Ejemplo n.º 1
0
static char* test_cbuffer_transfer_data(void) {
  CircularBuffer* src = cbuffer_new();
  CircularBuffer* dst = cbuffer_new();

  for (int i = 0; i < 200; ++i) {
    cbuffer_push_back(src, i);
  }
  mu_assert_eq("Src buffer size", cbuffer_size(src), 200);
  mu_assert_eq("Dst buffer size", cbuffer_size(dst), 0);

  // transfer data from src -> dst
  cbuffer_transfer_data(src, dst);

  mu_assert_eq("Src buffer size post transfer",
      cbuffer_size(src), 0);
  mu_assert_eq("Dst buffer size post transfer",
      cbuffer_size(dst), 200);

  // check content
  for (int i = 0; i < 200; ++i) {
    mu_assert_eq("Dst content",
        cbuffer_pop_front(dst), i);
  }

  cbuffer_free(src);
  cbuffer_free(dst);

  return 0;
}
Ejemplo n.º 2
0
int main() {
  xil_printf("Master SPI oRSC echo test\n");
  // initialize stdout.
  init_platform();

  tx_buffer = cbuffer_new();
  rx_buffer = cbuffer_new();

  vme_stream = vmestream_initialize_mem(
          rx_buffer, tx_buffer, 
          (uint32_t*)ORSC_2_PC_SIZE,
          (uint32_t*)PC_2_ORSC_SIZE,
          (uint32_t*)ORSC_2_PC_DATA,
          (uint32_t*)PC_2_ORSC_DATA,
          VMERAMSIZE);

  //printf("Master SPI oRSC echo test\n");

  while (1) {
      // transfer data
      vmestream_transfer_data(vme_stream);
      // now echo the data
      while (cbuffer_size(rx_buffer) && cbuffer_freespace(tx_buffer)) {
          cbuffer_push_back(tx_buffer, cbuffer_pop_front(rx_buffer));
      }
  }

  return 0;
}
Ejemplo n.º 3
0
// Test decoding + re-encoding a transaction stream
static char* test_ipbus_decode_encode_transaction(void) {
  CircularBuffer* packet = cbuffer_new();
  // a read request.
  uint32_t header = ipbus_transaction_header(
      2, // protocol
      0xACE, // transaction id
      5, // number of words to read
      IPBUS_READ,
      IPBUS_INFO_REQUEST);
  uint32_t payload = 0xBEEFFACE;

  cbuffer_push_back_net(packet, header);
  cbuffer_push_back_net(packet, payload);

  ipbus_transaction_t decoded = ipbus_decode_transaction(packet, 0);

  CircularBuffer* encoded = cbuffer_new();
  ipbus_encode_transaction(encoded, &decoded, 0);

  mu_assert_eq("encode-decode length", cbuffer_size(encoded), 2);

  mu_assert("encode-decode", memcmp(encoded->data, packet->data, 8)==0);

  return 0;
}
Ejemplo n.º 4
0
static char* test_ipbus_decode_encode_write_transaction(void) {
  CircularBuffer* packet = cbuffer_new();
  // a read request.
  uint32_t header = ipbus_transaction_header(
      2, // protocol
      0xACE, // transaction id
      5, // number of words to write
      IPBUS_WRITE,
      IPBUS_INFO_REQUEST);
  uint32_t baseaddr = 0xBEEFFACE;

  cbuffer_push_back_net(packet, header);
  cbuffer_push_back_net(packet, baseaddr);
  for (size_t i = 0; i < 5; ++i) {
    cbuffer_push_back_net(packet, i);
  }

  ipbus_transaction_t decoded = ipbus_decode_transaction(packet, 0);

  CircularBuffer* encoded = cbuffer_new();
  ipbus_encode_transaction(encoded, &decoded, 0);

  mu_assert_eq("encode-decode length", cbuffer_size(encoded), 1 + 1 + 1 * 5);

  mu_assert("encode-decode", memcmp(encoded->data, packet->data, 7*4)==0);

  return 0;
}
Ejemplo n.º 5
0
static char * test_forwardingtransaction_handle_one_transaction(void) {
  // make two pipes to simulate the forwarding serial port.
  int txpipefd[2];
  pipe(txpipefd);

  int rxpipefd[2];
  pipe(rxpipefd);

  // make txpipe nonblocking, so we can check if it's empty.
  fcntl(txpipefd[0], F_SETFL, fcntl(txpipefd[0], F_GETFL) | O_NONBLOCK);

  initialize_fowarding_fds(txpipefd[1], rxpipefd[0]);

