void bn_mxp_monty(bn_t c, const bn_t a, const bn_t b, const bn_t m) { bn_t tab[2], u; dig_t mask; int t; bn_null(tab[0]); bn_null(tab[1]); bn_null(u); TRY { bn_new(u); bn_mod_pre(u, m); bn_new(tab[0]); bn_new(tab[1]); #if BN_MOD == MONTY bn_set_dig(tab[0], 1); bn_mod_monty_conv(tab[0], tab[0], m); bn_mod_monty_conv(tab[1], a, m); #else bn_set_dig(tab[0], 1); bn_copy(tab[1], a); #endif for (int i = bn_bits(b) - 1; i >= 0; i--) { int j = bn_get_bit(b, i); dv_swap_cond(tab[0]->dp, tab[1]->dp, BN_DIGS, j ^ 1); mask = -(j ^ 1); t = (tab[0]->used ^ tab[1]->used) & mask; tab[0]->used ^= t; tab[1]->used ^= t; bn_mul(tab[0], tab[0], tab[1]); bn_mod(tab[0], tab[0], m, u); bn_sqr(tab[1], tab[1]); bn_mod(tab[1], tab[1], m, u); dv_swap_cond(tab[0]->dp, tab[1]->dp, BN_DIGS, j ^ 1); mask = -(j ^ 1); t = (tab[0]->used ^ tab[1]->used) & mask; tab[0]->used ^= t; tab[1]->used ^= t; } #if BN_MOD == MONTY bn_mod_monty_back(c, tab[0], m); #else bn_copy(c, tab[0]); #endif } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(tab[1]); bn_free(tab[0]); bn_free(u); } }
int bn_factor(bn_t c, const bn_t a) { bn_t t0, t1; int result; unsigned int i, tests; bn_null(t0); bn_null(t1); result = 1; if (bn_is_even(a)) { bn_set_dig(c, 2); return 1; } TRY { bn_new(t0); bn_new(t1); bn_set_dig(t0, 2); #if WORD == 8 tests = 255; #else tests = 65535; #endif for (i = 2; i < tests; i++) { bn_set_dig(t1, i); bn_mxp(t0, t0, t1, a); } bn_sub_dig(t0, t0, 1); bn_gcd(t1, t0, a); if (bn_cmp_dig(t1, 1) == CMP_GT && bn_cmp(t1, a) == CMP_LT) { bn_copy(c, t1); } else { result = 0; } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(t0); bn_free(t1); } return result; }
status_t element_set_si(element_t e, unsigned int x) { LEAVE_IF(e->isInitialized != TRUE, "uninitialized argument."); if(e->type == ZR) { bn_set_dig(e->bn, x); } return ELEMENT_OK; }
void bn_mxp_basic(bn_t c, const bn_t a, const bn_t b, const bn_t m) { int i, l; bn_t t, u, r; if (bn_is_zero(b)) { bn_set_dig(c, 1); return; } bn_null(t); bn_null(u); bn_null(r); TRY { bn_new(t); bn_new(u); bn_new(r); bn_mod_pre(u, m); l = bn_bits(b); #if BN_MOD == MONTY bn_mod_monty_conv(t, a, m); #else bn_copy(t, a); #endif bn_copy(r, t); for (i = l - 2; i >= 0; i--) { bn_sqr(r, r); bn_mod(r, r, m, u); if (bn_get_bit(b, i)) { bn_mul(r, r, t); bn_mod(r, r, m, u); } } #if BN_MOD == MONTY bn_mod_monty_back(c, r, m); #else bn_copy(c, r); #endif } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(t); bn_free(u); bn_free(r); } }
status_t element_init_Zr(element_t e, int init_value) { // if(e->bn != NULL) bn_free(e->bn); bn_inits(e->bn); bn_inits(e->order); if(init_value == 0) /* default value */ bn_zero(e->bn); else bn_set_dig(e->bn, (dig_t) init_value); g1_get_ord(e->order); e->isInitialized = TRUE; e->type = ZR; return ELEMENT_OK; }
