Ejemplo n.º 1
0
void ISOP2P1::solveStokes()
{
    buildStokesSys();
    int n_dof_v = fem_space_v.n_dof();
    int n_dof_p = fem_space_p.n_dof();
    int n_total_dof = 2 * n_dof_v + n_dof_p;

    /// 构建系数矩阵和右端项.
    /// 这个存放整体的数值解. 没有分割成 u_h[0], u_h[1] 和 p_h.
    Vector<double> x(n_total_dof);
    /// 将数值解合并一个向量便于边界处理.
    for (int i = 0; i < n_dof_v; ++i)
    {
    	x(i) = v_h[0](i);
    	x(n_dof_v + i) = v_h[1](i);
    }

    for (int i = 0; i < n_dof_p; ++i)
    	x(2 * n_dof_v + i) = p_h(i);

    rhs.reinit(n_total_dof);
    /// 边界条件一起处理了.
    boundaryValueStokes();


    /// 矩阵求解. 
    dealii::SolverControl solver_control (4000000, 1e-14, 1);
    SolverMinRes<Vector<double> > minres (solver_control);


    StokesPreconditioner preconditioner;
    /// 预处理矩阵.
    SparseMatrix<double> matrix_vxvx(sp_vxvx);
    SparseMatrix<double> matrix_vyvy(sp_vyvy);
    /// 这里从 Stokes 取是因为加了边界条件.
    for (int i = 0; i < sp_vxvx.n_nonzero_elements(); ++i)
	matrix_vxvx.global_entry(i) = matrix.global_entry(index_vxvx[i]);
    for (int i = 0; i < sp_vyvy.n_nonzero_elements(); ++i)
	matrix_vyvy.global_entry(i) = matrix.global_entry(index_vyvy[i]);

    preconditioner.initialize(matrix_vxvx, matrix_vyvy, mat_p_mass);




    clock_t t_cost = clock();
    minres.solve (matrix, x, rhs, preconditioner);
//    minres.solve (matrix, x, rhs, PreconditionIdentity());
    t_cost = clock() - t_cost;

    std::cout << "time cost: " << (((float)t_cost) / CLOCKS_PER_SEC) << std::endl;

    /// 将整体数值解分割成速度和压力.
    for (int i = 0; i < n_dof_v; ++i)
    {
	v_h[0](i) = x(i);
	v_h[1](i) = x(i + n_dof_v);
    }
    for (int i = 0; i < n_dof_p; ++i)
	p_h(i) =  x(i + 2 * n_dof_v);

    
    

/*
    /// 矩阵求解. 
	SparseMatrix<double> mat_BTx(sp_pvx);
	SparseMatrix<double> mat_BTy(sp_pvy);
	SparseMatrix<double> mat_Bx(sp_vxp);
	SparseMatrix<double> mat_By(sp_vyp);
	SparseMatrix<double> mat_Ax(sp_vxvx);
	SparseMatrix<double> mat_Ay(sp_vyvy);

	for (int i = 0; i < sp_vxvx.n_nonzero_elements(); ++i)
	    mat_Ax.global_entry(i) = matrix.global_entry(index_vxvx[i]);
	for (int i = 0; i < sp_vyvy.n_nonzero_elements(); ++i)
	    mat_Ay.global_entry(i) = matrix.global_entry(index_vyvy[i]);
	for (int i = 0; i < sp_pvx.n_nonzero_elements(); ++i)
	    mat_BTx.global_entry(i) = matrix.global_entry(index_pvx[i]);
	for (int i = 0; i < sp_pvy.n_nonzero_elements(); ++i)
	    mat_BTy.global_entry(i) = matrix.global_entry(index_pvy[i]);
	for (int i = 0; i < sp_vxp.n_nonzero_elements(); ++i)
	    mat_Bx.global_entry(i) = matrix.global_entry(index_vxp[i]);
	for (int i = 0; i < sp_vyp.n_nonzero_elements(); ++i)
	    mat_By.global_entry(i) = matrix.global_entry(index_vyp[i]);