  CircularBuffer* input = cbuffer_new();
  cbuffer_push_back_net(input, ipbus_transaction_header(2, 0xCAB, 1, IPBUS_RMW, IPBUS_INFO_REQUEST));
  cbuffer_push_back_net(input, 0xBEEFCAFE);
  cbuffer_push_back_net(input, 0xDEAFBEEF);
  cbuffer_push_back_net(input, 0xFACEBEEF);
  // RMW expects 1+1 words back
  cbuffer_push_back_net(input, ipbus_transaction_header(2, 0xBAD, 5, IPBUS_READ, IPBUS_INFO_REQUEST));
  cbuffer_push_back_net(input, 0xBEEFCAFE);
  // READ expects 1+5 words back
  
  // write some junk onto the receiving pipe so we can check
  // we are reading the correct amount of return bytes.
  uint32_t junkwords[8] = {
    0xDEADBEEF, 0xBEEFCAFE, 
    0xFACEBEEF, 0x12345678, 0xDEADFACE, 0xBADEBEEF, 0x87654321, 0xABABABAB};
  write(rxpipefd[1], junkwords, 8 * sizeof(uint32_t));

  CircularBuffer* input_copy = cbuffer_copy(input);

  CircularBuffer* output = cbuffer_new();
  int words_consumed = handle_transaction_stream(input, 0, output);
  // should eat both transactions
  mu_assert_eq("ate everything i should", words_consumed, 6);

  // Make sure it passed it along the TX pipe
  ByteBuffer outputbuf = bytebuffer_ctor(NULL, 10 * sizeof(uint32_t));
  // should pass along only 6 words.
  read(txpipefd[0], outputbuf.buf, 10 * sizeof(uint32_t));
  mu_assert("forwarded trans", memcmp(outputbuf.buf, input_copy->data, 6*sizeof(uint32_t)) == 0);
  // there should no more data on the pipe
  mu_assert_eq("output pipe empty", read(txpipefd[0], outputbuf.buf, sizeof(uint32_t)), -1);

  // we expect header word + 1 payload word to be read from a RMW, 
  // 1 header + 5 data words from the READ
  mu_assert_eq("output size", cbuffer_size(output), 8);
  mu_assert_eq("output content header",  cbuffer_value_at(output, 0), 0xDEADBEEF);
  mu_assert_eq("output content payload", cbuffer_value_at(output, 1), 0xBEEFCAFE);
  mu_assert_eq("output content header 2", cbuffer_value_at(output, 2), 0xFACEBEEF);
  mu_assert_eq("output content payload 2", cbuffer_value_at(output, 3), 0x12345678);

  return 0;
}
Ejemplo n.º 6
0
static char* test_ram2()
{
    // --------------
    // Setup
    // --------------
    CircularBuffer* pc_input    = cbuffer_new();
    CircularBuffer* pc_output   = cbuffer_new();
    CircularBuffer* orsc_input  = cbuffer_new();
    CircularBuffer* orsc_output = cbuffer_new();

    VMEStream *pc_stream = vmestream_initialize_heap(pc_input, pc_output, 2);

    VMEStream *orsc_stream = malloc(sizeof(VMEStream));
    orsc_stream->input              = orsc_input;
    orsc_stream->output             = orsc_output;
    orsc_stream->local_send_size    = pc_stream->remote_send_size;
    orsc_stream->local_recv_size    = pc_stream->remote_recv_size;
    orsc_stream->remote_send_size   = pc_stream->local_send_size;
    orsc_stream->remote_recv_size   = pc_stream->local_recv_size;
    orsc_stream->recv_data          = pc_stream->send_data;
    orsc_stream->send_data          = pc_stream->recv_data;
    orsc_stream->MAXRAM             = pc_stream->MAXRAM;


    cbuffer_push_back(pc_input, 0xDEADBEEF);
    cbuffer_push_back(orsc_input, 0xBEEFCAFE);

    vmestream_transfer_data(pc_stream);

    vmestream_transfer_data(orsc_stream);
    vmestream_transfer_data(pc_stream);

    mu_assert("Error: pc_input not empty", cbuffer_size(pc_input) == 0);
    mu_assert("Error: orsc_input not empty", cbuffer_size(orsc_input) == 0);

    mu_assert("Error: orsc_output.pop != DEADBEEF", cbuffer_pop_front(orsc_output));
    mu_assert("Error: pc_output.pop != BEEFCAFE", cbuffer_pop_front(pc_output));

    mu_assert("Error: pc_output not empty", cbuffer_size(pc_output) == 0);
    mu_assert("Error: orsc_output not empty", cbuffer_size(orsc_output) == 0);