int cp_bdpe_enc(uint8_t *out, int *out_len, dig_t in, bdpe_t pub) { bn_t m, u; int size, result = STS_OK; bn_null(m); bn_null(u); size = bn_size_bin(pub->n); if (in > pub->t) { return STS_ERR; } TRY { bn_new(m); bn_new(u); bn_set_dig(m, in); do { bn_rand(u, BN_POS, bn_bits(pub->n)); bn_mod(u, u, pub->n); } while (bn_is_zero(u)); bn_mxp(m, pub->y, m, pub->n); bn_mxp_dig(u, u, pub->t, pub->n); bn_mul(m, m, u); bn_mod(m, m, pub->n); if (size <= *out_len) { *out_len = size; memset(out, 0, *out_len); bn_write_bin(out, size, m); } else { result = STS_ERR; } } CATCH_ANY { result = STS_ERR; } FINALLY { bn_free(m); bn_free(u); } return result; }
void bn_mxp_slide(bn_t c, const bn_t a, const bn_t b, const bn_t m) { bn_t tab[TABLE_SIZE], t, u, r; int i, j, l, w = 1; uint8_t win[BN_BITS]; bn_null(t); bn_null(u); bn_null(r); /* Initialize table. */ for (i = 0; i < TABLE_SIZE; i++) { bn_null(tab[i]); } TRY { /* Find window size. */ i = bn_bits(b); if (i <= 21) { w = 2; } else if (i <= 32) { w = 3; } else if (i <= 128) { w = 4; } else if (i <= 256) { w = 5; } else { w = 6; } for (i = 1; i < (1 << w); i += 2) { bn_new(tab[i]); } bn_new(t); bn_new(u); bn_new(r); bn_mod_pre(u, m); #if BN_MOD == MONTY bn_set_dig(r, 1); bn_mod_monty_conv(r, r, m); bn_mod_monty_conv(t, a, m); #else /* BN_MOD == BARRT || BN_MOD == RADIX */ bn_set_dig(r, 1); bn_copy(t, a); #endif bn_copy(tab[1], t); bn_sqr(t, tab[1]); bn_mod(t, t, m, u); /* Create table. */ for (i = 1; i < 1 << (w - 1); i++) { bn_mul(tab[2 * i + 1], tab[2 * i - 1], t); bn_mod(tab[2 * i + 1], tab[2 * i + 1], m, u); } l = BN_BITS + 1; bn_rec_slw(win, &l, b, w); for (i = 0; i < l; i++) { if (win[i] == 0) { bn_sqr(r, r); bn_mod(r, r, m, u); } else { for (j = 0; j < util_bits_dig(win[i]); j++) { bn_sqr(r, r); bn_mod(r, r, m, u); } bn_mul(r, r, tab[win[i]]); bn_mod(r, r, m, u); } } bn_trim(r); #if BN_MOD == MONTY bn_mod_monty_back(c, r, m); #else bn_copy(c, r); #endif } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { for (i = 1; i < (1 << w); i++) { bn_free(tab[i]); } bn_free(u); bn_free(t); bn_free(r); } }
int cp_bdpe_gen(bdpe_t pub, bdpe_t prv, dig_t block, int bits) { bn_t t, r; int result = STS_OK; bn_null(t); bn_null(r); TRY { bn_new(t); bn_new(r); prv->t = pub->t = block; /* Make sure that block size is prime. */ bn_set_dig(t, block); if (bn_is_prime_basic(t) == 0) { THROW(ERR_NO_VALID); } /* Generate prime q such that gcd(block, (q - 1)) = 1. */ do { bn_gen_prime(prv->q, bits / 2); bn_sub_dig(prv->q, prv->q, 1); bn_gcd_dig(t, prv->q, block); bn_add_dig(prv->q, prv->q, 1); } while (bn_cmp_dig(t, 1) != CMP_EQ); /* Generate different primes p and q. */ do { /* Compute p = block * (x * block + b) + 1, 0 < b < block random. */ bn_rand(prv->p, BN_POS, bits / 2 - 2 * util_bits_dig(block)); bn_mul_dig(prv->p, prv->p, block); bn_rand(t, BN_POS, util_bits_dig(block)); bn_add_dig(prv->p, prv->p, t->dp[0]); /* We know that block divides (p-1). */ bn_gcd_dig(t, prv->p, block); bn_mul_dig(prv->p, prv->p, block); bn_add_dig(prv->p, prv->p, 1); } while (bn_cmp_dig(t, 1) != CMP_EQ || bn_is_prime(prv->p) == 0); /* Compute t = (p-1)*(q-1). */ bn_sub_dig(prv->q, prv->q, 1); bn_sub_dig(prv->p, prv->p, 1); bn_mul(t, prv->p, prv->q); bn_div_dig(t, t, block); /* Restore factors p and q and compute n = p * q. */ bn_add_dig(prv->p, prv->p, 1); bn_add_dig(prv->q, prv->q, 1); bn_mul(pub->n, prv->p, prv->q); bn_copy(prv->n, pub->n); /* Select random y such that y^{(p-1)(q-1)}/block \neq 1 mod N. */ do { bn_rand(pub->y, BN_POS, bits); bn_mxp(r, pub->y, t, pub->n); } while (bn_cmp_dig(r, 1) == CMP_EQ); bn_copy(prv->y, pub->y); } CATCH_ANY { result = STS_ERR; } FINALLY { bn_free(t); bn_free(r); } return result; }
/** * Precomputes additional parameters for Koblitz curves used by the w-TNAF * multiplication algorithm. */ static void compute_kbltz(void) { int u, i; bn_t a, b, c; bn_null(a); bn_null(b); bn_null(c); TRY { bn_new(a); bn_new(b); bn_new(c); if (curve_opt_a == OPT_ZERO) { u = -1; } else { u = 1; } bn_set_dig(a, 2); bn_set_dig(b, 1); if (u == -1) { bn_neg(b, b); } for (i = 2; i <= FB_BITS; i++) { bn_copy(c, b); if (u == -1) { bn_neg(b, b); } bn_dbl(a, a); bn_sub(b, b, a); bn_copy(a, c); } bn_copy(&curve_vm, b); bn_zero(a); bn_set_dig(b, 1); for (i = 2; i <= FB_BITS; i++) { bn_copy(c, b); if (u == -1) { bn_neg(b, b); } bn_dbl(a, a); bn_sub(b, b, a); bn_add_dig(b, b, 1); bn_copy(a, c); } bn_copy(&curve_s0, b); bn_zero(a); bn_zero(b); for (i = 2; i <= FB_BITS; i++) { bn_copy(c, b); if (u == -1) { bn_neg(b, b); } bn_dbl(a, a); bn_sub(b, b, a); bn_sub_dig(b, b, 1); bn_copy(a, c); } bn_copy(&curve_s1, b); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(a); bn_free(b); bn_free(c); } }
/** * Divides two multiple precision integers, computing the quotient and the * remainder. * * @param[out] c - the quotient. * @param[out] d - the remainder. * @param[in] a - the dividend. * @param[in] b - the the divisor. */ static void bn_div_imp(bn_t c, bn_t d, const bn_t a, const bn_t b) { bn_t q, x, y, r; int sign; bn_null(q); bn_null(x); bn_null(y); bn_null(r); /* If a < b, we're done. */ if (bn_cmp_abs(a, b) == CMP_LT) { if (bn_sign(a) == BN_POS) { if (c != NULL) { bn_zero(c); } if (d != NULL) { bn_copy(d, a); } } else { if (c != NULL) { bn_set_dig(c, 1); if (bn_sign(b) == BN_POS) { bn_neg(c, c); } } if (d != NULL) { if (bn_sign(b) == BN_POS) { bn_add(d, a, b); } else { bn_sub(d, a, b); } } } return; } TRY { bn_new(x); bn_new(y); bn_new_size(q, a->used + 1); bn_new(r); bn_zero(q); bn_zero(r); bn_abs(x, a); bn_abs(y, b); /* Find the sign. */ sign = (a->sign == b->sign ? BN_POS : BN_NEG); bn_divn_low(q->dp, r->dp, x->dp, a->used, y->dp, b->used); /* We have the quotient in q and the remainder in r. */ if (c != NULL) { q->used = a->used - b->used + 1; q->sign = sign; bn_trim(q); if (bn_sign(a) == BN_NEG) { bn_sub_dig(c, q, 1); } else { bn_copy(c, q); } } if (d != NULL) { r->used = b->used; r->sign = a->sign; bn_trim(r); if (bn_sign(a) == BN_NEG) { bn_add(d, r, b); } else { bn_copy(d, r); } } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(r); bn_free(q); bn_free(x); bn_free(y); } }
