Ejemplo n.º 1
0
int main(int argc, char *argv[])
{
/*
 * Purpose
 * =======
 *
 * The driver program CLINSOLX2.
 *
 * This example illustrates how to use CGSSVX to solve systems repeatedly
 * with the same sparsity pattern of matrix A.
 * In this case, the column permutation vector perm_c is computed once.
 * The following data structures will be reused in the subsequent call to
 * CGSSVX: perm_c, etree
 * 
 */
    char           equed[1];
    yes_no_t       equil;
    trans_t        trans;
    SuperMatrix    A, A1, L, U;
    SuperMatrix    B, B1, X;
    NCformat       *Astore;
    NCformat       *Ustore;
    SCformat       *Lstore;
    complex         *a, *a1;
    int            *asub, *xa, *asub1, *xa1;
    int            *perm_r; /* row permutations from partial pivoting */
    int            *perm_c; /* column permutation vector */
    int            *etree;
    void           *work;
    int            info, lwork, nrhs, ldx;
    int            i, j, m, n, nnz;
    complex         *rhsb, *rhsb1, *rhsx, *xact;
    float         *R, *C;
    float         *ferr, *berr;
    float         u, rpg, rcond;
    mem_usage_t    mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    extern void    parse_command_line();

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    equil = YES;	
    u     = 1.0;
    trans = NOTRANS;

    /* Set the default input options:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
     */
    set_default_options(&options);

    /* Can use command line input to modify the defaults. */
    parse_command_line(argc, argv, &lwork, &u, &equil, &trans);
    options.Equil = equil;
    options.DiagPivotThresh = u;
    options.Trans = trans;

    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    ABORT("DLINSOLX: cannot allocate work[]");
	}
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    creadhb(&m, &n, &nnz, &a, &asub, &xa);
    if ( !(a1 = complexMalloc(nnz)) ) ABORT("Malloc fails for a1[].");
    if ( !(asub1 = intMalloc(nnz)) ) ABORT("Malloc fails for asub1[].");
    if ( !(xa1 = intMalloc(n+1)) ) ABORT("Malloc fails for xa1[].");
    for (i = 0; i < nnz; ++i) {
        a1[i] = a[i];
	asub1[i] = asub[i];
    }
    for (i = 0; i < n+1; ++i) xa1[i] = xa[i];
    
    cCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_C, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhsb = complexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsb1 = complexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb1[].");
    if ( !(rhsx = complexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    cCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_C, SLU_GE);
    cCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_C, SLU_GE);
    xact = complexMalloc(n * nrhs);
    ldx = n;
    cGenXtrue(n, nrhs, xact, ldx);
    cFillRHS(trans, nrhs, xact, ldx, &A, &B);
    for (j = 0; j < nrhs; ++j)
        for (i = 0; i < m; ++i) rhsb1[i+j*m] = rhsb[i+j*m];
    
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) ) 
        ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for C[].");
    if ( !(ferr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for ferr[].");
    if ( !(berr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) ) 
        ABORT("SUPERLU_MALLOC fails for berr[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    /* ------------------------------------------------------------
       WE SOLVE THE LINEAR SYSTEM FOR THE FIRST TIME: AX = B
       ------------------------------------------------------------*/
    cgssvx(&options, &A, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("First system: cgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        complex *sol = (complex*) ((DNformat*) X.Store)->nzval; 

	if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber )
	    printf("Recip. condition number = %e\n", rcond);
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    	printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);

	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	if ( options.IterRefine ) {
            printf("Iterative Refinement:\n");
	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
	    for (i = 0; i < nrhs; ++i)
	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
	}
	fflush(stdout);

    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);
    Destroy_CompCol_Matrix(&A);
    Destroy_Dense_Matrix(&B);
    if ( lwork >= 0 ) { /* Deallocate storage associated with L and U. */
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    }

    /* ------------------------------------------------------------
       NOW WE SOLVE ANOTHER LINEAR SYSTEM: A1*X = B1
       ONLY THE SPARSITY PATTERN OF A1 IS THE SAME AS THAT OF A.
       ------------------------------------------------------------*/
    options.Fact = SamePattern;
    StatInit(&stat); /* Initialize the statistics variables. */

    cCreate_CompCol_Matrix(&A1, m, n, nnz, a1, asub1, xa1,
                           SLU_NC, SLU_C, SLU_GE);
    cCreate_Dense_Matrix(&B1, m, nrhs, rhsb1, m, SLU_DN, SLU_C, SLU_GE);

    cgssvx(&options, &A1, perm_c, perm_r, etree, equed, R, C,
           &L, &U, work, lwork, &B1, &X, &rpg, &rcond, ferr, berr,
           &mem_usage, &stat, &info);

    printf("\nSecond system: cgssvx() returns info %d\n", info);

    if ( info == 0 || info == n+1 ) {

        /* This is how you could access the solution matrix. */
        complex *sol = (complex*) ((DNformat*) X.Store)->nzval; 

	if ( options.PivotGrowth ) printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber )
	    printf("Recip. condition number = %e\n", rcond);
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	if ( options.IterRefine ) {
            printf("Iterative Refinement:\n");
	    printf("%8s%8s%16s%16s\n", "rhs", "Steps", "FERR", "BERR");
	    for (i = 0; i < nrhs; ++i)
	      printf("%8d%8d%16e%16e\n", i+1, stat.RefineSteps, ferr[i], berr[i]);
	}
	fflush(stdout);
    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    Destroy_CompCol_Matrix(&A1);
    Destroy_Dense_Matrix(&B1);
    Destroy_Dense_Matrix(&X);
    if ( lwork == 0 ) {
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    } else if ( lwork > 0 ) {
        SUPERLU_FREE(work);
    }

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
Ejemplo n.º 2
0
void
cgsitrf(superlu_options_t *options, SuperMatrix *A, int relax, int panel_size,
        int *etree, void *work, int lwork, int *perm_c, int *perm_r,
        SuperMatrix *L, SuperMatrix *U, SuperLUStat_t *stat, int *info)
{
    /* Local working arrays */
    NCPformat *Astore;
    int       *iperm_r = NULL; /* inverse of perm_r; used when
                                  options->Fact == SamePattern_SameRowPerm */
    int       *iperm_c; /* inverse of perm_c */
    int       *swap, *iswap; /* swap is used to store the row permutation
                                during the factorization. Initially, it is set
                                to iperm_c (row indeces of Pc*A*Pc').
                                iswap is the inverse of swap. After the
                                factorization, it is equal to perm_r. */
    int       *iwork;
    complex   *cwork;
    int       *segrep, *repfnz, *parent, *xplore;
    int       *panel_lsub; /* dense[]/panel_lsub[] pair forms a w-wide SPA */
    int       *marker, *marker_relax;
    complex    *dense, *tempv;
    float *stempv;
    int       *relax_end, *relax_fsupc;
    complex    *a;
    int       *asub;
    int       *xa_begin, *xa_end;
    int       *xsup, *supno;
    int       *xlsub, *xlusup, *xusub;
    int       nzlumax;
    float    *amax;
    complex    drop_sum;
    float alpha, omega;  /* used in MILU, mimicing DRIC */
    static GlobalLU_t Glu; /* persistent to facilitate multiple factors. */
    float    *swork2;      /* used by the second dropping rule */

    /* Local scalars */
    fact_t    fact = options->Fact;
    double    diag_pivot_thresh = options->DiagPivotThresh;
    double    drop_tol = options->ILU_DropTol; /* tau */
    double    fill_ini = options->ILU_FillTol; /* tau^hat */
    double    gamma = options->ILU_FillFactor;
    int       drop_rule = options->ILU_DropRule;
    milu_t    milu = options->ILU_MILU;
    double    fill_tol;
    int       pivrow;   /* pivotal row number in the original matrix A */
    int       nseg1;    /* no of segments in U-column above panel row jcol */
    int       nseg;     /* no of segments in each U-column */
    register int jcol;
    register int kcol;  /* end column of a relaxed snode */
    register int icol;
    register int i, k, jj, new_next, iinfo;
    int       m, n, min_mn, jsupno, fsupc, nextlu, nextu;
    int       w_def;    /* upper bound on panel width */
    int       usepr, iperm_r_allocated = 0;
    int       nnzL, nnzU;
    int       *panel_histo = stat->panel_histo;
    flops_t   *ops = stat->ops;

    int       last_drop;/* the last column which the dropping rules applied */
    int       quota;
    int       nnzAj;    /* number of nonzeros in A(:,1:j) */
    int       nnzLj, nnzUj;
    double    tol_L = drop_tol, tol_U = drop_tol;
    complex zero = {0.0, 0.0};
    float one = 1.0;

    /* Executable */
    iinfo    = 0;
    m        = A->nrow;
    n        = A->ncol;
    min_mn   = SUPERLU_MIN(m, n);
    Astore   = A->Store;
    a        = Astore->nzval;
    asub     = Astore->rowind;
    xa_begin = Astore->colbeg;
    xa_end   = Astore->colend;

    /* Allocate storage common to the factor routines */
    *info = cLUMemInit(fact, work, lwork, m, n, Astore->nnz, panel_size,
                       gamma, L, U, &Glu, &iwork, &cwork);
    if ( *info ) return;

    xsup    = Glu.xsup;
    supno   = Glu.supno;
    xlsub   = Glu.xlsub;
    xlusup  = Glu.xlusup;
    xusub   = Glu.xusub;

    SetIWork(m, n, panel_size, iwork, &segrep, &parent, &xplore,
             &repfnz, &panel_lsub, &marker_relax, &marker);
    cSetRWork(m, panel_size, cwork, &dense, &tempv);

    usepr = (fact == SamePattern_SameRowPerm);
    if ( usepr ) {
        /* Compute the inverse of perm_r */
        iperm_r = (int *) intMalloc(m);
        for (k = 0; k < m; ++k) iperm_r[perm_r[k]] = k;
        iperm_r_allocated = 1;
    }

    iperm_c = (int *) intMalloc(n);
    for (k = 0; k < n; ++k) iperm_c[perm_c[k]] = k;
    swap = (int *)intMalloc(n);
    for (k = 0; k < n; k++) swap[k] = iperm_c[k];
    iswap = (int *)intMalloc(n);
    for (k = 0; k < n; k++) iswap[k] = perm_c[k];
    amax = (float *) floatMalloc(panel_size);
    if (drop_rule & DROP_SECONDARY)
        swork2 = (float *)floatMalloc(n);
    else
        swork2 = NULL;

    nnzAj = 0;
    nnzLj = 0;
    nnzUj = 0;
    last_drop = SUPERLU_MAX(min_mn - 2 * sp_ienv(7), (int)(min_mn * 0.95));
    alpha = pow((double)n, -1.0 / options->ILU_MILU_Dim);

    /* Identify relaxed snodes */
    relax_end = (int *) intMalloc(n);
    relax_fsupc = (int *) intMalloc(n);
    if ( options->SymmetricMode == YES )
        ilu_heap_relax_snode(n, etree, relax, marker, relax_end, relax_fsupc);
    else
        ilu_relax_snode(n, etree, relax, marker, relax_end, relax_fsupc);

    ifill (perm_r, m, EMPTY);
    ifill (marker, m * NO_MARKER, EMPTY);
    supno[0] = -1;
    xsup[0]  = xlsub[0] = xusub[0] = xlusup[0] = 0;
    w_def    = panel_size;

    /* Mark the rows used by relaxed supernodes */
    ifill (marker_relax, m, EMPTY);
    i = mark_relax(m, relax_end, relax_fsupc, xa_begin, xa_end,
                 asub, marker_relax);
#if ( PRNTlevel >= 1)
    printf("%d relaxed supernodes.\n", i);
#endif

    /*
     * Work on one "panel" at a time. A panel is one of the following:
     *     (a) a relaxed supernode at the bottom of the etree, or
     *     (b) panel_size contiguous columns, defined by the user
     */
    for (jcol = 0; jcol < min_mn; ) {

        if ( relax_end[jcol] != EMPTY ) { /* start of a relaxed snode */
            kcol = relax_end[jcol];       /* end of the relaxed snode */
            panel_histo[kcol-jcol+1]++;

            /* Drop small rows in the previous supernode. */
            if (jcol > 0 && jcol < last_drop) {
                int first = xsup[supno[jcol - 1]];
                int last = jcol - 1;
                int quota;

                /* Compute the quota */
                if (drop_rule & DROP_PROWS)
                    quota = gamma * Astore->nnz / m * (m - first) / m
                            * (last - first + 1);
                else if (drop_rule & DROP_COLUMN) {
                    int i;
                    quota = 0;
                    for (i = first; i <= last; i++)
                        quota += xa_end[i] - xa_begin[i];
                    quota = gamma * quota * (m - first) / m;
                } else if (drop_rule & DROP_AREA)
                    quota = gamma * nnzAj * (1.0 - 0.5 * (last + 1.0) / m)
                            - nnzLj;
                else
                    quota = m * n;
                fill_tol = pow(fill_ini, 1.0 - 0.5 * (first + last) / min_mn);

                /* Drop small rows */
                stempv = (float *) tempv;
                i = ilu_cdrop_row(options, first, last, tol_L, quota, &nnzLj,
                                  &fill_tol, &Glu, stempv, swork2, 0);
                /* Reset the parameters */
                if (drop_rule & DROP_DYNAMIC) {
                    if (gamma * nnzAj * (1.0 - 0.5 * (last + 1.0) / m)
                             < nnzLj)
                        tol_L = SUPERLU_MIN(1.0, tol_L * 2.0);
                    else
                        tol_L = SUPERLU_MAX(drop_tol, tol_L * 0.5);
                }
                if (fill_tol < 0) iinfo -= (int)fill_tol;
#ifdef DEBUG
                num_drop_L += i * (last - first + 1);
#endif
            }

            /* --------------------------------------
             * Factorize the relaxed supernode(jcol:kcol)
             * -------------------------------------- */
            /* Determine the union of the row structure of the snode */
            if ( (*info = ilu_csnode_dfs(jcol, kcol, asub, xa_begin, xa_end,
                                         marker, &Glu)) != 0 )
                return;

            nextu    = xusub[jcol];
            nextlu   = xlusup[jcol];
            jsupno   = supno[jcol];
            fsupc    = xsup[jsupno];
            new_next = nextlu + (xlsub[fsupc+1]-xlsub[fsupc])*(kcol-jcol+1);
            nzlumax = Glu.nzlumax;
            while ( new_next > nzlumax ) {
                if ((*info = cLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, &Glu)))
                    return;
            }

            for (icol = jcol; icol <= kcol; icol++) {
                xusub[icol+1] = nextu;

                amax[0] = 0.0;
                /* Scatter into SPA dense[*] */
                for (k = xa_begin[icol]; k < xa_end[icol]; k++) {
                    register float tmp = c_abs1 (&a[k]);
                    if (tmp > amax[0]) amax[0] = tmp;
                    dense[asub[k]] = a[k];
                }
                nnzAj += xa_end[icol] - xa_begin[icol];
                if (amax[0] == 0.0) {
                    amax[0] = fill_ini;
#if ( PRNTlevel >= 1)
                    printf("Column %d is entirely zero!\n", icol);
                    fflush(stdout);
#endif
                }

                /* Numeric update within the snode */
                csnode_bmod(icol, jsupno, fsupc, dense, tempv, &Glu, stat);

                if (usepr) pivrow = iperm_r[icol];
                fill_tol = pow(fill_ini, 1.0 - (double)icol / (double)min_mn);
                if ( (*info = ilu_cpivotL(icol, diag_pivot_thresh, &usepr,
                                          perm_r, iperm_c[icol], swap, iswap,
                                          marker_relax, &pivrow,
                                          amax[0] * fill_tol, milu, zero,
                                          &Glu, stat)) ) {
                    iinfo++;
                    marker[pivrow] = kcol;
                }

            }

            jcol = kcol + 1;

        } else { /* Work on one panel of panel_size columns */

            /* Adjust panel_size so that a panel won't overlap with the next
             * relaxed snode.
             */
            panel_size = w_def;
            for (k = jcol + 1; k < SUPERLU_MIN(jcol+panel_size, min_mn); k++)
                if ( relax_end[k] != EMPTY ) {
                    panel_size = k - jcol;
                    break;
                }
            if ( k == min_mn ) panel_size = min_mn - jcol;
            panel_histo[panel_size]++;

            /* symbolic factor on a panel of columns */
            ilu_cpanel_dfs(m, panel_size, jcol, A, perm_r, &nseg1,
                          dense, amax, panel_lsub, segrep, repfnz,
                          marker, parent, xplore, &Glu);