    // --------------
    // Tear-Down
    // --------------
    vmestream_destroy_heap(pc_stream);
    free(orsc_stream);
    cbuffer_free(pc_input);
    cbuffer_free(orsc_input);
    cbuffer_free(pc_output);
    cbuffer_free(orsc_output);

    return 0;
}
Ejemplo n.º 7
0
/**
 * Push less data to the buffers than we have RAM available
 */
static char *test_ram2()
{
    // local application buffers
    CircularBuffer *tx1 = cbuffer_new();
    CircularBuffer *rx1 = cbuffer_new();
    CircularBuffer *tx2 = cbuffer_new();
    CircularBuffer *rx2 = cbuffer_new();

    VMEStream *test1 = vmestream_initialize(tx1, rx1, 2);
    VMEStream *test2 = malloc(sizeof(VMEStream));
    test2->input = tx2;
    test2->output = rx2;

    test2->rx_size = test1->tx_size;
    test2->tx_size = test1->rx_size;
    test2->rx_data = test1->tx_data;
    test2->tx_data = test1->rx_data;
    test2->MAXRAM  = test1->MAXRAM;

    // place only one word on the buffers
    cbuffer_push_back(tx1, 0xDEADBEEF);
    // put some output data on host #2
    cbuffer_push_back(tx2, 0xBEEFCAFE);

    vmestream_transfer_data(test1);
    vmestream_transfer_data(test2);
    vmestream_transfer_data(test1);

    mu_assert("Error: tx1 not empty", 0 == cbuffer_size(tx1));
    mu_assert("Error: tx2 not empty", 0 == cbuffer_size(tx2));

    mu_assert("Error: 0xDEADBEEF != rx2.pop", 0xDEADBEEF == cbuffer_pop_front(rx2));
    mu_assert("Error: 0xBEEFCAFE != rx1.pop", 0xBEEFCAFE == cbuffer_pop_front(rx1));

    mu_assert("Error: rx2 not empty", 0 == cbuffer_size(rx2));
    mu_assert("Error: rx1 not empty", 0 == cbuffer_size(rx1));


    // free memory
    vmestream_destroy(test1);
    free(test2);
    cbuffer_free(tx1);
    cbuffer_free(rx1);
    cbuffer_free(tx2);
    cbuffer_free(rx2);

    return 0;
}
Ejemplo n.º 8
0
static char* test_cbuffer_pop(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  cbuffer_append(mybuf, test_data, 11);

  Buffer* bucky = cbuffer_pop(mybuf, 5);
  mu_assert_eq("size", cbuffer_size(mybuf), 6);
  mu_assert_eq("content", memcmp(bucky->data, test_data, 
        5*sizeof(uint32_t)), 0);

  Buffer* badger = cbuffer_pop(mybuf, 6);
  mu_assert_eq("size2", cbuffer_size(mybuf), 0);
  mu_assert_eq("content2", 
      memcmp(badger->data, test_data + 5, 6), 0);

  // if we pop an empty collection, we get nothing.
  Buffer* empty = cbuffer_pop(mybuf, 10);
  mu_assert_eq("size3", empty->size, 0);

  cbuffer_free(mybuf);
  buffer_free(bucky);
  buffer_free(badger);
  buffer_free(empty);

  return 0;
}
Ejemplo n.º 9
0
// Test decoding a transaction stream header-only
static char* test_ipbus_decode_transaction_header(void) {
  CircularBuffer* packet = cbuffer_new();
  // a read request.
  uint32_t header = ipbus_transaction_header(
      2, // protocol
      0xFEE, // transaction id
      5, // number of words to read
      IPBUS_READ,
      IPBUS_INFO_REQUEST);

  cbuffer_push_back_net(packet, header);

  ipbus_transaction_t decoded = ipbus_decode_transaction_header(packet, 0);

  mu_assert("trans decode err, id", decoded.id == 0xFEE);
  mu_assert("trans decode err, words", decoded.words == 5);
  mu_assert("trans decode err, info", decoded.info == IPBUS_INFO_REQUEST);
  mu_assert("trans decode err, type", decoded.type == IPBUS_READ);
  mu_assert("trans decode err, datasize", decoded.data.size == 1); // defined by IPBUS_READ
  // do nothing w/ the data
  mu_assert("trans decode err, data", decoded.data.words == NULL);

  mu_assert("trans size", ipbus_transaction_endocded_size(&decoded) == 2);
  return 0;
}
Ejemplo n.º 10
0
static char* test_cbuffer_append_wraps(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  cbuffer_append(mybuf, test_data, 11);

  mu_assert_eq("pos", mybuf->pos, IO_BUFFER_SIZE - 5);
  mu_assert_eq("size", cbuffer_size(mybuf), 11);
  mu_assert_eq("tail content", memcmp(
        &(mybuf->data[mybuf->pos]),
        test_data, 
        5 * sizeof(uint32_t)), 0);