int bn_is_prime_rabin(const bn_t a) { bn_t t, n1, y, r; int i, s, j, result, b, tests = 0; tests = 0; result = 1; bn_null(t); bn_null(n1); bn_null(y); bn_null(r); if (bn_cmp_dig(a, 1) == CMP_EQ) { return 0; } TRY { /* * These values are taken from Table 4.4 inside Handbook of Applied * Cryptography. */ b = bn_bits(a); if (b >= 1300) { tests = 2; } else if (b >= 850) { tests = 3; } else if (b >= 650) { tests = 4; } else if (b >= 550) { tests = 5; } else if (b >= 450) { tests = 6; } else if (b >= 400) { tests = 7; } else if (b >= 350) { tests = 8; } else if (b >= 300) { tests = 9; } else if (b >= 250) { tests = 12; } else if (b >= 200) { tests = 15; } else if (b >= 150) { tests = 18; } else { tests = 27; } bn_new(t); bn_new(n1); bn_new(y); bn_new(r); /* r = (n - 1)/2^s. */ bn_sub_dig(n1, a, 1); s = 0; while (bn_is_even(n1)) { s++; bn_rsh(n1, n1, 1); } bn_lsh(r, n1, s); for (i = 0; i < tests; i++) { /* Fix the basis as the first few primes. */ bn_set_dig(t, primes[i]); /* y = b^r mod a. */ #if BN_MOD != PMERS bn_mxp(y, t, r, a); #else bn_exp(y, t, r, a); #endif if (bn_cmp_dig(y, 1) != CMP_EQ && bn_cmp(y, n1) != CMP_EQ) { j = 1; while ((j <= (s - 1)) && bn_cmp(y, n1) != CMP_EQ) { bn_sqr(y, y); bn_mod(y, y, a); /* If y == 1 then composite. */ if (bn_cmp_dig(y, 1) == CMP_EQ) { result = 0; break; } ++j; } /* If y != n1 then composite. */ if (bn_cmp(y, n1) != CMP_EQ) { result = 0; break; } } } } CATCH_ANY { result = 0; THROW(ERR_CAUGHT); } FINALLY { bn_free(r); bn_free(y); bn_free(n1); bn_free(t); } return result; }
/** * Assigns the prime field modulus. * * @param[in] p - the new prime field modulus. */ static void fp_prime_set(const bn_t p) { dv_t s, q; bn_t t; ctx_t *ctx = core_get(); if (p->used != FP_DIGS) { THROW(ERR_NO_VALID); } dv_null(s); bn_null(t); dv_null(q); TRY { dv_new(s); bn_new(t); dv_new(q); bn_copy(&(ctx->prime), p); bn_mod_dig(&(ctx->mod8), &(ctx->prime), 8); switch (ctx->mod8) { case 3: case 7: ctx->qnr = -1; /* The current code for extensions of Fp^3 relies on qnr being * also a cubic non-residue. */ ctx->cnr = 0; break; case 1: case 5: ctx->qnr = ctx->cnr = -2; break; default: ctx->qnr = ctx->cnr = 0; THROW(ERR_NO_VALID); break; } #ifdef FP_QNRES if (ctx->mod8 != 3) { THROW(ERR_NO_VALID); } #endif #if FP_RDC == MONTY || !defined(STRIP) bn_mod_pre_monty(t, &(ctx->prime)); ctx->u = t->dp[0]; dv_zero(s, 2 * FP_DIGS); s[2 * FP_DIGS] = 1; dv_zero(q, 2 * FP_DIGS + 1); dv_copy(q, ctx->prime.dp, FP_DIGS); bn_divn_low(t->dp, ctx->conv.dp, s, 2 * FP_DIGS + 1, q, FP_DIGS); ctx->conv.used = FP_DIGS; bn_trim(&(ctx->conv)); bn_set_dig(&(ctx->one), 1); bn_lsh(&(ctx->one), &(ctx->one), ctx->prime.used * BN_DIGIT); bn_mod(&(ctx->one), &(ctx->one), &(ctx->prime)); #endif fp_prime_calc(); } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(t); dv_free(s); dv_free(q); } }