            /* numeric sup-panel updates in topological order */
            cpanel_bmod(m, panel_size, jcol, nseg1, dense,
                        tempv, segrep, repfnz, &Glu, stat);

            /* Sparse LU within the panel, and below panel diagonal */
            for (jj = jcol; jj < jcol + panel_size; jj++) {

                k = (jj - jcol) * m; /* column index for w-wide arrays */

                nseg = nseg1;   /* Begin after all the panel segments */

                nnzAj += xa_end[jj] - xa_begin[jj];

                if ((*info = ilu_ccolumn_dfs(m, jj, perm_r, &nseg,
                                             &panel_lsub[k], segrep, &repfnz[k],
                                             marker, parent, xplore, &Glu)))
                    return;

                /* Numeric updates */
                if ((*info = ccolumn_bmod(jj, (nseg - nseg1), &dense[k],
                                          tempv, &segrep[nseg1], &repfnz[k],
                                          jcol, &Glu, stat)) != 0) return;

                /* Make a fill-in position if the column is entirely zero */
                if (xlsub[jj + 1] == xlsub[jj]) {
                    register int i, row;
                    int nextl;
                    int nzlmax = Glu.nzlmax;
                    int *lsub = Glu.lsub;
                    int *marker2 = marker + 2 * m;

                    /* Allocate memory */
                    nextl = xlsub[jj] + 1;
                    if (nextl >= nzlmax) {
                        int error = cLUMemXpand(jj, nextl, LSUB, &nzlmax, &Glu);
                        if (error) { *info = error; return; }
                        lsub = Glu.lsub;
                    }
                    xlsub[jj + 1]++;
                    assert(xlusup[jj]==xlusup[jj+1]);
                    xlusup[jj + 1]++;
                    Glu.lusup[xlusup[jj]] = zero;

                    /* Choose a row index (pivrow) for fill-in */
                    for (i = jj; i < n; i++)
                        if (marker_relax[swap[i]] <= jj) break;
                    row = swap[i];
                    marker2[row] = jj;
                    lsub[xlsub[jj]] = row;
#ifdef DEBUG
                    printf("Fill col %d.\n", jj);
                    fflush(stdout);
#endif
                }

                /* Computer the quota */
                if (drop_rule & DROP_PROWS)
                    quota = gamma * Astore->nnz / m * jj / m;
                else if (drop_rule & DROP_COLUMN)
                    quota = gamma * (xa_end[jj] - xa_begin[jj]) *
                            (jj + 1) / m;
                else if (drop_rule & DROP_AREA)
                    quota = gamma * 0.9 * nnzAj * 0.5 - nnzUj;
                else
                    quota = m;

                /* Copy the U-segments to ucol[*] and drop small entries */
                if ((*info = ilu_ccopy_to_ucol(jj, nseg, segrep, &repfnz[k],
                                               perm_r, &dense[k], drop_rule,
                                               milu, amax[jj - jcol] * tol_U,
                                               quota, &drop_sum, &nnzUj, &Glu,
                                               swork2)) != 0)
                    return;

                /* Reset the dropping threshold if required */
                if (drop_rule & DROP_DYNAMIC) {
                    if (gamma * 0.9 * nnzAj * 0.5 < nnzLj)
                        tol_U = SUPERLU_MIN(1.0, tol_U * 2.0);
                    else
                        tol_U = SUPERLU_MAX(drop_tol, tol_U * 0.5);
                }

                if (drop_sum.r != 0.0 && drop_sum.i != 0.0)
                {
                    omega = SUPERLU_MIN(2.0*(1.0-alpha)/c_abs1(&drop_sum), 1.0);
                    cs_mult(&drop_sum, &drop_sum, omega);
                }
                if (usepr) pivrow = iperm_r[jj];
                fill_tol = pow(fill_ini, 1.0 - (double)jj / (double)min_mn);
                if ( (*info = ilu_cpivotL(jj, diag_pivot_thresh, &usepr, perm_r,
                                          iperm_c[jj], swap, iswap,
                                          marker_relax, &pivrow,
                                          amax[jj - jcol] * fill_tol, milu,
                                          drop_sum, &Glu, stat)) ) {
                    iinfo++;
                    marker[m + pivrow] = jj;
                    marker[2 * m + pivrow] = jj;
                }

                /* Reset repfnz[] for this column */
                resetrep_col (nseg, segrep, &repfnz[k]);

                /* Start a new supernode, drop the previous one */
                if (jj > 0 && supno[jj] > supno[jj - 1] && jj < last_drop) {
                    int first = xsup[supno[jj - 1]];
                    int last = jj - 1;
                    int quota;

                    /* Compute the quota */
                    if (drop_rule & DROP_PROWS)
                        quota = gamma * Astore->nnz / m * (m - first) / m
                                * (last - first + 1);
                    else if (drop_rule & DROP_COLUMN) {
                        int i;
                        quota = 0;
                        for (i = first; i <= last; i++)
                            quota += xa_end[i] - xa_begin[i];
                        quota = gamma * quota * (m - first) / m;
                    } else if (drop_rule & DROP_AREA)
                        quota = gamma * nnzAj * (1.0 - 0.5 * (last + 1.0)
                                / m) - nnzLj;
                    else
                        quota = m * n;
                    fill_tol = pow(fill_ini, 1.0 - 0.5 * (first + last) /
                            (double)min_mn);

                    /* Drop small rows */
                    stempv = (float *) tempv;
                    i = ilu_cdrop_row(options, first, last, tol_L, quota,
                                      &nnzLj, &fill_tol, &Glu, stempv, swork2,
                                      1);

                    /* Reset the parameters */
                    if (drop_rule & DROP_DYNAMIC) {
                        if (gamma * nnzAj * (1.0 - 0.5 * (last + 1.0) / m)
                                < nnzLj)
                            tol_L = SUPERLU_MIN(1.0, tol_L * 2.0);
                        else
                            tol_L = SUPERLU_MAX(drop_tol, tol_L * 0.5);
                    }
                    if (fill_tol < 0) iinfo -= (int)fill_tol;
#ifdef DEBUG
                    num_drop_L += i * (last - first + 1);
#endif
                } /* if start a new supernode */

            } /* for */

            jcol += panel_size; /* Move to the next panel */

        } /* else */

    } /* for */

    *info = iinfo;

    if ( m > n ) {
        k = 0;
        for (i = 0; i < m; ++i)
            if ( perm_r[i] == EMPTY ) {
                perm_r[i] = n + k;
                ++k;
            }
    }

    ilu_countnz(min_mn, &nnzL, &nnzU, &Glu);
    fixupL(min_mn, perm_r, &Glu);

    cLUWorkFree(iwork, cwork, &Glu); /* Free work space and compress storage */

    if ( fact == SamePattern_SameRowPerm ) {
        /* L and U structures may have changed due to possibly different
           pivoting, even though the storage is available.
           There could also be memory expansions, so the array locations
           may have changed, */
        ((SCformat *)L->Store)->nnz = nnzL;
        ((SCformat *)L->Store)->nsuper = Glu.supno[n];
        ((SCformat *)L->Store)->nzval = Glu.lusup;
        ((SCformat *)L->Store)->nzval_colptr = Glu.xlusup;
        ((SCformat *)L->Store)->rowind = Glu.lsub;
        ((SCformat *)L->Store)->rowind_colptr = Glu.xlsub;
        ((NCformat *)U->Store)->nnz = nnzU;
        ((NCformat *)U->Store)->nzval = Glu.ucol;
        ((NCformat *)U->Store)->rowind = Glu.usub;
        ((NCformat *)U->Store)->colptr = Glu.xusub;
    } else {
        cCreate_SuperNode_Matrix(L, A->nrow, min_mn, nnzL, Glu.lusup,
                                 Glu.xlusup, Glu.lsub, Glu.xlsub, Glu.supno,
                                 Glu.xsup, SLU_SC, SLU_C, SLU_TRLU);
        cCreate_CompCol_Matrix(U, min_mn, min_mn, nnzU, Glu.ucol,
                               Glu.usub, Glu.xusub, SLU_NC, SLU_C, SLU_TRU);
    }

    ops[FACT] += ops[TRSV] + ops[GEMV];
    stat->expansions = --(Glu.num_expansions);

    if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
    SUPERLU_FREE (iperm_c);
    SUPERLU_FREE (relax_end);
    SUPERLU_FREE (swap);
    SUPERLU_FREE (iswap);
    SUPERLU_FREE (relax_fsupc);
    SUPERLU_FREE (amax);
    if ( swork2 ) SUPERLU_FREE (swork2);

}
Ejemplo n.º 3
0
void
pcgssv(int nprocs, SuperMatrix *A, int *perm_c, int *perm_r, 
       SuperMatrix *L, SuperMatrix *U, SuperMatrix *B, int *info )
{
/*
 * -- SuperLU MT routine (version 2.0) --
 * Lawrence Berkeley National Lab, Univ. of California Berkeley,
 * and Xerox Palo Alto Research Center.
 * September 10, 2007
 *
 * Purpose
 * =======
 *
 * PCGSSV solves the system of linear equations A*X=B, using the parallel
 * LU factorization routine PCGSTRF. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = NC):
 *
 *      1.1. Permute the columns of A, forming A*Pc, where Pc is a 
 *           permutation matrix. 
 *           For more details of this step, see sp_preorder.c.
 *
 *      1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
 *           by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      1.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   2. If A is stored row-wise (A->Stype = NR), apply the above algorithm
 *      to the tranpose of A:
 *
 *      2.1. Permute columns of tranpose(A) (rows of A),
 *           forming transpose(A)*Pc, where Pc is a permutation matrix. 
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
 *           determined by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      2.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 * 
 *   See supermatrix.h for the definition of "SuperMatrix" structure.
 *
 *
 * Arguments
 * =========
 *
 * nprocs (input) int
 *        Number of processes (or threads) to be spawned and used to perform
 *        the LU factorization by pcgstrf(). There is a single thread of
 *        control to call pcgstrf(), and all threads spawned by pcgstrf()
 *        are terminated before returning from pcgstrf().
 *
 * A      (input) SuperMatrix*
 *        Matrix A in A*X=B, of dimension (A->nrow, A->ncol), where
 *        A->nrow = A->ncol. Currently, the type of A can be:
 *        Stype = NC or NR; Dtype = _D; Mtype = GE. In the future,
 *        more general A will be handled.
 *
 * perm_c (input/output) int*
 *        If A->Stype=NC, column permutation vector of size A->ncol,
 *        which defines the permutation matrix Pc; perm_c[i] = j means 
 *        column i of A is in position j in A*Pc.
 *        On exit, perm_c may be overwritten by the product of the input
 *        perm_c and a permutation that postorders the elimination tree
 *        of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *        is already in postorder.
 *
 *        If A->Stype=NR, column permutation vector of size A->nrow
 *        which describes permutation of columns of tranpose(A) 
 *        (rows of A) as described above.
 * 
 * perm_r (output) int*,
 *        If A->Stype=NR, row permutation vector of size A->nrow, 
 *        which defines the permutation matrix Pr, and is determined 
 *        by partial pivoting.  perm_r[i] = j means row i of A is in 
 *        position j in Pr*A.
 *
 *        If A->Stype=NR, permutation vector of size A->ncol, which
 *        determines permutation of rows of transpose(A)
 *        (columns of A) as described above.
 *
 * L      (output) SuperMatrix*
 *        The factor L from the factorization 
 *            Pr*A*Pc=L*U              (if A->Stype=NC) or
 *            Pr*transpose(A)*Pc=L*U   (if A->Stype=NR).
 *        Uses compressed row subscripts storage for supernodes, i.e.,
 *        L has types: Stype = SCP, Dtype = _D, Mtype = TRLU.
 *
 * U      (output) SuperMatrix*
 *	  The factor U from the factorization
 *            Pr*A*Pc=L*U              (if A->Stype=NC) or
 *            Pr*transpose(A)*Pc=L*U   (if A->Stype=NR).
 *        Use column-wise storage scheme, i.e., U has types:
 *        Stype = NCP, Dtype = _D, Mtype = TRU.
 *
 * B      (input/output) SuperMatrix*
 *        B has types: Stype = DN, Dtype = _D, Mtype = GE.
 *        On entry, the right hand side matrix.
 *        On exit, the solution matrix if info = 0;
 *
 * info   (output) int*
 *	  = 0: successful exit
 *        > 0: if info = i, and i is
 *             <= A->ncol: U(i,i) is exactly zero. The factorization has
 *                been completed, but the factor U is exactly singular,
 *                so the solution could not be computed.
 *             > A->ncol: number of bytes allocated when memory allocation
 *                failure occurred, plus A->ncol.
 *   
 */
    trans_t  trans;
    NCformat *Astore;
    DNformat *Bstore;
    SuperMatrix *AA; /* A in NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int i, n, panel_size, relax;
    fact_t   fact;
    yes_no_t refact, usepr;
    float diag_pivot_thresh, drop_tol;
    void *work;
    int lwork;
    superlumt_options_t superlumt_options;
    Gstat_t  Gstat;
    double   t; /* Temporary time */
    double   *utime;
    flops_t  *ops, flopcnt;

    /* ------------------------------------------------------------
       Test the input parameters.
       ------------------------------------------------------------*/
    Astore = A->Store;
    Bstore = B->Store;
    *info = 0;
    if ( nprocs <= 0 ) *info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 || 
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_C || A->Mtype != SLU_GE )
	*info = -2;
    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(1, A->nrow) )*info = -7;
    if ( *info != 0 ) {
        i = -(*info);
	xerbla_("pcgssv", &i);
	return;
    }

#if 0
    /* Use the best sequential code. 
       if this part is commented out, we will use the parallel code 
       run on one processor. */
    if ( nprocs == 1 ) {
        return;
    }
#endif

    fact               = EQUILIBRATE;
    refact             = NO;
    trans              = NOTRANS;
    panel_size         = sp_ienv(1);
    relax              = sp_ienv(2);
    diag_pivot_thresh  = 1.0;
    usepr              = NO;
    drop_tol           = 0.0;
    work               = NULL;
    lwork              = 0;

    /* ------------------------------------------------------------
       Allocate storage and initialize statistics variables. 
       ------------------------------------------------------------*/
    n = A->ncol;
    StatAlloc(n, nprocs, panel_size, relax, &Gstat);
    StatInit(n, nprocs, &Gstat);
    utime = Gstat.utime;
    ops = Gstat.ops;

    /* ------------------------------------------------------------
       Convert A to NC format when necessary.
       ------------------------------------------------------------*/
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	cCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	trans = TRANS;
    } else if ( A->Stype == SLU_NC ) AA = A;

    /* ------------------------------------------------------------
       Initialize the option structure superlumt_options using the
       user-input parameters;
       Apply perm_c to the columns of original A to form AC.
       ------------------------------------------------------------*/
    pcgstrf_init(nprocs, fact, trans, refact, panel_size, relax,
		 diag_pivot_thresh, usepr, drop_tol, perm_c, perm_r,
		 work, lwork, AA, &AC, &superlumt_options, &Gstat);

    /* ------------------------------------------------------------
       Compute the LU factorization of A.
       The following routine will create nprocs threads.
       ------------------------------------------------------------*/
    pcgstrf(&superlumt_options, &AC, perm_r, L, U, &Gstat, info);

    flopcnt = 0;
    for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops;
    ops[FACT] = flopcnt;

#if ( PRNTlevel==1 )
    printf("nprocs = %d, flops %e, Mflops %.2f\n",
	   nprocs, flopcnt, flopcnt/utime[FACT]*1e-6);
    printf("Parameters: w %d, relax %d, maxsuper %d, rowblk %d, colblk %d\n",
	   sp_ienv(1), sp_ienv(2), sp_ienv(3), sp_ienv(4), sp_ienv(5));
    fflush(stdout);
#endif

    /* ------------------------------------------------------------
       Solve the system A*X=B, overwriting B with X.
       ------------------------------------------------------------*/
    if ( *info == 0 ) {
        t = SuperLU_timer_();
	cgstrs (trans, L, U, perm_r, perm_c, B, &Gstat, info);
	utime[SOLVE] = SuperLU_timer_() - t;
	ops[SOLVE] = ops[TRISOLVE];
    }

    /* ------------------------------------------------------------
       Deallocate storage after factorization.
       ------------------------------------------------------------*/
    pxgstrf_finalize(&superlumt_options, &AC);
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