  // make sure we aren't trashing the memory after the buffer.
  //mu_assert_eq("tail content sanity", mybuf->data[IO_BUFFER_SIZE-1], 4);

  mu_assert_eq("head content", memcmp(
        mybuf->data, 
        test_data + 5, 
        6 * sizeof(uint32_t)), 0);

  uint32_t test_data2[3] = {11, 12, 13};
  cbuffer_append(mybuf, test_data2, 3);
  mu_assert_eq("size", cbuffer_size(mybuf), 14);
  mu_assert_eq("content", memcmp(&(mybuf->data[6]), test_data2, 3), 0);

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 11
0
static char* test_ipbus_stream_state() {
  int swapbytes = 2; 
  CircularBuffer* test_buffer = cbuffer_new();
  cbuffer_push_back_net(test_buffer, ipbus_packet_header(0xBEEF, 2));
  cbuffer_push_back_net(test_buffer, 0xBADD); // garbage, shouldn't matter

  mu_assert_eq("hdr in stream", ipbus_stream_state(test_buffer, &swapbytes), IPBUS_ISTREAM_PACKET);
  mu_assert_eq("hdr endianness detect", swapbytes, 0);

  cbuffer_deletefront(test_buffer, 2);

  // A read request
  cbuffer_push_back_net(test_buffer, ipbus_transaction_header(2, 0xEEF, 2, IPBUS_READ, IPBUS_INFO_REQUEST));
  cbuffer_push_back_net(test_buffer, 0xDEADBEEF);
  // We expect one extra word (the base addr)
  mu_assert_eq("read length", ipbus_transaction_payload_size(2, IPBUS_READ, IPBUS_INFO_REQUEST), 1);
  mu_assert_eq("trns in stream", ipbus_stream_state(test_buffer, &swapbytes), IPBUS_ISTREAM_FULL_TRANS);

  cbuffer_deletefront(test_buffer, 2);

  // A write request of 8 words, that isn't fully buffered
  cbuffer_push_back_net(test_buffer, ipbus_transaction_header(2, 0xEEF, 8, IPBUS_WRITE, IPBUS_INFO_REQUEST));

  // a base addr + 8 data words
  mu_assert_eq("write length", ipbus_transaction_payload_size(8, IPBUS_WRITE, IPBUS_INFO_REQUEST), 9);
  mu_assert_eq("trns partial", ipbus_stream_state(test_buffer, &swapbytes), IPBUS_ISTREAM_PARTIAL_TRANS);

  cbuffer_deletefront(test_buffer, 1);

  mu_assert_eq("empty", ipbus_stream_state(test_buffer, &swapbytes), IPBUS_ISTREAM_EMPTY);

  return 0;
}
Ejemplo n.º 12
0
static char* test_spi_stream_construct_empty_tx_packet(void) {
  
  CircularBuffer* mybuf = cbuffer_new();

  uint32_t my_pkt_expected[10] = {0xBEEF, 0, 
    0xDEADBEEF, 
    0xDEADBEEF, 
    0xDEADBEEF, 
    0xDEADBEEF, 
    0xDEADBEEF, 
    0xDEADBEEF, 
    0xDEADBEEF, 
    -1};
  add_checksum(my_pkt_expected, 10);
  int checksum_err = -1;
  spi_stream_verify_packet(my_pkt_expected, 10, &checksum_err);
  mu_assert_eq("no cksum err", checksum_err, 0);

  uint32_t my_pkt[10];
  spi_stream_construct_tx_packet(0xBEEF, my_pkt, 10, mybuf);

//  for (int i = 0; i < 10; ++i) {
//    printf("%i %lx %lx\n", i, my_pkt_expected[i], my_pkt[i]);
//  }

  mu_assert_eq("packet", memcmp(my_pkt_expected, my_pkt, 10 * sizeof(uint32_t)), 0);
  spi_stream_verify_packet(my_pkt, 10, &checksum_err);
  mu_assert_eq("no cksum actual", checksum_err, 0);
  return 0;
}
Ejemplo n.º 13
0
static char* test_spi_stream_read_rx_packet(void) {
  