    Vector<double> tmp1(n_dof_v);
    Vector<double> tmp2(n_dof_v);
    Vector<double> rhs_vx(n_dof_v);
    Vector<double> rhs_vy(n_dof_v);
    Vector<double> rhs_p(n_dof_p);

    for (int i = 0; i < n_dof_v; ++i)
    {
    	rhs_vx(i) = rhs(i);
    	v_h[0](i) = x(i);
    	rhs_vy(i) = rhs(n_dof_v + i);
    	v_h[1](i) = x(n_dof_v + i);
    }
    for (int i = 0; i < n_dof_p; ++i)
    {
    	rhs_p(i) = rhs(2 * n_dof_v + i);
    	p_h(i) = x(2 * n_dof_v + i);
    }

    Vector<double> schur_rhs (n_dof_p);
//    AMGSolver solverQ(mat_Ax, 1.0e-12, 3, 50, 0.382, 0.25);
    AMGSolver solverQ(mat_Ax);
    InverseMatrix M(mat_Ax, solverQ);
    M.vmult (tmp1, rhs_vx);
    M.vmult (tmp2, rhs_vy);
    mat_Bx.vmult(schur_rhs, tmp1);
    mat_By.vmult_add(schur_rhs, tmp2);
    schur_rhs -= rhs_p;

    SchurComplement schur_complement(mat_BTx, mat_BTy, mat_Bx, mat_By, M, M);

//    SolverControl solver_control_cg (n_dof_p * 2,
//				  1e-12*schur_rhs.l2_norm());
    SolverControl solver_control_cg (n_dof_p * 20,
				  1e-15);
//    SolverCG<>    cg (solver_control_cg);
    SolverMinRes<> minres (solver_control_cg);

    AMGSolver AQ(mat_p_mass);
    ApproxSchurComplement asc(mat_p_mass, AQ);
    minres.solve (schur_complement, p_h, schur_rhs, asc);
//    cg.solve (schur_complement, p_h, schur_rhs, PreconditionIdentity());

    std::cout << solver_control_cg.last_step()
              << " CG Schur complement iterations to obtain convergence."
              << std::endl;

    mat_BTx.vmult(tmp1, *dynamic_cast<const Vector<double>* >(&p_h));
    mat_BTy.vmult(tmp2, *dynamic_cast<const Vector<double>* >(&p_h));
    tmp1 *= -1;
    tmp2 *= -1;
    tmp1 += rhs_vx;
    tmp2 += rhs_vy;

    M.vmult(v_h[0], tmp1);
    M.vmult(v_h[1], tmp2);

*/
    double error;

    RealVx accuracy_vx;
    error = Functional::L2Error(v_h[0], accuracy_vx, 2);
    std::cout << "|| u - u_h ||_L2 = " << error << std::endl;

    error = Functional::H1SemiError(v_h[0], accuracy_vx, 1);
    std::cout << "|| u - u_h ||_H1 = " << error << std::endl;


    RealVy accuracy_vy;
    error = Functional::L2Error(v_h[1], accuracy_vy, 2);
    std::cout << "|| v - v_h ||_L2 = " << error << std::endl;

    error = Functional::H1SemiError(v_h[1], accuracy_vy, 1);
    std::cout << "|| v - v_h ||_H1 = " << error << std::endl;

    double p_avg = Functional::meanValue(p_h, 2);
    RealP accuracy_p(p_avg);
    error = Functional::L2Error(p_h, accuracy_p, 2);
    std::cout << "|| p - p_h ||_0 = " << error << std::endl;

};
Ejemplo n.º 2
0
void ISOP2P1::run()
{
    /// 初始化.
    initialize();

    /// 构建 Stokes 系统.
    buildStokesSys();

    /// 边界条件处理.
    boundaryValueStokes();

    /// 准备预处理.
    StokesPreconditioner preconditioner;
    /// 预处理矩阵.
    SparseMatrix<double> matrix_vxvx(sp_vxvx);
    SparseMatrix<double> matrix_vyvy(sp_vyvy);
    /// 这里从 Stokes 取是因为加了边界条件.
    for (int i = 0; i < sp_vxvx.n_nonzero_elements(); ++i)
	matrix_vxvx.global_entry(i) = matrix.global_entry(index_vxvx[i]);
    for (int i = 0; i < sp_vyvy.n_nonzero_elements(); ++i)
	matrix_vyvy.global_entry(i) = matrix.global_entry(index_vyvy[i]);
    preconditioner.initialize(matrix_vxvx, matrix_vyvy, mat_p_mass);