    /* ------------------------------------------------------------
       Print timings, then deallocate statistic variables.
       ------------------------------------------------------------*/
#ifdef PROFILE
    {
	SCPformat *Lstore = (SCPformat *) L->Store;
	ParallelProfile(n, Lstore->nsuper+1, Gstat.num_panels, nprocs, &Gstat);
    }
#endif
    PrintStat(&Gstat);
    StatFree(&Gstat);
}
Ejemplo n.º 4
0
void
cgstrf (superlu_options_t *options, SuperMatrix *A,
        int relax, int panel_size, int *etree, void *work, int lwork,
        int *perm_c, int *perm_r, SuperMatrix *L, SuperMatrix *U,
        SuperLUStat_t *stat, int *info)
{
    /* Local working arrays */
    NCPformat *Astore;
    int       *iperm_r = NULL; /* inverse of perm_r; used when
                                  options->Fact == SamePattern_SameRowPerm */
    int       *iperm_c; /* inverse of perm_c */
    int       *iwork;
    complex    *cwork;
    int       *segrep, *repfnz, *parent, *xplore;
    int       *panel_lsub; /* dense[]/panel_lsub[] pair forms a w-wide SPA */
    int       *xprune;
    int       *marker;
    complex    *dense, *tempv;
    int       *relax_end;
    complex    *a;
    int       *asub;
    int       *xa_begin, *xa_end;
    int       *xsup, *supno;
    int       *xlsub, *xlusup, *xusub;
    int       nzlumax;
    float fill_ratio = sp_ienv(6);  /* estimated fill ratio */
    static    GlobalLU_t Glu; /* persistent to facilitate multiple factors. */

    /* Local scalars */
    fact_t    fact = options->Fact;
    double    diag_pivot_thresh = options->DiagPivotThresh;
    int       pivrow;   /* pivotal row number in the original matrix A */
    int       nseg1;    /* no of segments in U-column above panel row jcol */
    int       nseg;     /* no of segments in each U-column */
    register int jcol;
    register int kcol;  /* end column of a relaxed snode */
    register int icol;
    register int i, k, jj, new_next, iinfo;
    int       m, n, min_mn, jsupno, fsupc, nextlu, nextu;
    int       w_def;    /* upper bound on panel width */
    int       usepr, iperm_r_allocated = 0;
    int       nnzL, nnzU;
    int       *panel_histo = stat->panel_histo;
    flops_t   *ops = stat->ops;

    iinfo    = 0;
    m        = A->nrow;
    n        = A->ncol;
    min_mn   = SUPERLU_MIN(m, n);
    Astore   = A->Store;
    a        = Astore->nzval;
    asub     = Astore->rowind;
    xa_begin = Astore->colbeg;
    xa_end   = Astore->colend;

    /* Allocate storage common to the factor routines */
    *info = cLUMemInit(fact, work, lwork, m, n, Astore->nnz,
                       panel_size, fill_ratio, L, U, &Glu, &iwork, &cwork);
    if ( *info ) return;

    xsup    = Glu.xsup;
    supno   = Glu.supno;
    xlsub   = Glu.xlsub;
    xlusup  = Glu.xlusup;
    xusub   = Glu.xusub;

    SetIWork(m, n, panel_size, iwork, &segrep, &parent, &xplore,
             &repfnz, &panel_lsub, &xprune, &marker);
    cSetRWork(m, panel_size, cwork, &dense, &tempv);

    usepr = (fact == SamePattern_SameRowPerm);
    if ( usepr ) {
        /* Compute the inverse of perm_r */
        iperm_r = (int *) intMalloc(m);
        for (k = 0; k < m; ++k) iperm_r[perm_r[k]] = k;
        iperm_r_allocated = 1;
    }
    iperm_c = (int *) intMalloc(n);
    for (k = 0; k < n; ++k) iperm_c[perm_c[k]] = k;

    /* Identify relaxed snodes */
    relax_end = (int *) intMalloc(n);
    if ( options->SymmetricMode == YES ) {
        heap_relax_snode(n, etree, relax, marker, relax_end);
    } else {
        relax_snode(n, etree, relax, marker, relax_end);
    }

    ifill (perm_r, m, EMPTY);
    ifill (marker, m * NO_MARKER, EMPTY);
    supno[0] = -1;
    xsup[0]  = xlsub[0] = xusub[0] = xlusup[0] = 0;
    w_def    = panel_size;

    /*
     * Work on one "panel" at a time. A panel is one of the following:
     *     (a) a relaxed supernode at the bottom of the etree, or
     *     (b) panel_size contiguous columns, defined by the user
     */
    for (jcol = 0; jcol < min_mn; ) {

        if ( relax_end[jcol] != EMPTY ) { /* start of a relaxed snode */
            kcol = relax_end[jcol];       /* end of the relaxed snode */
            panel_histo[kcol-jcol+1]++;

            /* --------------------------------------
             * Factorize the relaxed supernode(jcol:kcol)
             * -------------------------------------- */
            /* Determine the union of the row structure of the snode */
            if ( (*info = csnode_dfs(jcol, kcol, asub, xa_begin, xa_end,
                                    xprune, marker, &Glu)) != 0 )
                return;

            nextu    = xusub[jcol];
            nextlu   = xlusup[jcol];
            jsupno   = supno[jcol];
            fsupc    = xsup[jsupno];
            new_next = nextlu + (xlsub[fsupc+1]-xlsub[fsupc])*(kcol-jcol+1);
            nzlumax = Glu.nzlumax;
            while ( new_next > nzlumax ) {
                if ( (*info = cLUMemXpand(jcol, nextlu, LUSUP, &nzlumax, &Glu)) )
                    return;
            }

            for (icol = jcol; icol<= kcol; icol++) {
                xusub[icol+1] = nextu;

                /* Scatter into SPA dense[*] */
                for (k = xa_begin[icol]; k < xa_end[icol]; k++)
                    dense[asub[k]] = a[k];

                /* Numeric update within the snode */
                csnode_bmod(icol, jsupno, fsupc, dense, tempv, &Glu, stat);

                if ( (*info = cpivotL(icol, diag_pivot_thresh, &usepr, perm_r,
                                      iperm_r, iperm_c, &pivrow, &Glu, stat)) )
                    if ( iinfo == 0 ) iinfo = *info;

#ifdef DEBUG
                cprint_lu_col("[1]: ", icol, pivrow, xprune, &Glu);
#endif

            }

            jcol = icol;

        } else { /* Work on one panel of panel_size columns */

            /* Adjust panel_size so that a panel won't overlap with the next
             * relaxed snode.
             */
            panel_size = w_def;
            for (k = jcol + 1; k < SUPERLU_MIN(jcol+panel_size, min_mn); k++)
                if ( relax_end[k] != EMPTY ) {
                    panel_size = k - jcol;
                    break;
                }
            if ( k == min_mn ) panel_size = min_mn - jcol;
            panel_histo[panel_size]++;

            /* symbolic factor on a panel of columns */
            cpanel_dfs(m, panel_size, jcol, A, perm_r, &nseg1,
                      dense, panel_lsub, segrep, repfnz, xprune,
                      marker, parent, xplore, &Glu);

            /* numeric sup-panel updates in topological order */
            cpanel_bmod(m, panel_size, jcol, nseg1, dense,
                        tempv, segrep, repfnz, &Glu, stat);

            /* Sparse LU within the panel, and below panel diagonal */
            for ( jj = jcol; jj < jcol + panel_size; jj++) {
                k = (jj - jcol) * m; /* column index for w-wide arrays */

                nseg = nseg1;   /* Begin after all the panel segments */

                if ((*info = ccolumn_dfs(m, jj, perm_r, &nseg, &panel_lsub[k],
                                        segrep, &repfnz[k], xprune, marker,
                                        parent, xplore, &Glu)) != 0) return;

                /* Numeric updates */
                if ((*info = ccolumn_bmod(jj, (nseg - nseg1), &dense[k],
                                         tempv, &segrep[nseg1], &repfnz[k],
                                         jcol, &Glu, stat)) != 0) return;

                /* Copy the U-segments to ucol[*] */
                if ((*info = ccopy_to_ucol(jj, nseg, segrep, &repfnz[k],
                                          perm_r, &dense[k], &Glu)) != 0)
                    return;

                if ( (*info = cpivotL(jj, diag_pivot_thresh, &usepr, perm_r,
                                      iperm_r, iperm_c, &pivrow, &Glu, stat)) )
                    if ( iinfo == 0 ) iinfo = *info;

                /* Prune columns (0:jj-1) using column jj */
                cpruneL(jj, perm_r, pivrow, nseg, segrep,
                        &repfnz[k], xprune, &Glu);

                /* Reset repfnz[] for this column */
                resetrep_col (nseg, segrep, &repfnz[k]);

#ifdef DEBUG
                cprint_lu_col("[2]: ", jj, pivrow, xprune, &Glu);
#endif

            }

            jcol += panel_size; /* Move to the next panel */

        } /* else */

    } /* for */

    *info = iinfo;

    if ( m > n ) {
        k = 0;
        for (i = 0; i < m; ++i)
            if ( perm_r[i] == EMPTY ) {
                perm_r[i] = n + k;
                ++k;
            }
    }

    countnz(min_mn, xprune, &nnzL, &nnzU, &Glu);
    fixupL(min_mn, perm_r, &Glu);

    cLUWorkFree(iwork, cwork, &Glu); /* Free work space and compress storage */

    if ( fact == SamePattern_SameRowPerm ) {
        /* L and U structures may have changed due to possibly different
           pivoting, even though the storage is available.
           There could also be memory expansions, so the array locations
           may have changed, */
        ((SCformat *)L->Store)->nnz = nnzL;
        ((SCformat *)L->Store)->nsuper = Glu.supno[n];
        ((SCformat *)L->Store)->nzval = Glu.lusup;
        ((SCformat *)L->Store)->nzval_colptr = Glu.xlusup;
        ((SCformat *)L->Store)->rowind = Glu.lsub;
        ((SCformat *)L->Store)->rowind_colptr = Glu.xlsub;
        ((NCformat *)U->Store)->nnz = nnzU;
        ((NCformat *)U->Store)->nzval = Glu.ucol;
        ((NCformat *)U->Store)->rowind = Glu.usub;
        ((NCformat *)U->Store)->colptr = Glu.xusub;
    } else {
        cCreate_SuperNode_Matrix(L, A->nrow, min_mn, nnzL, Glu.lusup,
                                 Glu.xlusup, Glu.lsub, Glu.xlsub, Glu.supno,
                                 Glu.xsup, SLU_SC, SLU_C, SLU_TRLU);
        cCreate_CompCol_Matrix(U, min_mn, min_mn, nnzU, Glu.ucol,
                               Glu.usub, Glu.xusub, SLU_NC, SLU_C, SLU_TRU);
    }

    ops[FACT] += ops[TRSV] + ops[GEMV];
    stat->expansions = --(Glu.num_expansions);

    if ( iperm_r_allocated ) SUPERLU_FREE (iperm_r);
    SUPERLU_FREE (iperm_c);
    SUPERLU_FREE (relax_end);

}
Ejemplo n.º 5
0
void
cgssvx(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
       int *etree, char *equed, float *R, float *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X, float *recip_pivot_growth,
       float *rcond, float *ferr, float *berr,
       mem_usage_t *mem_usage, SuperLUStat_t *stat, int *info )
{


    DNformat  *Bstore, *Xstore;
    complex    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ, permc_spec;
    trans_t   trant;
    char      norm[1];
    int       i, j, info1;
    float    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    float    diag_pivot_thresh;
    double    t0;      /* temporary time */
    double    *utime;

    /* External functions */
    extern float clangs(char *, SuperMatrix *);

    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;

    *info = 0;
    nofact = (options->Fact != FACTORED);
    equil = (options->Equil == YES);
    notran = (options->Trans == NOTRANS);
    if ( nofact ) {
        *(unsigned char *)equed = 'N';
        rowequ = FALSE;
        colequ = FALSE;
    } else {
        rowequ = lsame_(equed, "R") || lsame_(equed, "B");
        colequ = lsame_(equed, "C") || lsame_(equed, "B");
        smlnum = slamch_("Safe minimum");
        bignum = 1. / smlnum;
    }

#if 0
printf("dgssvx: Fact=%4d, Trans=%4d, equed=%c\n",
       options->Fact, options->Trans, *equed);
#endif

    /* Test the input parameters */
    if (!nofact && options->Fact != DOFACT && options->Fact != SamePattern &&
        options->Fact != SamePattern_SameRowPerm &&
        !notran && options->Trans != TRANS && options->Trans != CONJ &&
        !equil && options->Equil != NO)
        *info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
              (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
              A->Dtype != SLU_C || A->Mtype != SLU_GE )
        *info = -2;
    else if (options->Fact == FACTORED &&
             !(rowequ || colequ || lsame_(equed, "N")))
        *info = -6;
    else {
        if (rowequ) {
            rcmin = bignum;
            rcmax = 0.;
            for (j = 0; j < A->nrow; ++j) {
                rcmin = SUPERLU_MIN(rcmin, R[j]);
                rcmax = SUPERLU_MAX(rcmax, R[j]);
            }
            if (rcmin <= 0.) *info = -7;
            else if ( A->nrow > 0)
                rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
            else rowcnd = 1.;
        }
        if (colequ && *info == 0) {
            rcmin = bignum;
            rcmax = 0.;
            for (j = 0; j < A->nrow; ++j) {
                rcmin = SUPERLU_MIN(rcmin, C[j]);
                rcmax = SUPERLU_MAX(rcmax, C[j]);
            }
            if (rcmin <= 0.) *info = -8;
            else if (A->nrow > 0)
                colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
            else colcnd = 1.;
        }
        if (*info == 0) {
            if ( lwork < -1 ) *info = -12;
            else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
                      B->Stype != SLU_DN || B->Dtype != SLU_C ||
                      B->Mtype != SLU_GE )
                *info = -13;
            else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
                      (B->ncol != 0 && B->ncol != X->ncol) ||
                      X->Stype != SLU_DN ||
                      X->Dtype != SLU_C || X->Mtype != SLU_GE )
                *info = -14;
        }
    }
    if (*info != 0) {
        i = -(*info);
        xerbla_("cgssvx", &i);
        return;
    }

    /* Initialization for factor parameters */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    diag_pivot_thresh = options->DiagPivotThresh;

    utime = stat->utime;

    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
        NRformat *Astore = A->Store;
        AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
        cCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz,
                               Astore->nzval, Astore->colind, Astore->rowptr,
                               SLU_NC, A->Dtype, A->Mtype);
        if ( notran ) { /* Reverse the transpose argument. */
            trant = TRANS;
            notran = 0;
        } else {
            trant = NOTRANS;
            notran = 1;
        }
    } else { /* A->Stype == SLU_NC */
        trant = options->Trans;
        AA = A;
    }

    if ( nofact && equil ) {
        t0 = SuperLU_timer_();
        /* Compute row and column scalings to equilibrate the matrix A. */
        cgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);

        if ( info1 == 0 ) {
            /* Equilibrate matrix A. */
            claqgs(AA, R, C, rowcnd, colcnd, amax, equed);
            rowequ = lsame_(equed, "R") || lsame_(equed, "B");
            colequ = lsame_(equed, "C") || lsame_(equed, "B");
        }
        utime[EQUIL] = SuperLU_timer_() - t0;
    }


    if ( nofact ) {

        t0 = SuperLU_timer_();
        /*
         * Gnet column permutation vector perm_c[], according to permc_spec:
         *   permc_spec = NATURAL:  natural ordering
         *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
         *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
         *   permc_spec = COLAMD:   approximate minimum degree column ordering
         *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
         */
        permc_spec = options->ColPerm;
        if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
            get_perm_c(permc_spec, AA, perm_c);
        utime[COLPERM] = SuperLU_timer_() - t0;

        t0 = SuperLU_timer_();
        sp_preorder(options, AA, perm_c, etree, &AC);
        utime[ETREE] = SuperLU_timer_() - t0;

/*      printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n",
               relax, panel_size, sp_ienv(3), sp_ienv(4));
        fflush(stdout); */

        /* Compute the LU factorization of A*Pc. */
        t0 = SuperLU_timer_();
        cgstrf(options, &AC, relax, panel_size, etree,
                work, lwork, perm_c, perm_r, L, U, stat, info);
        utime[FACT] = SuperLU_timer_() - t0;

        if ( lwork == -1 ) {
            mem_usage->total_needed = *info - A->ncol;
            return;
        }
    }

    if ( options->PivotGrowth ) {
        if ( *info > 0 ) {
            if ( *info <= A->ncol ) {
                /* Compute the reciprocal pivot growth factor of the leading
                   rank-deficient *info columns of A. */
                *recip_pivot_growth = cPivotGrowth(*info, AA, perm_c, L, U);
            }
            return;
        }