  CircularBuffer* mybuf = cbuffer_new();

  uint32_t my_pkt_expected[10] = {0xBEEF, 5, 1, 2, 3, 4, 5, 0xDEADBEEF, 0xDEADBEEF, -1};
  uint32_t my_pkt_expected_2[10] = {0xBEEF, 7, 1, 2, 3, 4, 5, 1, 2, -1};
  add_checksum(my_pkt_expected, 10);
  add_checksum(my_pkt_expected_2, 10);

  uint32_t my_data[7] = {1, 2, 3, 4, 5, 1, 2};

  // read with non-full buffer
  int ret = spi_stream_read_rx_packet(my_pkt_expected, mybuf);
  mu_assert_eq("okay1", ret, 1);
  mu_assert_eq("data1", memcmp(my_data, mybuf->data, 5 * sizeof(uint32_t)), 0);
  mybuf->tail = 0;

  // read with full buffer
  ret = spi_stream_read_rx_packet(my_pkt_expected_2, mybuf);
  mu_assert_eq("okay2", ret, 1);
  mu_assert_eq("data2", memcmp(my_data, mybuf->data, 7 * sizeof(uint32_t)), 0);

  // overflowing local buffer
  mybuf->tail = IO_BUFFER_SIZE - 5;
  mu_assert_eq("its too small", cbuffer_freespace(mybuf), 4);
  ret = spi_stream_read_rx_packet(my_pkt_expected_2, mybuf);
  mu_assert_eq("overflow err", ret, 0);
  mu_assert_eq("unmodified", cbuffer_freespace(mybuf), 4);

  return 0;
}
Ejemplo n.º 14
0
// Test decoding a transaction stream
static char* test_ipbus_decode_transaction(void) {
  CircularBuffer* packet = cbuffer_new();
  // a read request.
  uint32_t header = ipbus_transaction_header(
      2, // protocol
      0xACE, // transaction id
      5, // number of words to read
      IPBUS_READ,
      IPBUS_INFO_REQUEST);
  uint32_t payload = 0xBEEFFACE;

  cbuffer_push_back_net(packet, header);
  cbuffer_push_back_net(packet, payload);

  ipbus_transaction_t decoded = ipbus_decode_transaction(packet, 0);

  //HEX_PRINT(packet[0]);
  //HEX_PRINT(packet[1]);
  //HEX_PRINT(decoded.id);

  //mu_assert("trans decode err, prot", decoded.protocol == 2);
  mu_assert("trans decode err, id", decoded.id == 0xACE);
  mu_assert("trans decode err, words", decoded.words == 5);
  mu_assert("trans decode err, info", decoded.info == IPBUS_INFO_REQUEST);
  mu_assert("trans decode err, type", decoded.type == IPBUS_READ);
  mu_assert("trans decode err, datasize", decoded.data.size == 1); // defined by IPBUS_READ
  mu_assert("trans decode err, data", decoded.data.words[0] == 0xBEEFFACE);

  mu_assert("trans size", ipbus_transaction_endocded_size(&decoded) == 2);
  return 0;
}
Ejemplo n.º 15
0
static char* test_cbuffer_new(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mu_assert_eq("size", cbuffer_size(mybuf), 0);
  mu_assert_eq("pos", mybuf->pos, 0);
  mu_assert_eq("freespace", cbuffer_freespace(mybuf), IO_BUFFER_SIZE - 1);
  mu_assert_eq("init is zero", (mybuf->data[0]), 0);

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 16
0
static char* test_cbuffer_freespace(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mybuf->tail = IO_BUFFER_SIZE - 5;
  mu_assert_eq("freespace", cbuffer_freespace(mybuf), 4);
  mu_assert_eq("size", cbuffer_size(mybuf), IO_BUFFER_SIZE - 5);
  for (int i = 1; i < 5; ++i) {
    cbuffer_push_back(mybuf, i);
    mu_assert_eq("freespace", cbuffer_freespace(mybuf), 4 - i);
  }

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 17
0
static char* test_cbuffer_contiguous_data_size(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  mu_assert_eq("size0", cbuffer_contiguous_data_size(mybuf), 0);
  mybuf->tail = 10;
  mu_assert_eq("size5", cbuffer_contiguous_data_size(mybuf), 5);
  mybuf->pos = 3;
  mu_assert_eq("size7", cbuffer_contiguous_data_size(mybuf), 7);