    /// 矩阵求解. 
    dealii::SolverControl solver_control (4000000, 1e-14, 1);
    SolverMinRes<Vector<double> > minres (solver_control);
    clock_t t_cost = clock();
    minres.solve (matrix, x, rhs, preconditioner);
//    minres.solve (matrix, x, rhs, PreconditionIdentity());
    t_cost = clock() - t_cost;
    std::cout << "time cost: " << (((float)t_cost) / CLOCKS_PER_SEC) << std::endl;


    /// 将整体数值解分割成速度和压力.
    int n_dof_v = fem_space_v.n_dof();
    int n_dof_p = fem_space_p.n_dof();
    int n_total_dof = 2 * n_dof_v + n_dof_p;

    for (int i = 0; i < n_dof_v; ++i)
    {
	v_h[0](i) = x(i);
	v_h[1](i) = x(i + n_dof_v);
    }
    for (int i = 0; i < n_dof_p; ++i)
	p_h(i) =  x(i + 2 * n_dof_v);

    /// 数据输出.
    outputTecplotP("P0");
    outputTecplot("V0");

    /// 误差比较.
    double error;

    RealVx accuracy_vx;
    error = Functional::L2Error(v_h[0], accuracy_vx, 2);
    std::cout << "|| u - u_h ||_L2 = " << error << std::endl;

    error = Functional::H1SemiError(v_h[0], accuracy_vx, 1);
    std::cout << "|| u - u_h ||_H1 = " << error << std::endl;

    RealVy accuracy_vy;
    error = Functional::L2Error(v_h[1], accuracy_vy, 2);
    std::cout << "|| v - v_h ||_L2 = " << error << std::endl;

    error = Functional::H1SemiError(v_h[1], accuracy_vy, 1);
    std::cout << "|| v - v_h ||_H1 = " << error << std::endl;

    double p_avg = Functional::meanValue(p_h, 2);
    RealP accuracy_p(p_avg);
    error = Functional::L2Error(p_h, accuracy_p, 2);
    std::cout << "|| p - p_h ||_0 = " << error << std::endl;

};
Ejemplo n.º 3
0
void ISOP2P1::solveStokes()
{
	buildStokesSys();
	std::cout << "Stokes system builded." << std::endl;
	int n_dof_v = fem_space_v.n_dof();
	int n_dof_p = fem_space_p.n_dof();
	int n_total_dof = 2 * n_dof_v + n_dof_p;

	/// 构建系数矩阵和右端项.
	/// 这个存放整体的数值解. 没有分割成 u_h[0], u_h[1] 和 p_h.
	Vector<double> x(n_total_dof);
	/// 将数值解合并一个向量便于边界处理.
	for (int i = 0; i < n_dof_v; ++i)
	{
		x(i) = v_h[0](i);
		x(n_dof_v + i) = v_h[1](i);
	}

	for (int i = 0; i < n_dof_p; ++i)
		x(2 * n_dof_v + i) = p_h(i);

	rhs.reinit(n_total_dof);

	/// 边界条件一起处理了. 修改了matrix, rhs和x.
	boundaryValueStokes(x, t);
	std::cout << "Stokes boundary applied." << std::endl;

// 	/// 矩阵求解.
// 	dealii::SolverControl solver_control (400000, l_tol * rhs.l2_norm(), 1);
// 	/// 不完全LU分解.
// 	dealii::SparseILU<double> preconditioner;
// 	preconditioner.initialize(matrix);

// 	/// 求解Stokes方程, MinRes要比GMRES求解器要快很多,
// 	/// 当矩阵规模稍微大点的时候,GMRES会出现不收敛的情况.
// 	SolverMinRes<Vector<double> > minres (solver_control);
// 	SolverGMRES<Vector<double> >::AdditionalData para(1000, false, true);
// 	/// 不用para算不动, 但是均匀网格下可以不用para,算其它的例子也不用para,是不是跟计算区域有关系?
// 	SolverGMRES<Vector<double> > gmres(solver_control, para);

//         // /// 移动网格和时间发展中,这个预处理失效.
// 	//  StokesPreconditioner preconditioner;
// 	 // /// 预处理矩阵.
// 	 // SparseMatrix<double> matrix_vxvx(sp_vxvx);
// 	 // SparseMatrix<double> matrix_vyvy(sp_vyvy);
// 	 // /// 这里从 Stokes 取是因为加了边界条件.
// 	 // for (int i = 0; i < sp_vxvx.n_nonzero_elements(); ++i)
// 	 // 	matrix_vxvx.global_entry(i) = matrix.global_entry(index_vxvx[i]);
// 	 // for (int i = 0; i < sp_vyvy.n_nonzero_elements(); ++i)
// 	 // 	matrix_vyvy.global_entry(i) = matrix.global_entry(index_vyvy[i]);