        /* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
        *recip_pivot_growth = cPivotGrowth(A->ncol, AA, perm_c, L, U);
    }

    if ( options->ConditionNumber ) {
        /* Estimate the reciprocal of the condition number of A. */
        t0 = SuperLU_timer_();
        if ( notran ) {
            *(unsigned char *)norm = '1';
        } else {
            *(unsigned char *)norm = 'I';
        }
        anorm = clangs(norm, AA);
        cgscon(norm, L, U, anorm, rcond, stat, info);
        utime[RCOND] = SuperLU_timer_() - t0;
    }

    if ( nrhs > 0 ) {
        /* Scale the right hand side if equilibration was performed. */
        if ( notran ) {
            if ( rowequ ) {
                for (j = 0; j < nrhs; ++j)
                    for (i = 0; i < A->nrow; ++i)
                        cs_mult(&Bmat[i+j*ldb], &Bmat[i+j*ldb], R[i]);
            }
        } else if ( colequ ) {
            for (j = 0; j < nrhs; ++j)
                for (i = 0; i < A->nrow; ++i)
                    cs_mult(&Bmat[i+j*ldb], &Bmat[i+j*ldb], C[i]);
        }

        /* Compute the solution matrix X. */
        for (j = 0; j < nrhs; j++)  /* Save a copy of the right hand sides */
            for (i = 0; i < B->nrow; i++)
                Xmat[i + j*ldx] = Bmat[i + j*ldb];

        t0 = SuperLU_timer_();
        cgstrs (trant, L, U, perm_c, perm_r, X, stat, info);
        utime[SOLVE] = SuperLU_timer_() - t0;

        /* Use iterative refinement to improve the computed solution and compute
           error bounds and backward error estimates for it. */
        t0 = SuperLU_timer_();
        if ( options->IterRefine != NOREFINE ) {
            cgsrfs(trant, AA, L, U, perm_c, perm_r, equed, R, C, B,
                   X, ferr, berr, stat, info);
        } else {
            for (j = 0; j < nrhs; ++j) ferr[j] = berr[j] = 1.0;
        }
        utime[REFINE] = SuperLU_timer_() - t0;

        /* Transform the solution matrix X to a solution of the original system. */
        if ( notran ) {
            if ( colequ ) {
                for (j = 0; j < nrhs; ++j)
                    for (i = 0; i < A->nrow; ++i)
                        cs_mult(&Xmat[i+j*ldx], &Xmat[i+j*ldx], C[i]);
            }
        } else if ( rowequ ) {
            for (j = 0; j < nrhs; ++j)
                for (i = 0; i < A->nrow; ++i)
                    cs_mult(&Xmat[i+j*ldx], &Xmat[i+j*ldx], R[i]);
        }
    } /* end if nrhs > 0 */

    if ( options->ConditionNumber ) {
        /* Set INFO = A->ncol+1 if the matrix is singular to working precision. */
        if ( *rcond < slamch_("E") ) *info = A->ncol + 1;
    }

    if ( nofact ) {
        cQuerySpace(L, U, mem_usage);
        Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
        Destroy_SuperMatrix_Store(AA);
        SUPERLU_FREE(AA);
    }

}
Ejemplo n.º 6
0
void
pcgssvx(int nprocs, superlumt_options_t *superlumt_options, SuperMatrix *A, 
	int *perm_c, int *perm_r, equed_t *equed, float *R, float *C,
	SuperMatrix *L, SuperMatrix *U,
	SuperMatrix *B, SuperMatrix *X, float *recip_pivot_growth, 
	float *rcond, float *ferr, float *berr, 
	superlu_memusage_t *superlu_memusage, int *info)
{
/*
 * -- SuperLU MT routine (version 2.0) --
 * Lawrence Berkeley National Lab, Univ. of California Berkeley, 
 * and Xerox Palo Alto Research Center.
 * September 10, 2007
 *
 * Purpose
 * =======
 *
 * pcgssvx() solves the system of linear equations A*X=B or A'*X=B, using
 * the LU factorization from cgstrf(). Error bounds on the solution and
 * a condition estimate are also provided. It performs the following steps:
 *
 * 1. If A is stored column-wise (A->Stype = NC):
 *  
 *    1.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate
 *         the system:
 *           trans = NOTRANS: diag(R)*A*diag(C)*inv(diag(C))*X = diag(R)*B
 *           trans = TRANS:  (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *           trans = CONJ:   (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *         Whether or not the system will be equilibrated depends on the
 *         scaling of the matrix A, but if equilibration is used, A is
 *         overwritten by diag(R)*A*diag(C) and B by diag(R)*B 
 *         (if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ).
 *
 *    1.2. Permute columns of A, forming A*Pc, where Pc is a permutation matrix
 *         that usually preserves sparsity.
 *         For more details of this step, see csp_colorder.c.
 *
 *    1.3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to 
 *         factor the matrix A (after equilibration if fact = EQUILIBRATE) as
 *         Pr*A*Pc = L*U, with Pr determined by partial pivoting.
 *
 *    1.4. Compute the reciprocal pivot growth factor.
 *
 *    1.5. If some U(i,i) = 0, so that U is exactly singular, then the routine
 *         returns with info = i. Otherwise, the factored form of A is used to
 *         estimate the condition number of the matrix A. If the reciprocal of
 *         the condition number is less than machine precision, 
 *         info = A->ncol+1 is returned as a warning, but the routine still
 *         goes on to solve for X and computes error bounds as described below.
 *
 *    1.6. The system of equations is solved for X using the factored form
 *         of A.
 *
 *    1.7. Iterative refinement is applied to improve the computed solution
 *         matrix and calculate error bounds and backward error estimates
 *         for it.
 *
 *    1.8. If equilibration was used, the matrix X is premultiplied by
 *         diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ)
 *         so that it solves the original system before equilibration.
 *
 * 2. If A is stored row-wise (A->Stype = NR), apply the above algorithm
 *    to the tranpose of A:
 *
 *    2.1. If fact = EQUILIBRATE, scaling factors are computed to equilibrate
 *         the system:
 *           trans = NOTRANS:diag(R)*A'*diag(C)*inv(diag(C))*X = diag(R)*B
 *           trans = TRANS: (diag(R)*A'*diag(C))**T *inv(diag(R))*X = diag(C)*B
 *           trans = CONJ:  (diag(R)*A'*diag(C))**H *inv(diag(R))*X = diag(C)*B
 *         Whether or not the system will be equilibrated depends on the
 *         scaling of the matrix A, but if equilibration is used, A' is
 *         overwritten by diag(R)*A'*diag(C) and B by diag(R)*B 
 *         (if trans = NOTRANS) or diag(C)*B (if trans = TRANS or CONJ).
 *
 *    2.2. Permute columns of transpose(A) (rows of A), 
 *         forming transpose(A)*Pc, where Pc is a permutation matrix that
 *         usually preserves sparsity.
 *         For more details of this step, see csp_colorder.c.
 *
 *    2.3. If fact = DOFACT or EQUILIBRATE, the LU decomposition is used to 
 *         factor the matrix A (after equilibration if fact = EQUILIBRATE) as
 *         Pr*transpose(A)*Pc = L*U, with the permutation Pr determined by
 *         partial pivoting.
 *
 *    2.4. Compute the reciprocal pivot growth factor.
 *
 *    2.5. If some U(i,i) = 0, so that U is exactly singular, then the routine
 *         returns with info = i. Otherwise, the factored form of transpose(A)
 *         is used to estimate the condition number of the matrix A.
 *         If the reciprocal of the condition number is less than machine
 *         precision, info = A->nrow+1 is returned as a warning, but the
 *         routine still goes on to solve for X and computes error bounds
 *         as described below.
 *
 *    2.6. The system of equations is solved for X using the factored form
 *         of transpose(A).
 *
 *    2.7. Iterative refinement is applied to improve the computed solution
 *         matrix and calculate error bounds and backward error estimates
 *         for it.
 *
 *    2.8. If equilibration was used, the matrix X is premultiplied by
 *         diag(C) (if trans = NOTRANS) or diag(R) (if trans = TRANS or CONJ)
 *         so that it solves the original system before equilibration.
 *
 * See supermatrix.h for the definition of 'SuperMatrix' structure.
 *
 * Arguments
 * =========
 *
 * nprocs (input) int
 *         Number of processes (or threads) to be spawned and used to perform
 *         the LU factorization by pcgstrf(). There is a single thread of
 *         control to call pcgstrf(), and all threads spawned by pcgstrf() 
 *         are terminated before returning from pcgstrf().
 *
 * superlumt_options (input) superlumt_options_t*
 *         The structure defines the input parameters and data structure
 *         to control how the LU factorization will be performed.
 *         The following fields should be defined for this structure:
 *
 *         o fact (fact_t)
 *           Specifies whether or not the factored form of the matrix
 *           A is supplied on entry, and if not, whether the matrix A should
 *           be equilibrated before it is factored.
 *           = FACTORED: On entry, L, U, perm_r and perm_c contain the 
 *             factored form of A. If equed is not NOEQUIL, the matrix A has
 *             been equilibrated with scaling factors R and C.
 *             A, L, U, perm_r are not modified.
 *           = DOFACT: The matrix A will be factored, and the factors will be
 *             stored in L and U.
 *           = EQUILIBRATE: The matrix A will be equilibrated if necessary,
 *             then factored into L and U.
 *
 *         o trans (trans_t)
 *           Specifies the form of the system of equations:
 *           = NOTRANS: A * X = B        (No transpose)
 *           = TRANS:   A**T * X = B     (Transpose)
 *           = CONJ:    A**H * X = B     (Transpose)
 *
 *         o refact (yes_no_t)
 *           Specifies whether this is first time or subsequent factorization.
 *           = NO:  this factorization is treated as the first one;
 *           = YES: it means that a factorization was performed prior to this
 *               one. Therefore, this factorization will re-use some
 *               existing data structures, such as L and U storage, column
 *               elimination tree, and the symbolic information of the
 *               Householder matrix.
 *
 *         o panel_size (int)
 *           A panel consists of at most panel_size consecutive columns.
 *
 *         o relax (int)
 *           To control degree of relaxing supernodes. If the number
 *           of nodes (columns) in a subtree of the elimination tree is less
 *           than relax, this subtree is considered as one supernode,
 *           regardless of the row structures of those columns.
 *
 *         o diag_pivot_thresh (float)
 *           Diagonal pivoting threshold. At step j of the Gaussian 
 *           elimination, if 
 *               abs(A_jj) >= diag_pivot_thresh * (max_(i>=j) abs(A_ij)),
 *           use A_jj as pivot, else use A_ij with maximum magnitude. 
 *           0 <= diag_pivot_thresh <= 1. The default value is 1, 
 *           corresponding to partial pivoting.
 *
 *         o usepr (yes_no_t)
 *           Whether the pivoting will use perm_r specified by the user.
 *           = YES: use perm_r; perm_r is input, unchanged on exit.
 *           = NO:  perm_r is determined by partial pivoting, and is output.
 *
 *         o drop_tol (double) (NOT IMPLEMENTED)
 *	     Drop tolerance parameter. At step j of the Gaussian elimination,
 *           if abs(A_ij)/(max_i abs(A_ij)) < drop_tol, drop entry A_ij.
 *           0 <= drop_tol <= 1. The default value of drop_tol is 0,
 *           corresponding to not dropping any entry.
 *
 *         o work (void*) of size lwork
 *           User-supplied work space and space for the output data structures.
 *           Not referenced if lwork = 0;
 *
 *         o lwork (int)
 *           Specifies the length of work array.
 *           = 0:  allocate space internally by system malloc;
 *           > 0:  use user-supplied work array of length lwork in bytes,
 *                 returns error if space runs out.
 *           = -1: the routine guesses the amount of space needed without
 *                 performing the factorization, and returns it in
 *                 superlu_memusage->total_needed; no other side effects.
 *
 * A       (input/output) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol), where
 *         A->nrow = A->ncol. Currently, the type of A can be:
 *         Stype = NC or NR, Dtype = _D, Mtype = GE. In the future,
 *         more general A will be handled.
 *
 *         On entry, If superlumt_options->fact = FACTORED and equed is not 
 *         NOEQUIL, then A must have been equilibrated by the scaling factors
 *         in R and/or C.  On exit, A is not modified 
 *         if superlumt_options->fact = FACTORED or DOFACT, or 
 *         if superlumt_options->fact = EQUILIBRATE and equed = NOEQUIL.
 *
 *         On exit, if superlumt_options->fact = EQUILIBRATE and equed is not
 *         NOEQUIL, A is scaled as follows:
 *         If A->Stype = NC:
 *           equed = ROW:  A := diag(R) * A
 *           equed = COL:  A := A * diag(C)
 *           equed = BOTH: A := diag(R) * A * diag(C).
 *         If A->Stype = NR:
 *           equed = ROW:  transpose(A) := diag(R) * transpose(A)
 *           equed = COL:  transpose(A) := transpose(A) * diag(C)
 *           equed = BOTH: transpose(A) := diag(R) * transpose(A) * diag(C).
 *
 * perm_c  (input/output) int*
 *	   If A->Stype = NC, Column permutation vector of size A->ncol,
 *         which defines the permutation matrix Pc; perm_c[i] = j means
 *         column i of A is in position j in A*Pc.
 *         On exit, perm_c may be overwritten by the product of the input
 *         perm_c and a permutation that postorders the elimination tree
 *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *         is already in postorder.
 *
 *         If A->Stype = NR, column permutation vector of size A->nrow,
 *         which describes permutation of columns of tranpose(A) 
 *         (rows of A) as described above.
 * 
 * perm_r  (input/output) int*
 *         If A->Stype = NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *
 *         If A->Stype = NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 *         If superlumt_options->usepr = NO, perm_r is output argument;
 *         If superlumt_options->usepr = YES, the pivoting routine will try 
 *            to use the input perm_r, unless a certain threshold criterion
 *            is violated. In that case, perm_r is overwritten by a new
 *            permutation determined by partial pivoting or diagonal 
 *            threshold pivoting.
 * 
 * equed   (input/output) equed_t*
 *         Specifies the form of equilibration that was done.
 *         = NOEQUIL: No equilibration.
 *         = ROW:  Row equilibration, i.e., A was premultiplied by diag(R).
 *         = COL:  Column equilibration, i.e., A was postmultiplied by diag(C).
 *         = BOTH: Both row and column equilibration, i.e., A was replaced 
 *                 by diag(R)*A*diag(C).
 *         If superlumt_options->fact = FACTORED, equed is an input argument, 
 *         otherwise it is an output argument.
 *
 * R       (input/output) double*, dimension (A->nrow)
 *         The row scale factors for A or transpose(A).
 *         If equed = ROW or BOTH, A (if A->Stype = NC) or transpose(A)
 *            (if A->Stype = NR) is multiplied on the left by diag(R).
 *         If equed = NOEQUIL or COL, R is not accessed.
 *         If fact = FACTORED, R is an input argument; otherwise, R is output.
 *         If fact = FACTORED and equed = ROW or BOTH, each element of R must
 *            be positive.
 * 
 * C       (input/output) double*, dimension (A->ncol)
 *         The column scale factors for A or transpose(A).
 *         If equed = COL or BOTH, A (if A->Stype = NC) or trnspose(A)
 *            (if A->Stype = NR) is multiplied on the right by diag(C).
 *         If equed = NOEQUIL or ROW, C is not accessed.
 *         If fact = FACTORED, C is an input argument; otherwise, C is output.
 *         If fact = FACTORED and equed = COL or BOTH, each element of C must
 *            be positive.
 *         
 * L       (output) SuperMatrix*
 *	   The factor L from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SCP, Dtype = _D, Mtype = TRLU.
 *
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = NCP, Dtype = _D, Mtype = TRU.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = DN, Dtype = _D, Mtype = GE.
 *         On entry, the right hand side matrix.
 *         On exit,
 *            if equed = NOEQUIL, B is not modified; otherwise
 *            if A->Stype = NC:
 *               if trans = NOTRANS and equed = ROW or BOTH, B is overwritten
 *                  by diag(R)*B;
 *               if trans = TRANS or CONJ and equed = COL of BOTH, B is
 *                  overwritten by diag(C)*B;
 *            if A->Stype = NR:
 *               if trans = NOTRANS and equed = COL or BOTH, B is overwritten
 *                  by diag(C)*B;
 *               if trans = TRANS or CONJ and equed = ROW of BOTH, B is
 *                  overwritten by diag(R)*B.
 *
 * X       (output) SuperMatrix*
 *         X has types: Stype = DN, Dtype = _D, Mtype = GE. 
 *         If info = 0 or info = A->ncol+1, X contains the solution matrix
 *         to the original system of equations. Note that A and B are modified
 *         on exit if equed is not NOEQUIL, and the solution to the 
 *         equilibrated system is inv(diag(C))*X if trans = NOTRANS and
 *         equed = COL or BOTH, or inv(diag(R))*X if trans = TRANS or CONJ
 *         and equed = ROW or BOTH.
 *
 * recip_pivot_growth (output) float*
 *         The reciprocal pivot growth factor computed as
 *             max_j ( max_i(abs(A_ij)) / max_i(abs(U_ij)) ).
 *         If recip_pivot_growth is much less than 1, the stability of the
 *         LU factorization could be poor.
 *
 * rcond   (output) float*
 *         The estimate of the reciprocal condition number of the matrix A
 *         after equilibration (if done). If rcond is less than the machine
 *         precision (in particular, if rcond = 0), the matrix is singular
 *         to working precision. This condition is indicated by a return
 *         code of info > 0.
 *
 * ferr    (output) float*, dimension (B->ncol)   
 *         The estimated forward error bound for each solution vector   
 *         X(j) (the j-th column of the solution matrix X).   
 *         If XTRUE is the true solution corresponding to X(j), FERR(j) 
 *         is an estimated upper bound for the magnitude of the largest 
 *         element in (X(j) - XTRUE) divided by the magnitude of the   
 *         largest element in X(j).  The estimate is as reliable as   
 *         the estimate for RCOND, and is almost always a slight   
 *         overestimate of the true error.
 *
 * berr    (output) float*, dimension (B->ncol)
 *         The componentwise relative backward error of each solution   
 *         vector X(j) (i.e., the smallest relative change in   
 *         any element of A or B that makes X(j) an exact solution).
 *
 * superlu_memusage (output) superlu_memusage_t*
 *         Record the memory usage statistics, consisting of following fields:
 *         - for_lu (float)
 *           The amount of space used in bytes for L\U data structures.
 *         - total_needed (float)
 *           The amount of space needed in bytes to perform factorization.
 *         - expansions (int)
 *           The number of memory expansions during the LU factorization.
 *
 * info    (output) int*
 *         = 0: successful exit   
 *         < 0: if info = -i, the i-th argument had an illegal value   
 *         > 0: if info = i, and i is   
 *              <= A->ncol: U(i,i) is exactly zero. The factorization has   
 *                    been completed, but the factor U is exactly   
 *                    singular, so the solution and error bounds   
 *                    could not be computed.   
 *              = A->ncol+1: U is nonsingular, but RCOND is less than machine
 *                    precision, meaning that the matrix is singular to
 *                    working precision. Nevertheless, the solution and
 *                    error bounds are computed because there are a number
 *                    of situations where the computed solution can be more
 *                    accurate than the value of RCOND would suggest.   
 *              > A->ncol+1: number of bytes allocated when memory allocation
 *                    failure occurred, plus A->ncol.
 *
 */