void ep2_curve_set_twist(int type) { char str[2 * FP_BYTES + 1]; ctx_t *ctx = core_get(); ep2_t g; fp2_t a; fp2_t b; bn_t r; ep2_null(g); fp2_null(a); fp2_null(b); bn_null(r); ctx->ep2_is_twist = 0; if (type == EP_MTYPE || type == EP_DTYPE) { ctx->ep2_is_twist = type; } else { return; } TRY { ep2_new(g); fp2_new(a); fp2_new(b); bn_new(r); switch (ep_param_get()) { #if FP_PRIME == 158 case BN_P158: ASSIGN(BN_P158); break; #elif FP_PRIME == 254 case BN_P254: ASSIGN(BN_P254); break; #elif FP_PRIME == 256 case BN_P256: ASSIGN(BN_P256); break; #elif FP_PRIME == 382 case BN_P382: ASSIGN(BN_P382); break; #elif FP_PRIME == 455 case B12_P455: ASSIGN(B12_P455); break; #elif FP_PRIME == 638 case BN_P638: ASSIGN(BN_P638); break; case B12_P638: ASSIGN(B12_P638); break; #endif default: (void)str; THROW(ERR_NO_VALID); break; } fp2_zero(g->z); fp_set_dig(g->z[0], 1); g->norm = 1; ep2_copy(&(ctx->ep2_g), g); fp_copy(ctx->ep2_a[0], a[0]); fp_copy(ctx->ep2_a[1], a[1]); fp_copy(ctx->ep2_b[0], b[0]); fp_copy(ctx->ep2_b[1], b[1]); bn_copy(&(ctx->ep2_r), r); bn_set_dig(&(ctx->ep2_h), 1); /* I don't have a better place for this. */ fp_prime_calc(); #if defined(EP_PRECO) ep2_mul_pre((ep2_t *)ep2_curve_get_tab(), &(ctx->ep2_g)); #endif } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { ep2_free(g); fp2_free(a); fp2_free(b); bn_free(r); } }
void fp_param_get_var(bn_t x) { bn_t a; bn_null(a); TRY { bn_new(a); switch (fp_param_get()) { case BN_158: /* x = 4000000031. */ bn_set_2b(x, 38); bn_add_dig(x, x, 0x31); break; case BN_254: /* x = -4080000000000001. */ bn_set_2b(x, 62); bn_set_2b(a, 55); bn_add(x, x, a); bn_add_dig(x, x, 1); bn_neg(x, x); break; case BN_256: /* x = -600000000000219B. */ bn_set_2b(x, 62); bn_set_2b(a, 61); bn_add(x, x, a); bn_set_dig(a, 0x21); bn_lsh(a, a, 8); bn_add(x, x, a); bn_add_dig(x, x, 0x9B); bn_neg(x, x); break; case B24_477: /* x = -2^48 + 2^45 + 2^31 - 2^7. */ bn_set_2b(x, 48); bn_set_2b(a, 45); bn_sub(x, x, a); bn_set_2b(a, 31); bn_sub(x, x, a); bn_set_2b(a, 7); bn_add(x, x, a); bn_neg(x, x); break; case KSS_508: /* x = -(2^64 + 2^51 - 2^46 - 2^12). */ bn_set_2b(x, 64); bn_set_2b(a, 51); bn_add(x, x, a); bn_set_2b(a, 46); bn_sub(x, x, a); bn_set_2b(a, 12); bn_sub(x, x, a); bn_neg(x, x); break; case BN_638: /* x = 2^158 - 2^128 - 2^68 + 1. */ bn_set_2b(x, 158); bn_set_2b(a, 128); bn_sub(x, x, a); bn_set_2b(a, 68); bn_sub(x, x, a); bn_add_dig(x, x, 1); break; case B12_638: /* x = -2^107 + 2^105 + 2^93 + 2^5. */ bn_set_2b(x, 107); bn_set_2b(a, 105); bn_sub(x, x, a); bn_set_2b(a, 93); bn_sub(x, x, a); bn_set_2b(a, 5); bn_sub(x, x, a); bn_neg(x, x); break; case SS_1536: /* x = 2^255 + 2^41 + 1. */ bn_set_2b(x, 255); bn_set_2b(a, 41); bn_add(x, x, a); bn_add_dig(x, x, 1); break; default: THROW(ERR_NO_VALID); break; } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(a); } }