// 	 // preconditioner.initialize(mat_v_stiff, mat_v_stiff, mat_p_mass);


// 	clock_t t_cost = clock();
//         minres.solve (matrix, x, rhs, PreconditionIdentity());
// //	gmres.solve(matrix, x, rhs, preconditioner);
// 	t_cost = clock() - t_cost;

// 	std::cout << "time cost: " << (((float)t_cost) / CLOCKS_PER_SEC) << std::endl;

// 	/// 将整体数值解分割成速度和压力.
// 	for (int i = 0; i < n_dof_v; ++i)
// 	{
// 		v_h[0](i) = x(i);
// 		v_h[1](i) = x(i + n_dof_v);
// 	}
// 	for (int i = 0; i < n_dof_p; ++i)
// 		p_h(i) =  x(i + 2 * n_dof_v);
//        /// 计算误差, t为时间参数.
// 	computeError(t);
// 	/// debug, 计算惨量的L2 norm。
// 	Vector<double> res(n_total_dof);
// 	matrix.vmult(res, x);
// 	res *= -1;
// 	res += rhs;
// 	std::cout << "res_l2norm =" << res.l2_norm() << std::endl;

	/// 矩阵求解.
	SparseMatrix<double> mat_BTx(sp_pvx);
	SparseMatrix<double> mat_BTy(sp_pvy);
	SparseMatrix<double> mat_Bx(sp_vxp);
	SparseMatrix<double> mat_By(sp_vyp);
	SparseMatrix<double> mat_Ax(sp_vxvx);
	SparseMatrix<double> mat_Ay(sp_vyvy);

	for (int i = 0; i < sp_vxvx.n_nonzero_elements(); ++i)
		mat_Ax.global_entry(i) = matrix.global_entry(index_vxvx[i]);
	for (int i = 0; i < sp_vyvy.n_nonzero_elements(); ++i)
		mat_Ay.global_entry(i) = matrix.global_entry(index_vyvy[i]);
	for (int i = 0; i < sp_pvx.n_nonzero_elements(); ++i)
		mat_BTx.global_entry(i) = matrix.global_entry(index_pvx[i]);
	for (int i = 0; i < sp_pvy.n_nonzero_elements(); ++i)
		mat_BTy.global_entry(i) = matrix.global_entry(index_pvy[i]);
	for (int i = 0; i < sp_vxp.n_nonzero_elements(); ++i)
		mat_Bx.global_entry(i) = matrix.global_entry(index_vxp[i]);
	for (int i = 0; i < sp_vyp.n_nonzero_elements(); ++i)
		mat_By.global_entry(i) = matrix.global_entry(index_vyp[i]);

	/// alp对AMGSolver的初始化影响比较大, 如果取得很小,初始化很快.
        double alp = dt * viscosity;
	AMGSolver solverQ(mat_Ax, 1.0e-12, 3, 100, 0.382, alp);
//	AMGSolver solverQ(mat_Ax);
	InverseMatrix AInv(mat_Ax, solverQ);
	/// 这里没有对速度质量阵进行边界条件处理.
	InverseMatrix QInv(mat_v_mass, solverQ);
	SchurComplement schur_complement(mat_BTx, mat_BTy, mat_Bx, mat_By, mat_v_mass, QInv, QInv);
	AMGSolver solverP(mat_p_mass);
	ApproxSchurComplement asc(mat_p_mass, solverQ);
	
	LSCPreconditioner lsc_preconditioner(mat_BTx, mat_BTy, mat_Bx, mat_By, mat_Ax, mat_Ax, mat_v_mass, schur_complement, asc, QInv,
					     AInv, AInv);
	/// 矩阵求解.
	dealii::SolverControl solver_control (400000, l_Euler_tol * rhs.l2_norm(), 0);
	SolverMinRes<Vector<double> > minres(solver_control);
	
	minres.solve(matrix, x, rhs, lsc_preconditioner);
	/// 将整体数值解分割成速度和压力.
	for (int i = 0; i < n_dof_v; ++i)
	{
		v_h[0](i) = x(i);
		v_h[1](i) = x(i + n_dof_v);
	}
	for (int i = 0; i < n_dof_p; ++i)
		p_h(i) =  x(i + 2 * n_dof_v);
	