    NCformat  *Astore;
    DNformat  *Bstore, *Xstore;
    complex    *Bmat, *Xmat;
    int       ldb, ldx, nrhs;
    SuperMatrix *AA; /* A in NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, dofact, notran, rowequ;
    char      norm[1];
    trans_t   trant;
    int       i, j, info1;
    float amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       n, relax, panel_size;
    Gstat_t   Gstat;
    double    t0;      /* temporary time */
    double    *utime;
    flops_t   *ops, flopcnt;
   
    /* External functions */
    extern float clangs(char *, SuperMatrix *);
    extern double slamch_(char *);

    Astore = A->Store;
    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    n      = A->ncol;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;
    superlumt_options->perm_c = perm_c;
    superlumt_options->perm_r = perm_r;

    *info = 0;
    dofact = (superlumt_options->fact == DOFACT);
    equil = (superlumt_options->fact == EQUILIBRATE);
    notran = (superlumt_options->trans == NOTRANS);
    if (dofact || equil) {
	*equed = NOEQUIL;
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = (*equed == ROW) || (*equed == BOTH);
	colequ = (*equed == COL) || (*equed == BOTH);
	smlnum = slamch_("Safe minimum");
	bignum = 1. / smlnum;
    }

    /* ------------------------------------------------------------
       Test the input parameters.
       ------------------------------------------------------------*/
    if ( nprocs <= 0 ) *info = -1;
    else if ( (!dofact && !equil && (superlumt_options->fact != FACTORED))
	      || (!notran && (superlumt_options->trans != TRANS) && 
		 (superlumt_options->trans != CONJ))
	      || (superlumt_options->refact != YES && 
		  superlumt_options->refact != NO)
	      || (superlumt_options->usepr != YES &&
		  superlumt_options->usepr != NO)
	      || superlumt_options->lwork < -1 )
        *info = -2;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_C || A->Mtype != SLU_GE )
	*info = -3;
    else if ((superlumt_options->fact == FACTORED) && 
	     !(rowequ || colequ || (*equed == NOEQUIL))) *info = -6;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -7;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -8;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != SLU_DN || B->Dtype != SLU_C || 
		      B->Mtype != SLU_GE )
		*info = -11;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->ncol != X->ncol || X->Stype != SLU_DN ||
		      X->Dtype != SLU_C || X->Mtype != SLU_GE )
		*info = -12;
	}
    }
    if (*info != 0) {
	i = -(*info);
	xerbla_("pcgssvx", &i);
	return;
    }
    
    
    /* ------------------------------------------------------------
       Allocate storage and initialize statistics variables. 
       ------------------------------------------------------------*/
    panel_size = superlumt_options->panel_size;
    relax = superlumt_options->relax;
    StatAlloc(n, nprocs, panel_size, relax, &Gstat);
    StatInit(n, nprocs, &Gstat);
    utime = Gstat.utime;
    ops = Gstat.ops;
    
    /* ------------------------------------------------------------
       Convert A to NC format when necessary.
       ------------------------------------------------------------*/
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	cCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    trant = TRANS;
	    notran = 0;
	} else {
	    trant = NOTRANS;
	    notran = 1;
	}
    } else { /* A->Stype == NC */
	trant = superlumt_options->trans;
	AA = A;
    }

    /* ------------------------------------------------------------
       Diagonal scaling to equilibrate the matrix.
       ------------------------------------------------------------*/
    if ( equil ) {
	t0 = SuperLU_timer_();
	/* Compute row and column scalings to equilibrate the matrix A. */
	cgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);
	
	if ( info1 == 0 ) {
	    /* Equilibrate matrix A. */
	    claqgs(AA, R, C, rowcnd, colcnd, amax, equed);
	    rowequ = (*equed == ROW) || (*equed == BOTH);
	    colequ = (*equed == COL) || (*equed == BOTH);
	}
	utime[EQUIL] = SuperLU_timer_() - t0;
    }

    /* ------------------------------------------------------------
       Scale the right hand side.
       ------------------------------------------------------------*/
    if ( notran ) {
	if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
                        cs_mult(&Bmat[i+j*ldb], &Bmat[i+j*ldb], R[i]);
		}
	}
    } else if ( colequ ) {
	for (j = 0; j < nrhs; ++j)
	    for (i = 0; i < A->nrow; ++i) {
                    cs_mult(&Bmat[i+j*ldb], &Bmat[i+j*ldb], C[i]);
	    }
    }

    
    /* ------------------------------------------------------------
       Perform the LU factorization.
       ------------------------------------------------------------*/
    if ( dofact || equil ) {
	
        /* Obtain column etree, the column count (colcnt_h) and supernode
	   partition (part_super_h) for the Householder matrix. */
	t0 = SuperLU_timer_();
	sp_colorder(AA, perm_c, superlumt_options, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;

#if ( PRNTlevel >= 2 )    
	printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	       relax, panel_size, sp_ienv(3), sp_ienv(4));
	fflush(stdout);
#endif
	
	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	pcgstrf(superlumt_options, &AC, perm_r, L, U, &Gstat, info);
	utime[FACT] = SuperLU_timer_() - t0;
	
	flopcnt = 0;
	for (i = 0; i < nprocs; ++i) flopcnt += Gstat.procstat[i].fcops;
	ops[FACT] = flopcnt;

	if ( superlumt_options->lwork == -1 ) {
	    superlu_memusage->total_needed = *info - A->ncol;
	    return;
	}
    }

    if ( *info > 0 ) {
	if ( *info <= A->ncol ) {
	    /* Compute the reciprocal pivot growth factor of the leading
	       rank-deficient *info columns of A. */
	    *recip_pivot_growth = cPivotGrowth(*info, AA, perm_c, L, U);
	}
    } else {

	/* ------------------------------------------------------------
	   Compute the reciprocal pivot growth factor *recip_pivot_growth.
	   ------------------------------------------------------------*/
	*recip_pivot_growth = cPivotGrowth(A->ncol, AA, perm_c, L, U);

	/* ------------------------------------------------------------
	   Estimate the reciprocal of the condition number of A.
	   ------------------------------------------------------------*/
	t0 = SuperLU_timer_();
	if ( notran ) {
	    *(unsigned char *)norm = '1';
	} else {
	    *(unsigned char *)norm = 'I';
	}
	anorm = clangs(norm, AA);
	cgscon(norm, L, U, anorm, rcond, info);
	utime[RCOND] = SuperLU_timer_() - t0;
    
	/* ------------------------------------------------------------
	   Compute the solution matrix X.
	   ------------------------------------------------------------*/
	for (j = 0; j < nrhs; j++)    /* Save a copy of the right hand sides */
	    for (i = 0; i < B->nrow; i++)
		Xmat[i + j*ldx] = Bmat[i + j*ldb];
    
	t0 = SuperLU_timer_();
	cgstrs(trant, L, U, perm_r, perm_c, X, &Gstat, info);
	utime[SOLVE] = SuperLU_timer_() - t0;
	ops[SOLVE] = ops[TRISOLVE];
    
	/* ------------------------------------------------------------
	   Use iterative refinement to improve the computed solution and
	   compute error bounds and backward error estimates for it.
	   ------------------------------------------------------------*/
	t0 = SuperLU_timer_();
	cgsrfs(trant, AA, L, U, perm_r, perm_c, *equed,
	       R, C, B, X, ferr, berr, &Gstat, info);
	utime[REFINE] = SuperLU_timer_() - t0;

	/* ------------------------------------------------------------
	   Transform the solution matrix X to a solution of the original
	   system.
	   ------------------------------------------------------------*/
	if ( notran ) {
	    if ( colequ ) {
		for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
                        cs_mult(&Xmat[i+j*ldx], &Xmat[i+j*ldx], C[i]);
		    }
	    }
	} else if ( rowequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < A->nrow; ++i) {
                    cs_mult(&Xmat[i+j*ldx], &Xmat[i+j*ldx], R[i]);
		}
	}
	
	/* Set INFO = A->ncol+1 if the matrix is singular to 
	   working precision.*/
	if ( *rcond < slamch_("E") ) *info = A->ncol + 1;
	
    }

    superlu_cQuerySpace(nprocs, L, U, panel_size, superlu_memusage);

    /* ------------------------------------------------------------
       Deallocate storage after factorization.
       ------------------------------------------------------------*/
    if ( superlumt_options->refact == NO ) {
        SUPERLU_FREE(superlumt_options->etree);
        SUPERLU_FREE(superlumt_options->colcnt_h);
	SUPERLU_FREE(superlumt_options->part_super_h);
    }
    if ( dofact || equil ) {
        Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

    /* ------------------------------------------------------------
       Print timings, then deallocate statistic variables.
       ------------------------------------------------------------*/
    /*PrintStat(&Gstat);*/
    StatFree(&Gstat);
}
void
cgssv(SuperMatrix *A, int *perm_c, int *perm_r, SuperMatrix *L,
      SuperMatrix *U, SuperMatrix *B, int *info )
{
/*
 * Purpose
 * =======
 *
 * CGSSV solves the system of linear equations A*X=B, using the
 * LU factorization from CGSTRF. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = NC):
 *
 *      1.1. Permute the columns of A, forming A*Pc, where Pc
 *           is a permutation matrix. For more details of this step, 
 *           see sp_preorder.c.
 *
 *      1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
 *           by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      1.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   2. If A is stored row-wise (A->Stype = NR), apply the
 *      above algorithm to the transpose of A:
 *
 *      2.1. Permute columns of transpose(A) (rows of A),
 *           forming transpose(A)*Pc, where Pc is a permutation matrix. 
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
 *           determined by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      2.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 * 
 * Arguments
 * =========
 *
 * A       (input) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
 *         of linear equations is A->nrow. Currently, the type of A can be:
 *         Stype = NC or NR; Dtype = _C; Mtype = GE. In the future, more
 *         general A will be handled.
 *
 * perm_c  (input/output) int*
 *         If A->Stype = NC, column permutation vector of size A->ncol
 *         which defines the permutation matrix Pc; perm_c[i] = j means 
 *         column i of A is in position j in A*Pc.
 *         On exit, perm_c may be overwritten by the product of the input
 *         perm_c and a permutation that postorders the elimination tree
 *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *         is already in postorder.
 *
 *         If A->Stype = NR, column permutation vector of size A->nrow
 *         which describes permutation of columns of transpose(A) 
 *         (rows of A) as described above.
 * 
 * perm_r  (output) int*
 *         If A->Stype = NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined 
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *
 *         If A->Stype = NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 * L       (output) SuperMatrix*
 *         The factor L from the factorization 
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SC, Dtype = _C, Mtype = TRLU.
 *         
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization 
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = NC, Dtype = _C, Mtype = TRU.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = DN, Dtype = _C, Mtype = GE.
 *         On entry, the right hand side matrix.
 *         On exit, the solution matrix if info = 0;
 *
 * info    (output) int*
 *	   = 0: successful exit
 *         > 0: if info = i, and i is
 *             <= A->ncol: U(i,i) is exactly zero. The factorization has
 *                been completed, but the factor U is exactly singular,
 *                so the solution could not be computed.
 *             > A->ncol: number of bytes allocated when memory allocation
 *                failure occurred, plus A->ncol.
 *   
 */
    double   t1;	/* Temporary time */
    char     refact[1], trans[1];
    DNformat *Bstore;
    SuperMatrix *AA; /* A in NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int      lwork = 0, *etree, i;
    
    /* Set default values for some parameters */
    float   diag_pivot_thresh = 1.0;
    float   drop_tol = 0;
    int      panel_size;     /* panel size */
    int      relax;          /* no of columns in a relaxed snodes */
    double   *utime;
    extern SuperLUStat_t SuperLUStat;

    /* Test the input parameters ... */
    *info = 0;
    Bstore = B->Store;
    if ( A->nrow != A->ncol || A->nrow < 0 ||
	 (A->Stype != NC && A->Stype != NR) ||
	 A->Dtype != _C || A->Mtype != GE )
	*info = -1;
    else if ( B->ncol < 0 || Bstore->lda < MAX(0, A->nrow) ||
	B->Stype != DN || B->Dtype != _C || B->Mtype != GE )
	*info = -6;
    if ( *info != 0 ) {
	i = -(*info);
	xerbla_("cgssv", &i);
	return;
    }
    
    *refact = 'N';
    *trans = 'N';
    panel_size = sp_ienv(1);
    relax = sp_ienv(2);

    StatInit(panel_size, relax);
    utime = SuperLUStat.utime;
 
    /* Convert A to NC format when necessary. */
    if ( A->Stype == NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	cCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       NC, A->Dtype, A->Mtype);
	*trans = 'T';
    } else if ( A->Stype == NC ) AA = A;

    etree = intMalloc(A->ncol);

    t1 = SuperLU_timer_();
    sp_preorder(refact, AA, perm_c, etree, &AC);
    utime[ETREE] = SuperLU_timer_() - t1;

    /*printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	  relax, panel_size, sp_ienv(3), sp_ienv(4));*/
    t1 = SuperLU_timer_(); 
    /* Compute the LU factorization of A. */
    cgstrf(refact, &AC, diag_pivot_thresh, drop_tol, relax, panel_size,
	   etree, NULL, lwork, perm_r, perm_c, L, U, info);
    utime[FACT] = SuperLU_timer_() - t1;

    t1 = SuperLU_timer_();
    if ( *info == 0 ) {
        /* Solve the system A*X=B, overwriting B with X. */
        cgstrs (trans, L, U, perm_r, perm_c, B, info);
    }
    utime[SOLVE] = SuperLU_timer_() - t1;