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 18
0
static char* test_cbuffer_size(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  mu_assert_eq("size0", cbuffer_size(mybuf), 0);
  for (int i = 0; i < 15; ++i) {
    cbuffer_push_back(mybuf, i);
    mu_assert_eq("size", cbuffer_size(mybuf), i + 1);
  }

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 19
0
static char* test_cbuffer_value_at_wraps(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  cbuffer_append(mybuf, test_data, 11);
  for (int i = 0; i < 11; ++i) {
    mu_assert_eq("read at", cbuffer_value_at(mybuf, i), test_data[i]);
  }

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 20
0
static char* test_cbuffer_fd_full(void) {
  // make sure we can stop reading if our read buffer is full
  // make pipes 
  int pipefd[2];
  pipe(pipefd);

  // make txpipe nonblocking, so we can check if it's empty.
  fcntl(pipefd[0], F_SETFL, fcntl(pipefd[0], F_GETFL) | O_NONBLOCK);

  int in = pipefd[1];
  int out = pipefd[0];

  CircularBuffer* frombuf = cbuffer_new();
  for (int i = 0; i < 200; ++i) {
    cbuffer_push_back(frombuf, i);
  }
  mu_assert_eq("from size", cbuffer_size(frombuf), 200);

  CircularBuffer* tobuf = cbuffer_new();
  tobuf->pos = IO_BUFFER_SIZE - 100;
  tobuf->tail = IO_BUFFER_SIZE - 100;

  ssize_t written = cbuffer_write_fd(frombuf, in, 200);
  mu_assert_eq("wrote to pipe", written, 200);
  mu_assert_eq("from size after", cbuffer_size(frombuf), 0);
  tobuf->tail += IO_BUFFER_SIZE - 100;
  mu_assert_eq("to freespace", cbuffer_freespace(tobuf), 99);
  ssize_t read = cbuffer_read_fd(tobuf, out, 200);
  ssize_t exp = 99;
  mu_assert_eq("read from pipe", (int)read, (int)exp);

  cbuffer_free(frombuf);
  cbuffer_free(tobuf);

  return 0;
}
Ejemplo n.º 21
0
static char* test_cbuffer_fd_features(void) {
  // make pipes 
  int pipefd[2];
  pipe(pipefd);

  // make txpipe nonblocking, so we can check if it's empty.
  fcntl(pipefd[0], F_SETFL, fcntl(pipefd[0], F_GETFL) | O_NONBLOCK);

  int in = pipefd[1];
  int out = pipefd[0];

  CircularBuffer* frombuf = cbuffer_new();
  for (int i = 0; i < 200; ++i) {
    cbuffer_push_back(frombuf, i);
  }
  mu_assert_eq("from size", cbuffer_size(frombuf), 200);

  CircularBuffer* tobuf = cbuffer_new();
  tobuf->pos = IO_BUFFER_SIZE - 100;
  tobuf->tail = IO_BUFFER_SIZE - 100;

  ssize_t written = cbuffer_write_fd(frombuf, in, 200);
  mu_assert_eq("wrote to pipe", written, 200);
  mu_assert_eq("from size after", cbuffer_size(frombuf), 0);
  ssize_t read = cbuffer_read_fd(tobuf, out, 200);
  mu_assert_eq("read from pipe", read, 200);

  for (int i = 0; i < 200; ++i) {
    mu_assert_eq("fd closure value", cbuffer_value_at(tobuf, i), i);
  }

  cbuffer_free(frombuf);
  cbuffer_free(tobuf);

  return 0;
}
Ejemplo n.º 22
0
static char* test_cbuffer_net_features(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  cbuffer_push_back_net(mybuf, 0xDEADBEEF);
  cbuffer_push_back_net(mybuf, 0xBEEFFACE);
  cbuffer_push_back_net(mybuf, 0xDEADFACE);

  mu_assert_eq("item0", cbuffer_value_at_net(mybuf, 0), 0xDEADBEEF);
  mu_assert_eq("item1", cbuffer_value_at_net(mybuf, 1), 0xBEEFFACE);
  mu_assert_eq("item2", cbuffer_value_at_net(mybuf, 2), 0xDEADFACE);