	/// 计算误差, t为时间参数.
	computeError(t);


// 	/// 矩阵求解.
// 	SparseMatrix<double> mat_BTx(sp_pvx);
// 	SparseMatrix<double> mat_BTy(sp_pvy);
// 	SparseMatrix<double> mat_Bx(sp_vxp);
// 	SparseMatrix<double> mat_By(sp_vyp);
// 	SparseMatrix<double> mat_Ax(sp_vxvx);
// 	SparseMatrix<double> mat_Ay(sp_vyvy);

// 	for (int i = 0; i < sp_vxvx.n_nonzero_elements(); ++i)
// 		mat_Ax.global_entry(i) = matrix.global_entry(index_vxvx[i]);
// 	for (int i = 0; i < sp_vyvy.n_nonzero_elements(); ++i)
// 		mat_Ay.global_entry(i) = matrix.global_entry(index_vyvy[i]);
// 	for (int i = 0; i < sp_pvx.n_nonzero_elements(); ++i)
// 		mat_BTx.global_entry(i) = matrix.global_entry(index_pvx[i]);
// 	for (int i = 0; i < sp_pvy.n_nonzero_elements(); ++i)
// 		mat_BTy.global_entry(i) = matrix.global_entry(index_pvy[i]);
// 	for (int i = 0; i < sp_vxp.n_nonzero_elements(); ++i)
// 		mat_Bx.global_entry(i) = matrix.global_entry(index_vxp[i]);
// 	for (int i = 0; i < sp_vyp.n_nonzero_elements(); ++i)
// 		mat_By.global_entry(i) = matrix.global_entry(index_vyp[i]);
	
// 	Vector<double> tmp1(n_dof_v);
// 	Vector<double> tmp2(n_dof_v);
// 	Vector<double> rhs_vx(n_dof_v);
// 	Vector<double> rhs_vy(n_dof_v);
// 	Vector<double> rhs_p(n_dof_p);

// 	for (int i = 0; i < n_dof_v; ++i)
// 	{
// 		rhs_vx(i) = rhs(i);
// 		v_h[0](i) = x(i);
// 		rhs_vy(i) = rhs(n_dof_v + i);
// 		v_h[1](i) = x(n_dof_v + i);
// 	}
// 	for (int i = 0; i < n_dof_p; ++i)
// 	{
// 		rhs_p(i) = rhs(2 * n_dof_v + i);
// 		p_h(i) = x(2 * n_dof_v + i);
// 	}

// 	Vector<double> schur_rhs (n_dof_p);
// 	AMGSolver solverQ(mat_Ax);
// 	InverseMatrix M(mat_Ax, solverQ);
// 	M.vmult (tmp1, rhs_vx);
// 	M.vmult (tmp2, rhs_vy);
// 	mat_Bx.vmult(schur_rhs, tmp1);
// 	mat_By.vmult_add(schur_rhs, tmp2);
// 	schur_rhs -= rhs_p;

// 	SchurComplement schur_complement(mat_BTx, mat_BTy, mat_Bx, mat_By, mat_v_mass, M, M, dt);

// 	SolverControl solver_control_cg (n_dof_p * 2,
// 					 1e-12*schur_rhs.l2_norm());
// 	SolverCG<>    cg (solver_control_cg);

// 	AMGSolver AQ(mat_p_mass);
// 	ApproxSchurComplement asc(mat_p_mass, AQ);
// 	cg.solve (schur_complement, p_h, schur_rhs, asc);

// //	cg.solve (schur_complement, p_h, schur_rhs, PreconditionIdentity());
// 	std::cout << solver_control_cg.last_step()
//             		  << " CG Schur complement iterations to obtain convergence."
//             		  << std::endl;

// 	mat_BTx.vmult(tmp1, *dynamic_cast<const Vector<double>* >(&p_h));
// 	mat_BTy.vmult(tmp2, *dynamic_cast<const Vector<double>* >(&p_h));
// 	tmp1 *= -1;
// 	tmp2 *= -1;
// 	tmp1 += rhs_vx;
// 	tmp2 += rhs_vy;

