_obj_create( dt, m, 1, 0, 0, &x_temp ); bli_obj_create( dt, m, 1, 0, 0, &y_temp ); bli_obj_create( dt, m, 1, 0, 0, &z_temp ); bli_copyv( x, &x_temp ); bli_copyv( y, &y_temp ); bli_copyv( z_orig, &z_temp ); bli_scalv( alpha1, &x_temp ); bli_scalv( alpha2, &y_temp ); bli_addv( &x_temp, &z_temp ); bli_addv( &y_temp, &z_temp ); bli_subv( &z_temp, z ); bli_normfv( z, &norm ); bli_getsc( &norm, resid, &junk ); bli_obj_free( &x_temp ); bli_obj_free( &y_temp ); bli_obj_free( &z_temp ); }