void fp_param_set(int param) { bn_t t0, t1, t2, p; int f[10] = { 0 }; bn_null(t0); bn_null(t1); bn_null(t2); bn_null(p); /* Suppress possible unused parameter warning. */ (void) f; TRY { bn_new(t0); bn_new(t1); bn_new(t2); bn_new(p); core_get()->fp_id = param; switch (param) { #if FP_PRIME == 158 case BN_158: /* x = 4000000031. */ fp_param_get_var(t0); /* p = 36 * x^4 + 36 * x^3 + 24 * x^2 + 6 * x + 1. */ bn_set_dig(p, 1); bn_mul_dig(t1, t0, 6); bn_add(p, p, t1); bn_mul(t1, t0, t0); bn_mul_dig(t1, t1, 24); bn_add(p, p, t1); bn_mul(t1, t0, t0); bn_mul(t1, t1, t0); bn_mul_dig(t1, t1, 36); bn_add(p, p, t1); bn_mul(t0, t0, t0); bn_mul(t1, t0, t0); bn_mul_dig(t1, t1, 36); bn_add(p, p, t1); fp_prime_set_dense(p); break; #elif FP_PRIME == 160 case SECG_160: /* p = 2^160 - 2^31 + 1. */ f[0] = -1; f[1] = -31; f[2] = 160; fp_prime_set_pmers(f, 3); break; case SECG_160D: /* p = 2^160 - 2^32 - 2^14 - 2^12 - 2^9 - 2^8 - 2^7 - 2^3 - 2^2 - 1.*/ f[0] = -1; f[1] = -2; f[2] = -3; f[3] = -7; f[4] = -8; f[5] = -9; f[6] = -12; f[7] = -14; f[8] = -32; f[9] = 160; fp_prime_set_pmers(f, 10); break; #elif FP_PRIME == 192 case NIST_192: /* p = 2^192 - 2^64 - 1. */ f[0] = -1; f[1] = -64; f[2] = 192; fp_prime_set_pmers(f, 3); break; case SECG_192: /* p = 2^192 - 2^32 - 2^12 - 2^8 - 2^7 - 2^6 - 2^3 - 1.*/ f[0] = -1; f[1] = -3; f[2] = -6; f[3] = -7; f[4] = -8; f[5] = -12; f[6] = -32; f[7] = 192; fp_prime_set_pmers(f, 8); break; #elif FP_PRIME == 224 case NIST_224: /* p = 2^224 - 2^96 + 1. */ f[0] = 1; f[1] = -96; f[2] = 224; fp_prime_set_pmers(f, 3); break; case SECG_224: /* p = 2^224 - 2^32 - 2^12 - 2^11 - 2^9 - 2^7 - 2^4 - 2 - 1.*/ f[0] = -1; f[1] = -1; f[2] = -4; f[3] = -7; f[4] = -9; f[5] = -11; f[6] = -12; f[7] = -32; f[8] = 224; fp_prime_set_pmers(f, 9); break; #elif FP_PRIME == 254 case BN_254: /* x = -4080000000000001. */ fp_param_get_var(t0); /* p = 36 * x^4 + 36 * x^3 + 24 * x^2 + 6 * x + 1. */ bn_set_dig(p, 1); bn_mul_dig(t1, t0, 6); bn_add(p, p, t1); bn_mul(t1, t0, t0); bn_mul_dig(t1, t1, 24); bn_add(p, p, t1); bn_mul(t1, t0, t0); bn_mul(t1, t1, t0); bn_mul_dig(t1, t1, 36); bn_add(p, p, t1); bn_mul(t0, t0, t0); bn_mul(t1, t0, t0); bn_mul_dig(t1, t1, 36); bn_add(p, p, t1); fp_prime_set_dense(p); break; #elif FP_PRIME == 256 case NIST_256: /* p = 2^256 - 2^224 + 2^192 + 2^96 - 1. */ f[0] = -1; f[1] = 96; f[2] = 192; f[3] = -224; f[4] = 256; fp_prime_set_pmers(f, 5); break; case SECG_256: /* p = 2^256 - 2^32 - 2^9 - 2^8 - 2^7 - 2^6 - 2^4 - 1. */ f[0] = -1; f[1] = -4; f[2] = -6; f[3] = -7; f[4] = -8; f[5] = -9; f[6] = -32; f[7] = 256; fp_prime_set_pmers(f, 8); break; case