// 	M.vmult(v_h[0], tmp1);
// 	M.vmult(v_h[1], tmp2);
// 	std::cout << "Stokes system solved." << std::endl;
// 	/// 计算误差, t为时间参数.
// 	computeError(t);
// 	/// debug, 计算惨量的L2 norm。
// 	Vector<double> res(n_total_dof);
// 	matrix.vmult(res, x);
// 	res *= -1;
// 	res += rhs;
// 	std::cout << "res_l2norm =" << res.l2_norm() << std::endl;
};
void ISOP2P1::stepForwardLinearizedEuler()
{
    int n_dof_v = fem_space_v.n_dof();
    int n_dof_p = fem_space_p.n_dof();
    int n_total_dof = 2 * n_dof_v + n_dof_p;

    matrix.reinit(sp_stokes);
    /// (0, 0)
    for (int i = 0; i < sp_vxvx.n_nonzero_elements(); ++i)
	matrix.global_entry(index_vxvx[i]) = viscosity * mat_v_stiff.global_entry(i)
	    + (1.0 / dt) * mat_v_mass.global_entry(i);
    /// (1, 1)
    for (int i = 0; i < sp_vyvy.n_nonzero_elements(); ++i)
	matrix.global_entry(index_vyvy[i]) = viscosity * mat_v_stiff.global_entry(i)
	    + (1.0 / dt) * mat_v_mass.global_entry(i);
    // /// (0, 2)
    for (int i = 0; i < sp_pvx.n_nonzero_elements(); ++i)
     	matrix.global_entry(index_pvx[i]) = mat_pvx_divT.global_entry(i);

    // /// (1, 2)
    for (int i = 0; i < sp_pvy.n_nonzero_elements(); ++i)
     	matrix.global_entry(index_pvy[i]) = mat_pvy_divT.global_entry(i);

    // /// (2, 0)
    for (int i = 0; i < sp_vxp.n_nonzero_elements(); ++i)
     	matrix.global_entry(index_vxp[i]) = mat_vxp_div.global_entry(i);
	
    // /// (2, 1)
    for (int i = 0; i < sp_vyp.n_nonzero_elements(); ++i)
     	matrix.global_entry(index_vyp[i]) = mat_vyp_div.global_entry(i);

    rhs.reinit(n_total_dof);

    FEMSpace<double,2>::ElementIterator the_element_v = fem_space_v.beginElement();
    FEMSpace<double,2>::ElementIterator end_element_v = fem_space_v.endElement();
    FEMSpace<double,2>::ElementIterator the_element_p = fem_space_p.beginElement();
    FEMSpace<double,2>::ElementIterator end_element_p = fem_space_p.endElement();
    /// 遍历速度单元, 拼装相关系数矩阵和右端项.
    for (the_element_v = fem_space_v.beginElement(); 
	 the_element_v != end_element_v; ++the_element_v) 
    {
	/// 当前单元信息.
	double volume = the_element_v->templateElement().volume();
	/// 积分精度, u 和 p 都是 1 次, 梯度和散度 u 都是常数. 因此矩阵拼
	/// 装时积分精度不用超过 1 次. (验证一下!)
	const QuadratureInfo<2>& quad_info = the_element_v->findQuadratureInfo(4);
	std::vector<double> jacobian = the_element_v->local_to_global_jacobian(quad_info.quadraturePoint());
	int n_quadrature_point = quad_info.n_quadraturePoint();
	std::vector<Point<2> > q_point = the_element_v->local_to_global(quad_info.quadraturePoint());
	/// 速度单元信息.
	std::vector<std::vector<double> > basis_value_v = the_element_v->basis_function_value(q_point);
	std::vector<std::vector<std::vector<double> > > basis_gradient_v = the_element_v->basis_function_gradient(q_point);
	std::vector<double> vx_value = v_h[0].value(q_point, *the_element_v);
	std::vector<double> vy_value = v_h[1].value(q_point, *the_element_v);
	std::vector<double> fx_value = source_v[0].value(q_point, *the_element_v);
	std::vector<double> fy_value = source_v[1].value(q_point, *the_element_v);
	std::vector<std::vector<double> > vx_gradient = v_h[0].gradient(q_point, *the_element_v);
	std::vector<std::vector<double> > vy_gradient = v_h[1].gradient(q_point, *the_element_v);
	const std::vector<int>& element_dof_v = the_element_v->dof();
	int n_element_dof_v = the_element_v->n_dof();
	Element<double, 2> &p_element = fem_space_p.element(index_v2p[the_element_v->index()]);
	const std::vector<int>& element_dof_p = p_element.dof();
	std::vector<std::vector<std::vector<double> > > basis_gradient_p = p_element.basis_function_gradient(q_point);
	std::vector<std::vector<double> >  basis_value_p = p_element.basis_function_value(q_point);
	int n_element_dof_p = p_element.n_dof();
	std::vector<double> p_value = p_h.value(q_point, p_element);
	for (int l = 0; l < n_quadrature_point; ++l)
	{
	    double Jxw = quad_info.weight(l) * jacobian[l] * volume;
	    for (int i = 0; i < n_element_dof_v; ++i)
	    {
		for (int j = 0; j < n_element_dof_v; ++j)
		{
		    double cont = Jxw * (vx_value[l] * basis_gradient_v[j][l][0] +
					 vy_value[l] * basis_gradient_v[j][l][1]) * basis_value_v[i][l];
		    matrix.add(element_dof_v[i], element_dof_v[j], cont);
		    matrix.add(n_dof_v + element_dof_v[i], n_dof_v + element_dof_v[j], cont);
		}
		/// 右端项. 这里可施加源项和 Neumann 条件.
		double rhs_cont = fx_value[l] * basis_value_v[i][l] + (1.0 / dt) * vx_value[l] * basis_value_v[i][l];
		rhs_cont *= Jxw;
		rhs(element_dof_v[i]) += rhs_cont;
		rhs_cont = fy_value[l] * basis_value_v[i][l] + (1.0 / dt ) * vy_value[l] * basis_value_v[i][l];
		rhs_cont *= Jxw;
		rhs(n_dof_v + element_dof_v[i]) += rhs_cont;