    SUPERLU_FREE (etree);
    Destroy_CompCol_Permuted(&AC);
    if ( A->Stype == NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

/*    PrintStat( &SuperLUStat );*/
    StatFree();

}
Ejemplo n.º 8
0
int main(int argc, char *argv[])
{
    void cmatvec_mult(complex alpha, complex x[], complex beta, complex y[]);
    void cpsolve(int n, complex x[], complex y[]);
    extern int cfgmr( int n,
	void (*matvec_mult)(complex, complex [], complex, complex []),
	void (*psolve)(int n, complex [], complex[]),
	complex *rhs, complex *sol, double tol, int restrt, int *itmax,
	FILE *fits);
    extern int cfill_diag(int n, NCformat *Astore);

    char     equed[1] = {'B'};
    yes_no_t equil;
    trans_t  trans;
    SuperMatrix A, L, U;
    SuperMatrix B, X;
    NCformat *Astore;
    NCformat *Ustore;
    SCformat *Lstore;
    complex   *a;
    int      *asub, *xa;
    int      *etree;
    int      *perm_c; /* column permutation vector */
    int      *perm_r; /* row permutations from partial pivoting */
    int      nrhs, ldx, lwork, info, m, n, nnz;
    complex   *rhsb, *rhsx, *xact;
    complex   *work = NULL;
    float   *R, *C;
    float   u, rpg, rcond;
    complex zero = {0.0, 0.0};
    complex one = {1.0, 0.0};
    complex none = {-1.0, 0.0};
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;

    int restrt, iter, maxit, i;
    double resid;
    complex *x, *b;

#ifdef DEBUG
    extern int num_drop_L, num_drop_U;
#endif

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Defaults */
    lwork = 0;
    nrhs  = 1;
    equil = YES;
    u	  = 0.1; /* u=1.0 for complete factorization */
    trans = NOTRANS;

    /* Set the default input options:
	options.Fact = DOFACT;
	options.Equil = YES;
	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 0.1; //different from complete LU
	options.Trans = NOTRANS;
	options.IterRefine = NOREFINE;
	options.SymmetricMode = NO;
	options.PivotGrowth = NO;
	options.ConditionNumber = NO;
	options.PrintStat = YES;
	options.RowPerm = LargeDiag;
	options.ILU_DropTol = 1e-4;
	options.ILU_FillTol = 1e-2;
	options.ILU_FillFactor = 10.0;
	options.ILU_DropRule = DROP_BASIC | DROP_AREA;
	options.ILU_Norm = INF_NORM;
	options.ILU_MILU = SMILU_2;
     */
    ilu_set_default_options(&options);

    /* Modify the defaults. */
    options.PivotGrowth = YES;	  /* Compute reciprocal pivot growth */
    options.ConditionNumber = YES;/* Compute reciprocal condition number */

    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) ABORT("Malloc fails for work[].");
    }

    /* Read matrix A from a file in Harwell-Boeing format.*/
    if (argc < 2)
    {
	printf("Usage:\n%s [OPTION] < [INPUT] > [OUTPUT]\nOPTION:\n"
		"-h -hb:\n\t[INPUT] is a Harwell-Boeing format matrix.\n"
		"-r -rb:\n\t[INPUT] is a Rutherford-Boeing format matrix.\n"
		"-t -triplet:\n\t[INPUT] is a triplet format matrix.\n",
		argv[0]);
	return 0;
    }
    else
    {
	switch (argv[1][1])
	{
	    case 'H':
	    case 'h':
		printf("Input a Harwell-Boeing format matrix:\n");
		creadhb(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    case 'R':
	    case 'r':
		printf("Input a Rutherford-Boeing format matrix:\n");
		creadrb(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    case 'T':
	    case 't':
		printf("Input a triplet format matrix:\n");
		creadtriple(&m, &n, &nnz, &a, &asub, &xa);
		break;
	    default:
		printf("Unrecognized format.\n");
		return 0;
	}
    }

    cCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_C, SLU_GE);
    Astore = A.Store;
    cfill_diag(n, Astore);
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    fflush(stdout);

    if ( !(rhsb = complexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = complexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    cCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_C, SLU_GE);
    cCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_C, SLU_GE);
    xact = complexMalloc(n * nrhs);
    ldx = n;
    cGenXtrue(n, nrhs, xact, ldx);
    cFillRHS(trans, nrhs, xact, ldx, &A, &B);

    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) )
	ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) )
	ABORT("SUPERLU_MALLOC fails for C[].");

    info = 0;
#ifdef DEBUG
    num_drop_L = 0;
    num_drop_U = 0;
#endif

    /* Initialize the statistics variables. */
    StatInit(&stat);

    /* Compute the incomplete factorization and compute the condition number
       and pivot growth using dgsisx. */
    cgsisx(&options, &A, perm_c, perm_r, etree, equed, R, C, &L, &U, work,
	   lwork, &B, &X, &rpg, &rcond, &mem_usage, &stat, &info);

    Lstore = (SCformat *) L.Store;
    Ustore = (NCformat *) U.Store;
    printf("cgsisx(): info %d\n", info);
    if (info > 0 || rcond < 1e-8 || rpg > 1e8)
	printf("WARNING: This preconditioner might be unstable.\n");

    if ( info == 0 || info == n+1 ) {

	if ( options.PivotGrowth == YES )
	    printf("Recip. pivot growth = %e\n", rpg);
	if ( options.ConditionNumber == YES )
	    printf("Recip. condition number = %e\n", rcond);

    } else if ( info > 0 && lwork == -1 ) {
	printf("** Estimated memory: %d bytes\n", info - n);
    }
    printf("n(A) = %d, nnz(A) = %d\n", n, Astore->nnz);
    printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    printf("Fill ratio: nnz(F)/nnz(A) = %.3f\n",
	    ((double)(Lstore->nnz) + (double)(Ustore->nnz) - (double)n)
	    / (double)Astore->nnz);
    printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
    fflush(stdout);

    /* Set the global variables. */
    GLOBAL_A = &A;
    GLOBAL_L = &L;
    GLOBAL_U = &U;
    GLOBAL_STAT = &stat;
    GLOBAL_PERM_C = perm_c;
    GLOBAL_PERM_R = perm_r;

    /* Set the variables used by GMRES. */
    restrt = SUPERLU_MIN(n / 3 + 1, 50);
    maxit = 1000;
    iter = maxit;
    resid = 1e-8;
    if (!(b = complexMalloc(m))) ABORT("Malloc fails for b[].");
    if (!(x = complexMalloc(n))) ABORT("Malloc fails for x[].");
    sp_cgemv("N", one, &A, xact, 1, zero, b, 1);

    if (info <= n + 1)
    {
	int i_1 = 1;
	double maxferr = 0.0, nrmA, nrmB, res, t;
        complex temp;
	extern float scnrm2_(int *, complex [], int *);
	extern void caxpy_(int *, complex *, complex [], int *, complex [], int *);

	/* Call GMRES. */
	/*double *sol = (double*) ((DNformat*) X.Store)->nzval;
	for (i = 0; i < n; i++) x[i] = sol[i];*/
	for (i = 0; i < n; i++) x[i] = zero;

	t = SuperLU_timer_();

	cfgmr(n, cmatvec_mult, cpsolve, b, x, resid, restrt, &iter, stdout);

	t = SuperLU_timer_() - t;

	/* Output the result. */
	nrmA = scnrm2_(&(Astore->nnz), (complex *)((DNformat *)A.Store)->nzval,
		&i_1);
	nrmB = scnrm2_(&m, b, &i_1);
	sp_cgemv("N", none, &A, x, 1, one, b, 1);
	res = scnrm2_(&m, b, &i_1);
	resid = res / nrmB;
	printf("||A||_F = %.1e, ||B||_2 = %.1e, ||B-A*X||_2 = %.1e, "
		"relres = %.1e\n", nrmA, nrmB, res, resid);

	if (iter >= maxit)
	{
	    if (resid >= 1.0) iter = -180;
	    else if (resid > 1e-8) iter = -111;
	}
	printf("iteration: %d\nresidual: %.1e\nGMRES time: %.2f seconds.\n",
		iter, resid, t);

	for (i = 0; i < m; i++)
            c_sub(&temp, &x[i], &xact[i]);
            maxferr = SUPERLU_MAX(maxferr, c_abs1(&temp));
	printf("||X-X_true||_oo = %.1e\n", maxferr);
    }
#ifdef DEBUG
    printf("%d entries in L and %d entries in U dropped.\n",
	    num_drop_L, num_drop_U);
#endif
    fflush(stdout);

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (rhsx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    if ( lwork >= 0 ) {
	Destroy_SuperNode_Matrix(&L);
	Destroy_CompCol_Matrix(&U);
    }
    SUPERLU_FREE(b);
    SUPERLU_FREE(x);

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif

    return 0;
}
Ejemplo n.º 9
0
void
cgsisx(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
       int *etree, char *equed, float *R, float *C,
       SuperMatrix *L, SuperMatrix *U, void *work, int lwork,
       SuperMatrix *B, SuperMatrix *X,
       float *recip_pivot_growth, float *rcond,
       GlobalLU_t *Glu, mem_usage_t *mem_usage, SuperLUStat_t *stat, int *info)
{

    DNformat  *Bstore, *Xstore;
    complex    *Bmat, *Xmat;
    int       ldb, ldx, nrhs, n;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int       colequ, equil, nofact, notran, rowequ, permc_spec, mc64;
    trans_t   trant;
    char      norm[1];
    int       i, j, info1;
    float    amax, anorm, bignum, smlnum, colcnd, rowcnd, rcmax, rcmin;
    int       relax, panel_size;
    float    diag_pivot_thresh;
    double    t0;      /* temporary time */
    double    *utime;

    int *perm = NULL; /* permutation returned from MC64 */

    /* External functions */
    extern float clangs(char *, SuperMatrix *);

    Bstore = B->Store;
    Xstore = X->Store;
    Bmat   = Bstore->nzval;
    Xmat   = Xstore->nzval;
    ldb    = Bstore->lda;
    ldx    = Xstore->lda;
    nrhs   = B->ncol;
    n      = B->nrow;

    *info = 0;
    nofact = (options->Fact != FACTORED);
    equil = (options->Equil == YES);
    notran = (options->Trans == NOTRANS);
    mc64 = (options->RowPerm == LargeDiag);
    if ( nofact ) {
	*(unsigned char *)equed = 'N';
	rowequ = FALSE;
	colequ = FALSE;
    } else {
	rowequ = lsame_(equed, "R") || lsame_(equed, "B");
	colequ = lsame_(equed, "C") || lsame_(equed, "B");
	smlnum = smach("Safe minimum");  /* lamch_("Safe minimum"); */
	bignum = 1. / smlnum;
    }

    /* Test the input parameters */
    if (options->Fact != DOFACT && options->Fact != SamePattern &&
	options->Fact != SamePattern_SameRowPerm &&
	options->Fact != FACTORED &&
	options->Trans != NOTRANS && options->Trans != TRANS && 
	options->Trans != CONJ &&
	options->Equil != NO && options->Equil != YES)
	*info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	      (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	      A->Dtype != SLU_C || A->Mtype != SLU_GE )
	*info = -2;
    else if (options->Fact == FACTORED &&
	     !(rowequ || colequ || lsame_(equed, "N")))
	*info = -6;
    else {
	if (rowequ) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, R[j]);
		rcmax = SUPERLU_MAX(rcmax, R[j]);
	    }
	    if (rcmin <= 0.) *info = -7;
	    else if ( A->nrow > 0)
		rowcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else rowcnd = 1.;
	}
	if (colequ && *info == 0) {
	    rcmin = bignum;
	    rcmax = 0.;
	    for (j = 0; j < A->nrow; ++j) {
		rcmin = SUPERLU_MIN(rcmin, C[j]);
		rcmax = SUPERLU_MAX(rcmax, C[j]);
	    }
	    if (rcmin <= 0.) *info = -8;
	    else if (A->nrow > 0)
		colcnd = SUPERLU_MAX(rcmin,smlnum) / SUPERLU_MIN(rcmax,bignum);
	    else colcnd = 1.;
	}
	if (*info == 0) {
	    if ( lwork < -1 ) *info = -12;
	    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      B->Stype != SLU_DN || B->Dtype != SLU_C || 
		      B->Mtype != SLU_GE )
		*info = -13;
	    else if ( X->ncol < 0 || Xstore->lda < SUPERLU_MAX(0, A->nrow) ||
		      (B->ncol != 0 && B->ncol != X->ncol) ||
		      X->Stype != SLU_DN ||
		      X->Dtype != SLU_C || X->Mtype != SLU_GE )
		*info = -14;
	}
    }
    if (*info != 0) {
	i = -(*info);
	input_error("cgsisx", &i);
	return;
    }

    /* Initialization for factor parameters */
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    diag_pivot_thresh = options->DiagPivotThresh;

    utime = stat->utime;

    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	cCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz,
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	if ( notran ) { /* Reverse the transpose argument. */
	    trant = TRANS;
	    notran = 0;
	} else {
	    trant = NOTRANS;
	    notran = 1;
	}
    } else { /* A->Stype == SLU_NC */
	trant = options->Trans;
	AA = A;
    }

    if ( nofact ) {
	register int i, j;
	NCformat *Astore = AA->Store;
	int nnz = Astore->nnz;
	int *colptr = Astore->colptr;
	int *rowind = Astore->rowind;
	complex *nzval = (complex *)Astore->nzval;

	if ( mc64 ) {
	    t0 = SuperLU_timer_();
	    if ((perm = intMalloc(n)) == NULL)
		ABORT("SUPERLU_MALLOC fails for perm[]");

	    info1 = cldperm(5, n, nnz, colptr, rowind, nzval, perm, R, C);

	    if (info1 != 0) { /* MC64 fails, call cgsequ() later */
		mc64 = 0;
		SUPERLU_FREE(perm);
		perm = NULL;
	    } else {
	        if ( equil ) {
	            rowequ = colequ = 1;
		    for (i = 0; i < n; i++) {
		        R[i] = exp(R[i]);
		        C[i] = exp(C[i]);
		    }
		    /* scale the matrix */
		    for (j = 0; j < n; j++) {
		        for (i = colptr[j]; i < colptr[j + 1]; i++) {
                            cs_mult(&nzval[i], &nzval[i], R[rowind[i]] * C[j]);
		        }
		    }
	            *equed = 'B';
                }

                /* permute the matrix */
		for (j = 0; j < n; j++) {
		    for (i = colptr[j]; i < colptr[j + 1]; i++) {
			/*nzval[i] *= R[rowind[i]] * C[j];*/
			rowind[i] = perm[rowind[i]];
		    }
		}
	    }
	    utime[EQUIL] = SuperLU_timer_() - t0;
	}

	if ( !mc64 & equil ) { /* Only perform equilibration, no row perm */
	    t0 = SuperLU_timer_();
	    /* Compute row and column scalings to equilibrate the matrix A. */
	    cgsequ(AA, R, C, &rowcnd, &colcnd, &amax, &info1);

	    if ( info1 == 0 ) {
		/* Equilibrate matrix A. */
		claqgs(AA, R, C, rowcnd, colcnd, amax, equed);
		rowequ = lsame_(equed, "R") || lsame_(equed, "B");
		colequ = lsame_(equed, "C") || lsame_(equed, "B");
	    }
	    utime[EQUIL] = SuperLU_timer_() - t0;
	}
    }


    if ( nofact ) {
	
	t0 = SuperLU_timer_();
	/*
	 * Gnet column permutation vector perm_c[], according to permc_spec:
	 *   permc_spec = NATURAL:  natural ordering 
	 *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
	 *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
	 *   permc_spec = COLAMD:   approximate minimum degree column ordering
	 *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
	 */
	permc_spec = options->ColPerm;
	if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
	    get_perm_c(permc_spec, AA, perm_c);
	utime[COLPERM] = SuperLU_timer_() - t0;

	t0 = SuperLU_timer_();
	sp_preorder(options, AA, perm_c, etree, &AC);
	utime[ETREE] = SuperLU_timer_() - t0;