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 23
0
static char* test_cbuffer_read_wraps(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  cbuffer_append(mybuf, test_data, 11);
  Buffer* readout = buffer_new(NULL, 11);
  cbuffer_read(mybuf, readout->data, 11);
  mu_assert_eq("size", readout->size, 11);
  mu_assert_eq("content", memcmp(readout->data, test_data, 11 * sizeof(uint32_t)), 0);

  cbuffer_free(mybuf);
  buffer_free(readout);

  return 0;
}
Ejemplo n.º 24
0
static char* test_cbuffer_push_back(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 2;
  mybuf->tail = IO_BUFFER_SIZE - 2;
  cbuffer_push_back(mybuf, 0xDEADBEEF);
  cbuffer_push_back(mybuf, 0xBEEFFACE);
  cbuffer_push_back(mybuf, 0xDEADFACE);

  mu_assert_eq("size", cbuffer_size(mybuf), 3);
  mu_assert_eq("pos", mybuf->pos, IO_BUFFER_SIZE-2);

  mu_assert_eq("item0", mybuf->data[mybuf->pos], 0xDEADBEEF);
  mu_assert_eq("item1", mybuf->data[mybuf->pos + 1], 0xBEEFFACE);
  mu_assert_eq("item2", mybuf->data[0], 0xDEADFACE);

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 25
0
static char* test_cbuffer_read(void) {
  CircularBuffer* mybuf = cbuffer_new();
  Buffer* readout = buffer_new(NULL, 11);
  uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  cbuffer_append(mybuf, test_data, 11);
  cbuffer_read(mybuf, readout->data, 11);
  mu_assert_eq("size", readout->size, 11);
  mu_assert_eq("content", memcmp(readout->data, test_data, 11 * sizeof(uint32_t)), 0);
  // if we ask for too much it cbuffer gives us what it has.
  Buffer* readout2 = buffer_new(NULL, 30);
  int actually_read = cbuffer_read(mybuf, readout2->data, 30);
  mu_assert_eq("size2", actually_read, 11);
  mu_assert_eq("content2", memcmp(readout2->data, test_data, 11 * sizeof(uint32_t)), 0);

  cbuffer_free(mybuf);
  buffer_free(readout);
  buffer_free(readout2);

  return 0;
}
Ejemplo n.º 26
0
static char* test_cbuffer_copy(void) {
  CircularBuffer* mybuf = cbuffer_new();
  mu_assert_eq("size", cbuffer_size(mybuf), 0);
  mu_assert_eq("pos", mybuf->pos, 0);
  mu_assert_eq("tail", mybuf->tail, 0);
  for (uint32_t i = 0; i < IO_BUFFER_SIZE - 2; ++i) {
    cbuffer_push_back(mybuf, i);
  }
  mu_assert_eq("tail", mybuf->tail, IO_BUFFER_SIZE - 2);
  CircularBuffer* copy = cbuffer_copy(mybuf);
  mu_assert_eq("content", memcmp(mybuf->data, copy->data, 
        IO_BUFFER_SIZE * sizeof(uint32_t)), 0);
  mu_assert_eq("pos copy", mybuf->pos, copy->pos);
  mu_assert_eq("tail copy", mybuf->tail, copy->tail);

  cbuffer_free(mybuf);
  cbuffer_free(copy);

  return 0;
}
Ejemplo n.º 27
0
static char* test_cbuffer_append(void) {
  CircularBuffer* mybuf = cbuffer_new();
  uint32_t test_data[5] = {0, 1, 2, 3, 4};
  cbuffer_append(mybuf, test_data, 5);
  mu_assert_eq("pos", mybuf->pos, 0);
  mu_assert_eq("size", cbuffer_size(mybuf), 5);
  mu_assert_eq("content", memcmp(mybuf->data, test_data, 5 * sizeof(uint32_t)), 0);

  uint32_t test_data2[3] = {6, 7, 8};
  cbuffer_append(mybuf, test_data2, 3);
  mu_assert_eq("pos", mybuf->pos, 0);
  mu_assert_eq("size", cbuffer_size(mybuf), 8);
  mu_assert_eq("content2", memcmp(mybuf->data, test_data, 5 * sizeof(uint32_t)), 0);

  mu_assert_eq("content3", memcmp(&(mybuf->data[5]), 
        test_data2, 3 * sizeof(uint32_t)), 0);

  cbuffer_free(mybuf);

  return 0;
}
Ejemplo n.º 28
0
static char* test_cbuffer_delete_front_wraps(void) {
  CircularBuffer* mybuf = cbuffer_new();
  uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  cbuffer_append(mybuf, test_data, 11);
  mu_assert_eq("content", memcmp(&(mybuf->data[mybuf->pos]), 
        test_data, 5 * sizeof(uint32_t)), 0);
  int deleted = cbuffer_deletefront(mybuf, 5);
  mu_assert_eq("deleted", deleted, 5);
  mu_assert_eq("pos", mybuf->pos, 0);
  mu_assert_eq("size", cbuffer_size(mybuf), 6);

  mu_assert_eq("item0", mybuf->data[mybuf->pos], 5);
  mu_assert_eq("item1", mybuf->data[mybuf->pos+1], 6);
  mu_assert_eq("item2", mybuf->data[mybuf->pos+2], 7);

  mu_assert_eq("remaining content in cbuffer", memcmp(
        &(mybuf->data[0]), 
        test_data + 5, 6 * sizeof(uint32_t)), 0);