	    }
	}
    }

    /// 构建系数矩阵和右端项.
    /// 这个存放整体的数值解. 没有分割成 u_h[0], u_h[1] 和 p_h.
    Vector<double> x(n_total_dof);

    for (int i = 0; i < n_dof_v; ++i)
    {
    	x(i) = v_h[0](i);
    	x(i + n_dof_v) = v_h[1](i);
    }

    for (int i = 0; i < n_dof_p; ++i)
    	x(i + 2 * n_dof_v) = p_h(i);

    boundaryValueStokes(x);

    /// 矩阵求解. 
    SparseMatrix<double> mat_Axx(sp_vxvx);
    SparseMatrix<double> mat_Ayy(sp_vyvy);
    SparseMatrix<double> mat_BTx(sp_pvx);
    SparseMatrix<double> mat_BTy(sp_pvy);

    for (int i = 0; i < sp_vxvx.n_nonzero_elements(); ++i)
	mat_Axx.global_entry(i) = matrix.global_entry(index_vxvx[i]); 
    for (int i = 0; i < sp_vyvy.n_nonzero_elements(); ++i)
	mat_Ayy.global_entry(i) = matrix.global_entry(index_vyvy[i]);
    for (int i = 0; i < sp_pvx.n_nonzero_elements(); ++i)
	mat_BTx.global_entry(i) = matrix.global_entry(index_pvx[i]);
    for (int i = 0; i < sp_pvy.n_nonzero_elements(); ++i)
	mat_BTy.global_entry(i) = matrix.global_entry(index_pvy[i]);
    std::cout << "Precondition matrix builded!" << std::endl;
	
    // NSPreconditioner preconditioner_ns;
    // preconditioner_ns.initialize(mat_Axx, 
    // 				 mat_Ayy,
    // 				 mat_BTx,
    // 				 mat_BTy,
    // 				 mat_p_mass);

    clock_t t_cost = clock();
    dealii::SolverControl solver_control (4000000, l_tol, check);

    SolverGMRES<Vector<double> >::AdditionalData para(2000, false, true);
    SolverGMRES<Vector<double> > gmres (solver_control, para);
    gmres.solve (matrix, x, rhs, PreconditionIdentity());
    t_cost = clock() - t_cost;

    std::cout << "time cost: " << (((float)t_cost) / CLOCKS_PER_SEC) << std::endl;

    /// 将整体数值解分割成速度和压力.
    for (int i = 0; i < n_dof_v; ++i)
    {
	v_h[0](i) = x(i);
	v_h[1](i) = x(i + n_dof_v);
    }

    for (int i = 0; i < n_dof_p; ++i)
	p_h(i) = x(i + 2 * n_dof_v);
};