	/* Compute the LU factorization of A*Pc. */
	t0 = SuperLU_timer_();
	cgsitrf(options, &AC, relax, panel_size, etree, work, lwork,
                perm_c, perm_r, L, U, Glu, stat, info);
	utime[FACT] = SuperLU_timer_() - t0;

	if ( lwork == -1 ) {
	    mem_usage->total_needed = *info - A->ncol;
	    return;
	}

	if ( mc64 ) { /* Fold MC64's perm[] into perm_r[]. */
	    NCformat *Astore = AA->Store;
	    int nnz = Astore->nnz, *rowind = Astore->rowind;
	    int *perm_tmp, *iperm;
	    if ((perm_tmp = intMalloc(2*n)) == NULL)
		ABORT("SUPERLU_MALLOC fails for perm_tmp[]");
	    iperm = perm_tmp + n;
	    for (i = 0; i < n; ++i) perm_tmp[i] = perm_r[perm[i]];
	    for (i = 0; i < n; ++i) {
		perm_r[i] = perm_tmp[i];
		iperm[perm[i]] = i;
	    }

	    /* Restore A's original row indices. */
	    for (i = 0; i < nnz; ++i) rowind[i] = iperm[rowind[i]];

	    SUPERLU_FREE(perm); /* MC64 permutation */
	    SUPERLU_FREE(perm_tmp);
	}
    }

    if ( options->PivotGrowth ) {
	if ( *info > 0 ) return;

	/* Compute the reciprocal pivot growth factor *recip_pivot_growth. */
	*recip_pivot_growth = cPivotGrowth(A->ncol, AA, perm_c, L, U);
    }

    if ( options->ConditionNumber ) {
	/* Estimate the reciprocal of the condition number of A. */
	t0 = SuperLU_timer_();
	if ( notran ) {
	    *(unsigned char *)norm = '1';
	} else {
	    *(unsigned char *)norm = 'I';
	}
	anorm = clangs(norm, AA);
	cgscon(norm, L, U, anorm, rcond, stat, &info1);
	utime[RCOND] = SuperLU_timer_() - t0;
    }

    if ( nrhs > 0 ) { /* Solve the system */
        complex *rhs_work;

	/* Scale and permute the right-hand side if equilibration
           and permutation from MC64 were performed. */
	if ( notran ) {
	    if ( rowequ ) {
		for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < n; ++i)
                        cs_mult(&Bmat[i+j*ldb], &Bmat[i+j*ldb], R[i]);
	    }
	} else if ( colequ ) {
	    for (j = 0; j < nrhs; ++j)
		for (i = 0; i < n; ++i) {
                    cs_mult(&Bmat[i+j*ldb], &Bmat[i+j*ldb], C[i]);
		}
	}

	/* Compute the solution matrix X. */
	for (j = 0; j < nrhs; j++)  /* Save a copy of the right hand sides */
	    for (i = 0; i < B->nrow; i++)
		Xmat[i + j*ldx] = Bmat[i + j*ldb];

	t0 = SuperLU_timer_();
	cgstrs (trant, L, U, perm_c, perm_r, X, stat, &info1);
	utime[SOLVE] = SuperLU_timer_() - t0;

	/* Transform the solution matrix X to a solution of the original
	   system. */
	if ( notran ) {
	    if ( colequ ) {
		for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < n; ++i) {
                        cs_mult(&Xmat[i+j*ldx], &Xmat[i+j*ldx], C[i]);
                    }
	    }
	} else { /* transposed system */
	    if ( rowequ ) {
	        for (j = 0; j < nrhs; ++j)
		    for (i = 0; i < A->nrow; ++i) {
                        cs_mult(&Xmat[i+j*ldx], &Xmat[i+j*ldx], R[i]);
                    }
	    }
	}

    } /* end if nrhs > 0 */

    if ( options->ConditionNumber ) {
	/* The matrix is singular to working precision. */
	/* if ( *rcond < slamch_("E") && *info == 0) *info = A->ncol + 1; */
	if ( *rcond < smach("E") && *info == 0) *info = A->ncol + 1;
    }

    if ( nofact ) {
	ilu_cQuerySpace(L, U, mem_usage);
	Destroy_CompCol_Permuted(&AC);
    }
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

}
Ejemplo n.º 10
0
main(int argc, char *argv[])
{
    char           fact[1], equed[1], trans[1], refact[1];
    SuperMatrix  A, L, U;
    SuperMatrix  B, X;
    NCformat       *Astore;
    NCformat       *Ustore;
    SCformat       *Lstore;
    complex         *a;
    int            *asub, *xa;
    int            *perm_r; /* row permutations from partial pivoting */
    int            *perm_c; /* column permutation vector */
    int            *etree;
    void           *work;
    factor_param_t iparam;
    int            info, lwork, nrhs, ldx, panel_size, relax;
    int            m, n, nnz, permc_spec;
    complex         *rhsb, *rhsx, *xact;
    float         *R, *C;
    float         *ferr, *berr;
    float         u, rpg, rcond;
    int            i, firstfact;
    mem_usage_t    mem_usage;
    void    parse_command_line();

    /* Defaults */
    lwork = 0;
    *fact      = 'E';
    *equed     = 'N';
    *trans     = 'N';
    *refact    = 'N';
    nrhs       = 1;
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    u          = 1.0;
    parse_command_line(argc, argv, &lwork, &panel_size, &relax, &u,
		       fact, trans, refact);
    firstfact = lsame_(fact, "F") || lsame_(refact, "Y");

    iparam.panel_size        = panel_size;
    iparam.relax             = relax;
    iparam.diag_pivot_thresh = u;
    iparam.drop_tol          = -1;
    
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    ABORT("CLINSOLX: cannot allocate work[]");
	}
    }

    
    creadhb(&m, &n, &nnz, &a, &asub, &xa);
    
    cCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_C, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    if ( !(rhsb = complexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsb[].");
    if ( !(rhsx = complexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhsx[].");
    cCreate_Dense_Matrix(&B, m, nrhs, rhsb, m, SLU_DN, SLU_C, SLU_GE);
    cCreate_Dense_Matrix(&X, m, nrhs, rhsx, m, SLU_DN, SLU_C, SLU_GE);
    xact = complexMalloc(n * nrhs);
    ldx = n;
    cGenXtrue(n, nrhs, xact, ldx);
    cFillRHS(trans, nrhs, xact, ldx, &A, &B);
    
    if ( !(etree = intMalloc(n)) ) ABORT("Malloc fails for etree[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");
    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");

    /*
     * Get column permutation vector perm_c[], according to permc_spec:
     *   permc_spec = 0: natural ordering 
     *   permc_spec = 1: minimum degree on structure of A'*A
     *   permc_spec = 2: minimum degree on structure of A'+A
     *   permc_spec = 3: approximate minimum degree for unsymmetric matrices
     */    	
    permc_spec = 1;
    get_perm_c(permc_spec, &A, perm_c);

    if ( !(R = (float *) SUPERLU_MALLOC(A.nrow * sizeof(float))) ) 
        ABORT("SUPERLU_MALLOC fails for R[].");
    if ( !(C = (float *) SUPERLU_MALLOC(A.ncol * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for C[].");
    if ( !(ferr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) )
        ABORT("SUPERLU_MALLOC fails for ferr[].");
    if ( !(berr = (float *) SUPERLU_MALLOC(nrhs * sizeof(float))) ) 
        ABORT("SUPERLU_MALLOC fails for berr[].");

    
    /* Solve the system and compute the condition number
       and error bounds using dgssvx.      */
    
    cgssvx(fact, trans, refact, &A, &iparam, perm_c, perm_r, etree,
	   equed, R, C, &L, &U, work, lwork, &B, &X, &rpg, &rcond,
	   ferr, berr, &mem_usage, &info);

    printf("cgssvx(): info %d\n", info);

    if ( info == 0 || info == n+1 ) {

	printf("Recip. pivot growth = %e\n", rpg);
	printf("Recip. condition number = %e\n", rcond);
	printf("%8s%16s%16s\n", "rhs", "FERR", "BERR");
	for (i = 0; i < nrhs; ++i) {
	    printf("%8d%16e%16e\n", i+1, ferr[i], berr[i]);
	}
	       
        Lstore = (SCformat *) L.Store;
        Ustore = (NCformat *) U.Store;
	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,
	       mem_usage.expansions);
	     
	fflush(stdout);

    } else if ( info > 0 && lwork == -1 ) {
        printf("** Estimated memory: %d bytes\n", info - n);
    }

    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (rhsx);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
    if ( lwork >= 0 ) {
        Destroy_SuperNode_Matrix(&L);
        Destroy_CompCol_Matrix(&U);
    }
}
Ejemplo n.º 11
0
int main(int argc, char *argv[])
{
    SuperMatrix A;
    NCformat *Astore;
    complex   *a;
    int      *asub, *xa;
    int      *perm_c; /* column permutation vector */
    int      *perm_r; /* row permutations from partial pivoting */
    SuperMatrix L;      /* factor L */
    SCformat *Lstore;
    SuperMatrix U;      /* factor U */
    NCformat *Ustore;
    SuperMatrix B;
    int      nrhs, ldx, info, m, n, nnz;
    complex   *xact, *rhs;
    mem_usage_t   mem_usage;
    superlu_options_t options;
    SuperLUStat_t stat;
    FILE      *fp = stdin;
    
#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Enter main()");
#endif

    /* Set the default input options:
	options.Fact = DOFACT;
        options.Equil = YES;
    	options.ColPerm = COLAMD;
	options.DiagPivotThresh = 1.0;
    	options.Trans = NOTRANS;
    	options.IterRefine = NOREFINE;
    	options.SymmetricMode = NO;
    	options.PivotGrowth = NO;
    	options.ConditionNumber = NO;
    	options.PrintStat = YES;
     */
    set_default_options(&options);

    /* Read the matrix in Harwell-Boeing format. */
    creadhb(fp, &m, &n, &nnz, &a, &asub, &xa);

    cCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_C, SLU_GE);
    Astore = A.Store;
    printf("Dimension %dx%d; # nonzeros %d\n", A.nrow, A.ncol, Astore->nnz);
    
    nrhs   = 1;
    if ( !(rhs = complexMalloc(m * nrhs)) ) ABORT("Malloc fails for rhs[].");
    cCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_C, SLU_GE);
    xact = complexMalloc(n * nrhs);
    ldx = n;
    cGenXtrue(n, nrhs, xact, ldx);
    cFillRHS(options.Trans, nrhs, xact, ldx, &A, &B);

    if ( !(perm_c = intMalloc(n)) ) ABORT("Malloc fails for perm_c[].");
    if ( !(perm_r = intMalloc(m)) ) ABORT("Malloc fails for perm_r[].");

    /* Initialize the statistics variables. */
    StatInit(&stat);
    
    cgssv(&options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info);
    
    if ( info == 0 ) {

	/* This is how you could access the solution matrix. */
        complex *sol = (complex*) ((DNformat*) B.Store)->nzval; 

	 /* Compute the infinity norm of the error. */
	cinf_norm_error(nrhs, &B, xact);

	Lstore = (SCformat *) L.Store;
	Ustore = (NCformat *) U.Store;
    	printf("No of nonzeros in factor L = %d\n", Lstore->nnz);
    	printf("No of nonzeros in factor U = %d\n", Ustore->nnz);
    	printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz - n);
    	printf("FILL ratio = %.1f\n", (float)(Lstore->nnz + Ustore->nnz - n)/nnz);
	
	cQuerySpace(&L, &U, &mem_usage);
	printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
	       mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	
    } else {
	printf("cgssv() error returns INFO= %d\n", info);
	if ( info <= n ) { /* factorization completes */
	    cQuerySpace(&L, &U, &mem_usage);
	    printf("L\\U MB %.3f\ttotal MB needed %.3f\n",
		   mem_usage.for_lu/1e6, mem_usage.total_needed/1e6);
	}
    }

    if ( options.PrintStat ) StatPrint(&stat);
    StatFree(&stat);

    SUPERLU_FREE (rhs);
    SUPERLU_FREE (xact);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    Destroy_CompCol_Matrix(&A);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperNode_Matrix(&L);
    Destroy_CompCol_Matrix(&U);

#if ( DEBUGlevel>=1 )
    CHECK_MALLOC("Exit main()");
#endif
}
Ejemplo n.º 12
0
Archivo: cgssv.c Proyecto: 317070/scipy
void
cgssv(superlu_options_t *options, SuperMatrix *A, int *perm_c, int *perm_r,
      SuperMatrix *L, SuperMatrix *U, SuperMatrix *B,
      SuperLUStat_t *stat, int *info )
{

    DNformat *Bstore;
    SuperMatrix *AA;/* A in SLU_NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int      lwork = 0, *etree, i;
    
    /* Set default values for some parameters */
    int      panel_size;     /* panel size */
    int      relax;          /* no of columns in a relaxed snodes */
    int      permc_spec;
    trans_t  trans = NOTRANS;
    double   *utime;
    double   t;	/* Temporary time */

    /* Test the input parameters ... */
    *info = 0;
    Bstore = B->Store;
    if ( options->Fact != DOFACT ) *info = -1;
    else if ( A->nrow != A->ncol || A->nrow < 0 ||
	 (A->Stype != SLU_NC && A->Stype != SLU_NR) ||
	 A->Dtype != SLU_C || A->Mtype != SLU_GE )
	*info = -2;
    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
	B->Stype != SLU_DN || B->Dtype != SLU_C || B->Mtype != SLU_GE )
	*info = -7;
    if ( *info != 0 ) {
	i = -(*info);
	xerbla_("cgssv", &i);
	return;
    }

    utime = stat->utime;

    /* Convert A to SLU_NC format when necessary. */
    if ( A->Stype == SLU_NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	cCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       SLU_NC, A->Dtype, A->Mtype);
	trans = TRANS;
    } else {
        if ( A->Stype == SLU_NC ) AA = A;
    }

    t = SuperLU_timer_();
    /*
     * Get column permutation vector perm_c[], according to permc_spec:
     *   permc_spec = NATURAL:  natural ordering 
     *   permc_spec = MMD_AT_PLUS_A: minimum degree on structure of A'+A
     *   permc_spec = MMD_ATA:  minimum degree on structure of A'*A
     *   permc_spec = COLAMD:   approximate minimum degree column ordering
     *   permc_spec = MY_PERMC: the ordering already supplied in perm_c[]
     */
    permc_spec = options->ColPerm;
    if ( permc_spec != MY_PERMC && options->Fact == DOFACT )
      get_perm_c(permc_spec, AA, perm_c);
    utime[COLPERM] = SuperLU_timer_() - t;

    etree = intMalloc(A->ncol);

    t = SuperLU_timer_();
    sp_preorder(options, AA, perm_c, etree, &AC);
    utime[ETREE] = SuperLU_timer_() - t;

    panel_size = sp_ienv(1);
    relax = sp_ienv(2);

    /*printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	  relax, panel_size, sp_ienv(3), sp_ienv(4));*/
    t = SuperLU_timer_(); 
    /* Compute the LU factorization of A. */
    cgstrf(options, &AC, relax, panel_size, etree,
            NULL, lwork, perm_c, perm_r, L, U, stat, info);
    utime[FACT] = SuperLU_timer_() - t;

    t = SuperLU_timer_();
    if ( *info == 0 ) {
        /* Solve the system A*X=B, overwriting B with X. */
        cgstrs (trans, L, U, perm_c, perm_r, B, stat, info);
    }
    utime[SOLVE] = SuperLU_timer_() - t;

    SUPERLU_FREE (etree);
    Destroy_CompCol_Permuted(&AC);
    if ( A->Stype == SLU_NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

}
Ejemplo n.º 13
0
main(int argc, char *argv[])
{
/* 
 * Purpose
 * =======
 *
 * CDRIVE is the main test program for the COMPLEX linear 
 * equation driver routines CGSSV and CGSSVX.
 * 
 * The program is invoked by a shell script file -- ctest.csh.
 * The output from the tests are written into a file -- ctest.out.
 *
 * =====================================================================
 */
    complex         *a, *a_save;
    int            *asub, *asub_save;
    int            *xa, *xa_save;
    SuperMatrix  A, B, X, L, U;
    SuperMatrix  ASAV, AC;
    GlobalLU_t   Glu; /* Not needed on return. */
    mem_usage_t    mem_usage;
    int            *perm_r; /* row permutation from partial pivoting */
    int            *perm_c, *pc_save; /* column permutation */
    int            *etree;
    complex  zero = {0.0, 0.0};
    float         *R, *C;
    float         *ferr, *berr;
    float         *rwork;
    complex	   *wwork;
    void           *work;
    int            info, lwork, nrhs, panel_size, relax;
    int            m, n, nnz;
    complex         *xact;
    complex         *rhsb, *solx, *bsav;
    int            ldb, ldx;
    float         rpg, rcond;
    int            i, j, k1;
    float         rowcnd, colcnd, amax;
    int            maxsuper, rowblk, colblk;
    int            prefact, nofact, equil, iequed;
    int            nt, nrun, nfail, nerrs, imat, fimat, nimat;
    int            nfact, ifact, itran;
    int            kl, ku, mode, lda;
    int            zerot, izero, ioff;
    double         u;
    float         anorm, cndnum;
    complex         *Afull;
    float         result[NTESTS];
    superlu_options_t options;
    fact_t         fact;
    trans_t        trans;
    SuperLUStat_t  stat;
    static char    matrix_type[8];
    static char    equed[1], path[4], sym[1], dist[1];
    FILE           *fp;