  Buffer* readout = buffer_new(NULL, 6);
  cbuffer_read(mybuf, readout->data, 6);
  mu_assert_eq("remaining content", memcmp(
        readout->data, 
        (test_data + 5), 
        6 * sizeof(uint32_t)), 0);

  // if we ask to delete everything, just return what was actually deleted.
  int deleted_just_to_end = cbuffer_deletefront(mybuf, 100);
  mu_assert_eq("deleted just to end", deleted_just_to_end, 6);
  mu_assert_eq("pos2", mybuf->pos, 6);
  mu_assert_eq("size2", cbuffer_size(mybuf), 0);

  cbuffer_free(mybuf);
  buffer_free(readout);

  return 0;
}
Ejemplo n.º 29
0
static char* test_spi_stream_construct_tx_packet(void) {
  
  uint32_t my_data[5] = {1, 2, 3, 4, 5};
  CircularBuffer* mybuf = cbuffer_new();
  cbuffer_append(mybuf, my_data, 5);

  uint32_t my_pkt_expected[10] = {0xBEEF, 5, 1, 2, 3, 4, 5, 0xDEADBEEF, 0xDEADBEEF, -1};
  add_checksum(my_pkt_expected, 10);
  int checksum_err = -1;
  spi_stream_verify_packet(my_pkt_expected, 10, &checksum_err);
  mu_assert_eq("no cksum err", checksum_err, 0);

  uint32_t my_pkt[10];
  spi_stream_construct_tx_packet(0xBEEF, my_pkt, 10, mybuf);

//  for (int i = 0; i < 10; ++i) {
//    printf("%i %lx %lx\n", i, my_pkt_expected[i], my_pkt[i]);
//  }

  mu_assert_eq("packet", memcmp(my_pkt_expected, my_pkt, 10 * sizeof(uint32_t)), 0);
  mu_assert_eq("consumed", cbuffer_size(mybuf), 0);

  // put more in the buffer than we can consume at once
  cbuffer_append(mybuf, my_data, 5);
  cbuffer_append(mybuf, my_data, 5);
  cbuffer_append(mybuf, my_data, 5);

  uint32_t my_pkt_expected_2[10] = {0xBEEF, 7, 1, 2, 3, 4, 5, 1, 2, -1};
  add_checksum(my_pkt_expected_2, 10);
  spi_stream_verify_packet(my_pkt_expected_2, 10, &checksum_err);
  mu_assert_eq("no cksum err 2", checksum_err, 0);

  spi_stream_construct_tx_packet(0xBEEF, my_pkt, 10, mybuf);
  mu_assert_eq("packet", memcmp(my_pkt_expected_2, my_pkt, 10 * sizeof(uint32_t)), 0);
  mu_assert_eq("consumed", cbuffer_size(mybuf), 8);

  spi_stream_verify_packet(my_pkt, 10, &checksum_err);
  mu_assert_eq("no cksum actual", checksum_err, 0);
  return 0;
}
Ejemplo n.º 30
0
static char* test_cbuffer_pop_front(void) {
  CircularBuffer* mybuf = cbuffer_new();
  // put us at the end of the buffer
  mybuf->pos = IO_BUFFER_SIZE - 5;
  mybuf->tail = IO_BUFFER_SIZE - 5;
  uint32_t test_data[11] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  cbuffer_append(mybuf, test_data, 11);

  for (int i = 0; i < 11; i++) {
    mu_assert_eq("pre-pop size", cbuffer_size(mybuf), 11 - i);
    uint32_t value = cbuffer_pop_front(mybuf);
    mu_assert_eq("popped_content", (int)value, i);
  }

  // if we pop an empty collection, we get dead beef.
  uint32_t empty = cbuffer_pop_front(mybuf);
  mu_assert_eq("empty", empty, 0xDEADBEEF);

  cbuffer_free(mybuf);

  return 0;
}