Ejemplo n.º 1
0
void bli_hemv( obj_t*  alpha,
               obj_t*  a,
               obj_t*  x,
               obj_t*  beta,
               obj_t*  y )
{
	hemv_t* hemv_cntl;
	num_t   dt_targ_a;
	num_t   dt_targ_x;
	num_t   dt_targ_y;
	bool_t  a_has_unit_inc;
	bool_t  x_has_unit_inc;
	bool_t  y_has_unit_inc;
	obj_t   alpha_local;
	obj_t   beta_local;
	num_t   dt_alpha;
	num_t   dt_beta;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
		bli_hemv_check( alpha, a, x, beta, y );


	// Query the target datatypes of each object.
	dt_targ_a = bli_obj_target_datatype( *a );
	dt_targ_x = bli_obj_target_datatype( *x );
	dt_targ_y = bli_obj_target_datatype( *y );

	// Determine whether each operand with unit stride.
	a_has_unit_inc = ( bli_obj_is_row_stored( *a ) ||
	                   bli_obj_is_col_stored( *a ) );
	x_has_unit_inc = ( bli_obj_vector_inc( *x ) == 1 );
	y_has_unit_inc = ( bli_obj_vector_inc( *y ) == 1 );


	// Create an object to hold a copy-cast of alpha. Notice that we use
	// the type union of the target datatypes of a and x to prevent any
	// unnecessary loss of information during the computation.
	dt_alpha = bli_datatype_union( dt_targ_a, dt_targ_x );
	bli_obj_scalar_init_detached_copy_of( dt_alpha,
	                             BLIS_NO_CONJUGATE,
	                             alpha,
	                             &alpha_local );

	// Create an object to hold a copy-cast of beta. Notice that we use
	// the datatype of y. Here's why: If y is real and beta is complex,
	// there is no reason to keep beta_local in the complex domain since
	// the complex part of beta*y will not be stored. If y is complex and
	// beta is real then beta is harmlessly promoted to complex.
	dt_beta = dt_targ_y;
	bli_obj_scalar_init_detached_copy_of( dt_beta,
	                             BLIS_NO_CONJUGATE,
	                             beta,
	                             &beta_local );


	// If all operands have unit stride, we choose a control tree for calling
	// the unblocked implementation directly without any blocking.
	if ( a_has_unit_inc &&
	     x_has_unit_inc &&
	     y_has_unit_inc )
	{
		// We use two control trees to handle the four cases corresponding to
		// combinations of upper/lower triangular storage and row/column-storage.
		// The row-stored lower triangular and column-stored upper triangular
		// trees are identical. Same for the remaining two trees.
		if ( bli_obj_is_lower( *a ) )
		{
			if ( bli_obj_is_row_stored( *a ) ) hemv_cntl = hemv_cntl_bs_ke_lrow_ucol;
			else                               hemv_cntl = hemv_cntl_bs_ke_lcol_urow;
		}
		else // if ( bli_obj_is_upper( *a ) )
		{
			if ( bli_obj_is_row_stored( *a ) ) hemv_cntl = hemv_cntl_bs_ke_lcol_urow;
			else                               hemv_cntl = hemv_cntl_bs_ke_lrow_ucol;
		}
	}
	else
	{
		// Mark objects with unit stride as already being packed. This prevents
		// unnecessary packing from happening within the blocked algorithm.
		if ( a_has_unit_inc ) bli_obj_set_pack_schema( BLIS_PACKED_UNSPEC, *a );
		if ( x_has_unit_inc ) bli_obj_set_pack_schema( BLIS_PACKED_VECTOR, *x );
		if ( y_has_unit_inc ) bli_obj_set_pack_schema( BLIS_PACKED_VECTOR, *y );

		// Here, we make a similar choice as above, except that (1) we look
		// at storage tilt, and (2) we choose a tree that performs blocking.
		if ( bli_obj_is_lower( *a ) )
		{
			if ( bli_obj_is_row_tilted( *a ) ) hemv_cntl = hemv_cntl_ge_lrow_ucol;
			else                               hemv_cntl = hemv_cntl_ge_lcol_urow;
		}
		else // if ( bli_obj_is_upper( *a ) )
		{
			if ( bli_obj_is_row_tilted( *a ) ) hemv_cntl = hemv_cntl_ge_lcol_urow;
			else                               hemv_cntl = hemv_cntl_ge_lrow_ucol;
		}
	}


	// Invoke the internal back-end with the copy-casts of scalars and the
	// chosen control tree. Set conjh to BLIS_CONJUGATE to invoke the
	// Hermitian (and not symmetric) algorithms.
	bli_hemv_int( BLIS_CONJUGATE,
	              &alpha_local,
	              a,
	              x,
	              &beta_local,
	              y,
	              hemv_cntl );
}
Ejemplo n.º 2
0
void bli_hemv_int( conj_t  conjh,
                   obj_t*  alpha,
                   obj_t*  a,
                   obj_t*  x,
                   obj_t*  beta,
                   obj_t*  y,
                   cntx_t* cntx,
                   hemv_t* cntl )
{
	varnum_t  n;
	impl_t    i;
	FUNCPTR_T f;
	obj_t     a_local;

	// Check parameters.
	if ( bli_error_checking_is_enabled() )
	{
		if ( bli_is_conj( conjh ) ) bli_hemv_check( alpha, a, x, beta, y );
		else                        bli_symv_check( alpha, a, x, beta, y );
	}

	// If y has a zero dimension, return early.
	if ( bli_obj_has_zero_dim( *y ) ) return;

	// If x has a zero dimension, scale y by beta and return early.
	if ( bli_obj_has_zero_dim( *x ) )
	{
		bli_scalm( beta, y );
		return;
	}

	// Alias A in case we need to induce the upper triangular case.
	bli_obj_alias_to( *a, a_local );

/*
	// Our blocked algorithms only [explicitly] implement the lower triangular
	// case, so if matrix A is stored as upper triangular, we must toggle the
	// transposition (and conjugation) bits so that the diagonal partitioning
	// routines grab the correct partitions corresponding to the upper
	// triangular case. But we only need to do this for blocked algorithms,
	// since unblocked algorithms are responsible for handling the upper case
	// explicitly (and they should not be inspecting the transposition bit anyway).
	if ( bli_cntl_is_blocked( cntl ) && bli_obj_is_upper( *a ) )
	{
		bli_obj_toggle_conj( a_local );
		bli_obj_toggle_trans( a_local );
	}
*/

	// Extract the variant number and implementation type.
	n = bli_cntl_var_num( cntl );
	i = bli_cntl_impl_type( cntl );

	// Index into the variant array to extract the correct function pointer.
	f = vars[n][i];

	// Invoke the variant.
	f( conjh,
	   alpha,
	   &a_local,
	   x,
	   beta,
	   y,
	   cntx,
	   cntl );
}