BN_256: /* x = 6000000000001F2D. */ fp_param_get_var(t0); /* p = 36 * x^4 + 36 * x^3 + 24 * x^2 + 6 * x + 1. */ bn_set_dig(p, 1); bn_mul_dig(t1, t0, 6); bn_add(p, p, t1); bn_mul(t1, t0, t0); bn_mul_dig(t1, t1, 24); bn_add(p, p, t1); bn_mul(t1, t0, t0); bn_mul(t1, t1, t0); bn_mul_dig(t1, t1, 36); bn_add(p, p, t1); bn_mul(t0, t0, t0); bn_mul(t1, t0, t0); bn_mul_dig(t1, t1, 36); bn_add(p, p, t1); fp_prime_set_dense(p); break; #elif FP_PRIME == 384 case NIST_384: /* p = 2^384 - 2^128 - 2^96 + 2^32 - 1. */ f[0] = -1; f[1] = 32; f[2] = -96; f[3] = -128; f[4] = 384; fp_prime_set_pmers(f, 5); break; #elif FP_PRIME == 477 case B24_477: fp_param_get_var(t0); /* p = (u - 1)^2 * (u^8 - u^4 + 1) div 3 + u. */ bn_sub_dig(p, t0, 1); bn_sqr(p, p); bn_sqr(t1, t0); bn_sqr(t1, t1); bn_sqr(t2, t1); bn_sub(t2, t2, t1); bn_add_dig(t2, t2, 1); bn_mul(p, p, t2); bn_div_dig(p, p, 3); bn_add(p, p, t0); fp_prime_set_dense(p); break; #elif FP_PRIME == 508 case KSS_508: fp_param_get_var(t0); /* h = (49*u^2 + 245 * u + 343)/3 */ bn_mul_dig(p, t0, 245); bn_add_dig(p, p, 200); bn_add_dig(p, p, 143); bn_sqr(t1, t0); bn_mul_dig(t2, t1, 49); bn_add(p, p, t2); bn_div_dig(p, p, 3); /* n = (u^6 + 37 * u^3 + 343)/343. */ bn_mul(t1, t1, t0); bn_mul_dig(t2, t1, 37); bn_sqr(t1, t1); bn_add(t2, t2, t1); bn_add_dig(t2, t2, 200); bn_add_dig(t2, t2, 143); bn_div_dig(t2, t2, 49); bn_div_dig(t2, t2, 7); bn_mul(p, p, t2); /* t = (u^4 + 16 * u + 7)/7. */ bn_mul_dig(t1, t0, 16); bn_add_dig(t1, t1, 7); bn_sqr(t2, t0); bn_sqr(t2, t2); bn_add(t2, t2, t1); bn_div_dig(t2, t2, 7); bn_add(p, p, t2); bn_sub_dig(p, p, 1); fp_prime_set_dense(p); break; #elif FP_PRIME == 521 case NIST_521: /* p = 2^521 - 1. */ f[0] = -1; f[1] = 521; fp_prime_set_pmers(f, 2); break; #elif FP_PRIME == 638 case BN_638: fp_param_get_var(t0); /* p = 36 * x^4 + 36 * x^3 + 24 * x^2 + 6 * x + 1. */ bn_set_dig(p, 1); bn_mul_dig(t1, t0, 6); bn_add(p, p, t1); bn_mul(t1, t0, t0); bn_mul_dig(t1, t1, 24); bn_add(p, p, t1); bn_mul(t1, t0, t0); bn_mul(t1, t1, t0); bn_mul_dig(t1, t1, 36); bn_add(p, p, t1); bn_mul(t0, t0, t0); bn_mul(t1, t0, t0); bn_mul_dig(t1, t1, 36); bn_add(p, p, t1); fp_prime_set_dense(p); break; case B12_638: fp_param_get_var(t0); /* p = (x^2 - 2x + 1) * (x^4 - x^2 + 1)/3 + x. */ bn_sqr(t1, t0); bn_sqr(p, t1); bn_sub(p, p, t1); bn_add_dig(p, p, 1); bn_sub(t1, t1, t0); bn_sub(t1, t1, t0); bn_add_dig(t1, t1, 1); bn_mul(p, p, t1); bn_div_dig(p, p, 3); bn_add(p, p, t0); fp_prime_set_dense(p); break; #elif FP_PRIME == 1536 case SS_1536: fp_param_get_var(t0); bn_read_str(p, SS_P1536, strlen(SS_P1536), 16); bn_mul(p, p, t0); bn_dbl(p, p); bn_sub_dig(p, p, 1); fp_prime_set_dense(p); break; #else default: bn_gen_prime(p, FP_BITS); fp_prime_set_dense(p); core_get()->fp_id = 0; break; #endif } } CATCH_ANY { THROW(ERR_CAUGHT); } FINALLY { bn_free(t0); bn_free(t1); bn_free(t2); bn_free(p); } }