    /* Fixed set of parameters */
    int            iseed[]  = {1988, 1989, 1990, 1991};
    static char    equeds[]  = {'N', 'R', 'C', 'B'};
    static fact_t  facts[] = {FACTORED, DOFACT, SamePattern,
			      SamePattern_SameRowPerm};
    static trans_t transs[]  = {NOTRANS, TRANS, CONJ};

    /* Some function prototypes */ 
    extern int cgst01(int, int, SuperMatrix *, SuperMatrix *, 
		      SuperMatrix *, int *, int *, float *);
    extern int cgst02(trans_t, int, int, int, SuperMatrix *, complex *,
                      int, complex *, int, float *resid);
    extern int cgst04(int, int, complex *, int, 
                      complex *, int, float rcond, float *resid);
    extern int cgst07(trans_t, int, int, SuperMatrix *, complex *, int,
                         complex *, int, complex *, int, 
                         float *, float *, float *);
    extern int clatb4_(char *, int *, int *, int *, char *, int *, int *, 
	               float *, int *, float *, char *);
    extern int clatms_(int *, int *, char *, int *, char *, float *d,
                       int *, float *, float *, int *, int *,
                       char *, complex *, int *, complex *, int *);
    extern int sp_cconvert(int, int, complex *, int, int, int,
	                   complex *a, int *, int *, int *);


    /* Executable statements */

    strcpy(path, "CGE");
    nrun  = 0;
    nfail = 0;
    nerrs = 0;

    /* Defaults */
    lwork      = 0;
    n          = 1;
    nrhs       = 1;
    panel_size = sp_ienv(1);
    relax      = sp_ienv(2);
    u          = 1.0;
    strcpy(matrix_type, "LA");
    parse_command_line(argc, argv, matrix_type, &n,
		       &panel_size, &relax, &nrhs, &maxsuper,
		       &rowblk, &colblk, &lwork, &u, &fp);
    if ( lwork > 0 ) {
	work = SUPERLU_MALLOC(lwork);
	if ( !work ) {
	    fprintf(stderr, "expert: cannot allocate %d bytes\n", lwork);
	    exit (-1);
	}
    }

    /* Set the default input options. */
    set_default_options(&options);
    options.DiagPivotThresh = u;
    options.PrintStat = NO;
    options.PivotGrowth = YES;
    options.ConditionNumber = YES;
    options.IterRefine = SLU_SINGLE;
    
    if ( strcmp(matrix_type, "LA") == 0 ) {
	/* Test LAPACK matrix suite. */
	m = n;
	lda = SUPERLU_MAX(n, 1);
	nnz = n * n;        /* upper bound */
	fimat = 1;
	nimat = NTYPES;
	Afull = complexCalloc(lda * n);
	callocateA(n, nnz, &a, &asub, &xa);
    } else {
	/* Read a sparse matrix */
	fimat = nimat = 0;
	creadhb(fp, &m, &n, &nnz, &a, &asub, &xa);
    }

    callocateA(n, nnz, &a_save, &asub_save, &xa_save);
    rhsb = complexMalloc(m * nrhs);
    bsav = complexMalloc(m * nrhs);
    solx = complexMalloc(n * nrhs);
    ldb  = m;
    ldx  = n;
    cCreate_Dense_Matrix(&B, m, nrhs, rhsb, ldb, SLU_DN, SLU_C, SLU_GE);
    cCreate_Dense_Matrix(&X, n, nrhs, solx, ldx, SLU_DN, SLU_C, SLU_GE);
    xact = complexMalloc(n * nrhs);
    etree   = intMalloc(n);
    perm_r  = intMalloc(n);
    perm_c  = intMalloc(n);
    pc_save = intMalloc(n);
    R       = (float *) SUPERLU_MALLOC(m*sizeof(float));
    C       = (float *) SUPERLU_MALLOC(n*sizeof(float));
    ferr    = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
    berr    = (float *) SUPERLU_MALLOC(nrhs*sizeof(float));
    j = SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs);    
    rwork   = (float *) SUPERLU_MALLOC(j*sizeof(float));
    for (i = 0; i < j; ++i) rwork[i] = 0.;
    if ( !R ) ABORT("SUPERLU_MALLOC fails for R");
    if ( !C ) ABORT("SUPERLU_MALLOC fails for C");
    if ( !ferr ) ABORT("SUPERLU_MALLOC fails for ferr");
    if ( !berr ) ABORT("SUPERLU_MALLOC fails for berr");
    if ( !rwork ) ABORT("SUPERLU_MALLOC fails for rwork");
    wwork   = complexCalloc( SUPERLU_MAX(m,n) * SUPERLU_MAX(4,nrhs) );

    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i] = i;
    options.ColPerm = MY_PERMC;

    for (imat = fimat; imat <= nimat; ++imat) { /* All matrix types */
	
	if ( imat ) {

	    /* Skip types 5, 6, or 7 if the matrix size is too small. */
	    zerot = (imat >= 5 && imat <= 7);
	    if ( zerot && n < imat-4 )
		continue;
	    
	    /* Set up parameters with CLATB4 and generate a test matrix
	       with CLATMS.  */
	    clatb4_(path, &imat, &n, &n, sym, &kl, &ku, &anorm, &mode,
		    &cndnum, dist);

	    clatms_(&n, &n, dist, iseed, sym, &rwork[0], &mode, &cndnum,
		    &anorm, &kl, &ku, "No packing", Afull, &lda,
		    &wwork[0], &info);

	    if ( info ) {
		printf(FMT3, "CLATMS", info, izero, n, nrhs, imat, nfail);
		continue;
	    }

	    /* For types 5-7, zero one or more columns of the matrix
	       to test that INFO is returned correctly.   */
	    if ( zerot ) {
		if ( imat == 5 ) izero = 1;
		else if ( imat == 6 ) izero = n;
		else izero = n / 2 + 1;
		ioff = (izero - 1) * lda;
		if ( imat < 7 ) {
		    for (i = 0; i < n; ++i) Afull[ioff + i] = zero;
		} else {
		    for (j = 0; j < n - izero + 1; ++j)
			for (i = 0; i < n; ++i)
			    Afull[ioff + i + j*lda] = zero;
		}
	    } else {
		izero = 0;
	    }

	    /* Convert to sparse representation. */
	    sp_cconvert(n, n, Afull, lda, kl, ku, a, asub, xa, &nnz);

	} else {
	    izero = 0;
	    zerot = 0;
	}
	
	cCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_C, SLU_GE);

	/* Save a copy of matrix A in ASAV */
	cCreate_CompCol_Matrix(&ASAV, m, n, nnz, a_save, asub_save, xa_save,
			      SLU_NC, SLU_C, SLU_GE);
	cCopy_CompCol_Matrix(&A, &ASAV);
	
	/* Form exact solution. */
	cGenXtrue(n, nrhs, xact, ldx);
	
	StatInit(&stat);

	for (iequed = 0; iequed < 4; ++iequed) {
	    *equed = equeds[iequed];
	    if (iequed == 0) nfact = 4;
	    else nfact = 1; /* Only test factored, pre-equilibrated matrix */

	    for (ifact = 0; ifact < nfact; ++ifact) {
		fact = facts[ifact];
		options.Fact = fact;

		for (equil = 0; equil < 2; ++equil) {
		    options.Equil = equil;
		    prefact   = ( options.Fact == FACTORED ||
				  options.Fact == SamePattern_SameRowPerm );
                                /* Need a first factor */
		    nofact    = (options.Fact != FACTORED);  /* Not factored */

		    /* Restore the matrix A. */
		    cCopy_CompCol_Matrix(&ASAV, &A);
			
		    if ( zerot ) {
                        if ( prefact ) continue;
		    } else if ( options.Fact == FACTORED ) {
                        if ( equil || iequed ) {
			    /* Compute row and column scale factors to
			       equilibrate matrix A.    */
			    cgsequ(&A, R, C, &rowcnd, &colcnd, &amax, &info);

			    /* Force equilibration. */
			    if ( !info && n > 0 ) {
				if ( lsame_(equed, "R") ) {
				    rowcnd = 0.;
				    colcnd = 1.;
				} else if ( lsame_(equed, "C") ) {
				    rowcnd = 1.;
				    colcnd = 0.;
				} else if ( lsame_(equed, "B") ) {
				    rowcnd = 0.;
				    colcnd = 0.;
				}
			    }
			
			    /* Equilibrate the matrix. */
			    claqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
		    }
		    
		    if ( prefact ) { /* Need a factor for the first time */
			
		        /* Save Fact option. */
		        fact = options.Fact;
			options.Fact = DOFACT;

			/* Preorder the matrix, obtain the column etree. */
			sp_preorder(&options, &A, perm_c, etree, &AC);

			/* Factor the matrix AC. */
			cgstrf(&options, &AC, relax, panel_size,
                               etree, work, lwork, perm_c, perm_r, &L, &U,
                               &Glu, &stat, &info);

			if ( info ) { 
                            printf("** First factor: info %d, equed %c\n",
				   info, *equed);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %d bytes\n",
                                        info - n);
                                exit(0);
                            }
                        }
	
                        Destroy_CompCol_Permuted(&AC);
			
		        /* Restore Fact option. */
			options.Fact = fact;
		    } /* if .. first time factor */
		    
		    for (itran = 0; itran < NTRAN; ++itran) {
			trans = transs[itran];
                        options.Trans = trans;

			/* Restore the matrix A. */
			cCopy_CompCol_Matrix(&ASAV, &A);
			
 			/* Set the right hand side. */
			cFillRHS(trans, nrhs, xact, ldx, &A, &B);
			cCopy_Dense_Matrix(m, nrhs, rhsb, ldb, bsav, ldb);

			/*----------------
			 * Test cgssv
			 *----------------*/
			if ( options.Fact == DOFACT && itran == 0) {
                            /* Not yet factored, and untransposed */
	
			    cCopy_Dense_Matrix(m, nrhs, rhsb, ldb, solx, ldx);
			    cgssv(&options, &A, perm_c, perm_r, &L, &U, &X,
                                  &stat, &info);
			    
			    if ( info && info != izero ) {
                                printf(FMT3, "cgssv",
				       info, izero, n, nrhs, imat, nfail);
			    } else {
                                /* Reconstruct matrix from factors and
	                           compute residual. */
                                cgst01(m, n, &A, &L, &U, perm_c, perm_r,
                                         &result[0]);
				nt = 1;
				if ( izero == 0 ) {
				    /* Compute residual of the computed
				       solution. */
				    cCopy_Dense_Matrix(m, nrhs, rhsb, ldb,
						       wwork, ldb);
				    cgst02(trans, m, n, nrhs, &A, solx,
                                              ldx, wwork,ldb, &result[1]);
				    nt = 2;
				}
				
				/* Print information about the tests that
				   did not pass the threshold.      */
				for (i = 0; i < nt; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT1, "cgssv", n, i,
					       result[i]);
					++nfail;
				    }
				}
				nrun += nt;
			    } /* else .. info == 0 */

			    /* Restore perm_c. */
			    for (i = 0; i < n; ++i) perm_c[i] = pc_save[i];

		            if (lwork == 0) {
			        Destroy_SuperNode_Matrix(&L);
			        Destroy_CompCol_Matrix(&U);
			    }
			} /* if .. end of testing cgssv */
    
			/*----------------
			 * Test cgssvx
			 *----------------*/
    
			/* Equilibrate the matrix if fact = FACTORED and
			   equed = 'R', 'C', or 'B'.   */
			if ( options.Fact == FACTORED &&
			     (equil || iequed) && n > 0 ) {
			    claqgs(&A, R, C, rowcnd, colcnd, amax, equed);
			}
			
			/* Solve the system and compute the condition number
			   and error bounds using cgssvx.      */
			cgssvx(&options, &A, perm_c, perm_r, etree,
                               equed, R, C, &L, &U, work, lwork, &B, &X, &rpg,
                               &rcond, ferr, berr, &Glu,
			       &mem_usage, &stat, &info);

			if ( info && info != izero ) {
			    printf(FMT3, "cgssvx",
				   info, izero, n, nrhs, imat, nfail);
                            if ( lwork == -1 ) {
                                printf("** Estimated memory: %.0f bytes\n",
                                        mem_usage.total_needed);
                                exit(0);
                            }
			} else {
			    if ( !prefact ) {
			    	/* Reconstruct matrix from factors and
	 			   compute residual. */
                                cgst01(m, n, &A, &L, &U, perm_c, perm_r,
                                         &result[0]);
				k1 = 0;
			    } else {
			   	k1 = 1;
			    }

			    if ( !info ) {
				/* Compute residual of the computed solution.*/
				cCopy_Dense_Matrix(m, nrhs, bsav, ldb,
						  wwork, ldb);
				cgst02(trans, m, n, nrhs, &ASAV, solx, ldx,
					  wwork, ldb, &result[1]);

				/* Check solution from generated exact
				   solution. */
				cgst04(n, nrhs, solx, ldx, xact, ldx, rcond,
					  &result[2]);

				/* Check the error bounds from iterative
				   refinement. */
				cgst07(trans, n, nrhs, &ASAV, bsav, ldb,
					  solx, ldx, xact, ldx, ferr, berr,
					  &result[3]);

				/* Print information about the tests that did
				   not pass the threshold.    */
				for (i = k1; i < NTESTS; ++i) {
				    if ( result[i] >= THRESH ) {
					printf(FMT2, "cgssvx",
					       options.Fact, trans, *equed,
					       n, imat, i, result[i]);
					++nfail;
				    }
				}
				nrun += NTESTS;
			    } /* if .. info == 0 */
			} /* else .. end of testing cgssvx */

		    } /* for itran ... */

		    if ( lwork == 0 ) {
			Destroy_SuperNode_Matrix(&L);
			Destroy_CompCol_Matrix(&U);
		    }

		} /* for equil ... */
	    } /* for ifact ... */
	} /* for iequed ... */
#if 0    
    if ( !info ) {
	PrintPerf(&L, &U, &mem_usage, rpg, rcond, ferr, berr, equed);
    }
#endif
        Destroy_SuperMatrix_Store(&A);
        Destroy_SuperMatrix_Store(&ASAV);
        StatFree(&stat);

    } /* for imat ... */

    /* Print a summary of the results. */
    PrintSumm("CGE", nfail, nrun, nerrs);

    if ( strcmp(matrix_type, "LA") == 0 ) SUPERLU_FREE (Afull);
    SUPERLU_FREE (rhsb);
    SUPERLU_FREE (bsav);
    SUPERLU_FREE (solx);    
    SUPERLU_FREE (xact);
    SUPERLU_FREE (etree);
    SUPERLU_FREE (perm_r);
    SUPERLU_FREE (perm_c);
    SUPERLU_FREE (pc_save);
    SUPERLU_FREE (R);
    SUPERLU_FREE (C);
    SUPERLU_FREE (ferr);
    SUPERLU_FREE (berr);
    SUPERLU_FREE (rwork);
    SUPERLU_FREE (wwork);
    Destroy_SuperMatrix_Store(&B);
    Destroy_SuperMatrix_Store(&X);
#if 0
    Destroy_CompCol_Matrix(&A);
    Destroy_CompCol_Matrix(&ASAV);
#else
    SUPERLU_FREE(a); SUPERLU_FREE(asub); SUPERLU_FREE(xa);
    SUPERLU_FREE(a_save); SUPERLU_FREE(asub_save); SUPERLU_FREE(xa_save);
#endif
    if ( lwork > 0 ) {
	SUPERLU_FREE (work);
	Destroy_SuperMatrix_Store(&L);
	Destroy_SuperMatrix_Store(&U);
    }

    return 0;
}