Ejemplo n.º 1
0
// verify the signature in sig. The original (hash of the message) message is in digest
int ccrsa_verify_pss(ccrsa_pub_ctx_t key,
                      const struct ccdigest_info* di, const struct ccdigest_info* MgfDi,
                      size_t digestSize, const uint8_t *digest,
                      size_t sigSize, const uint8_t *sig,
                      size_t saltSize, bool *valid)
{
    const cc_size modBits =ccn_bitlen(ccrsa_ctx_n(key), ccrsa_ctx_m(key));
    const cc_size modBytes = cc_ceiling(modBits, 8);
    const cc_size emBits = modBits-1; //as defined in §8.1.1
    const cc_size emSize = cc_ceiling(emBits, 8);
    *valid = false;
    int rc=0;
    
    //1.
    if(modBytes!= sigSize)  return CCRSA_INVALID_INPUT;
    if(digestSize !=  di->output_size) return CCRSA_INVALID_INPUT;

    //2.
    const cc_size modWords=ccrsa_ctx_n(key);
    cc_unit EM[modWords];  //EM islarge enough to fit sig variable
    
    //2.a read sig to tmp array and make sure it fits
    cc_require_action(ccn_read_uint(modWords, EM, sigSize, sig)==0,errOut,rc=CCRSA_INVALID_INPUT);

    //2.b
    cc_require((rc=ccrsa_pub_crypt(key, EM, EM))==0,errOut);
    
    //2.c
    ccn_swap(modWords, EM);

    //3
    const size_t ofs = modWords*sizeof(cc_unit)-emSize;
    cc_assert(ofs<=sizeof(cc_unit)); //make sure sizes are consistent and we don't overrun buffers.
    rc|= ccrsa_emsa_pss_decode(di, MgfDi, saltSize, digestSize,  digest, emBits, (uint8_t *) EM+ofs);

    *valid = (rc==0)?true:false;
errOut:
    return rc;
}
Ejemplo n.º 2
0
int ccrsa_eme_pkcs1v15_encode(struct ccrng_state *rng,
                              size_t r_size, cc_unit *r,
                              size_t s_size, const uint8_t *s)

{
    cc_size n = ccrsa_n_from_size(r_size);
    uint8_t *out = ccrsa_block_start(r_size, r, 1);
    uint8_t *pad;
    size_t padlen;
    size_t i;
    
    for(uint8_t *p = (uint8_t *) r; p < out; p++) *p = 0;

    pad = out + 2;
    if ((r_size < 3) || ((r_size - 3) < s_size)) {
        return CCRSA_INVALID_INPUT;
    }
    padlen = r_size - s_size - 3;

    int result = ccrng_generate(rng, padlen, pad);
	if (result) {
		return result;
	}
	
    for(i=0; i<padlen; i++) { // pad can't have zero bytes
        while(pad[i] == 0)
            if((result = ccrng_generate(rng, 1, &pad[i])) != 0) return result;
    }
    out[0] = 0x00;
    out[1] = 0x02;
    out[2+padlen] = 0x00;
    CC_MEMCPY(out+3+padlen, s, s_size);
    ccn_swap(n, r);

    return 0;
}
Ejemplo n.º 3
0
static OSStatus SecRSAPrivateKeyRawDecrypt(SecKeyRef key, SecPadding padding,
	const uint8_t *cipherText, size_t cipherTextLen,
	uint8_t *plainText, size_t *plainTextLen) {
    OSStatus result = errSSLCrypto;

    ccrsa_full_ctx_t fullkey;
    fullkey.full = key->key;

    size_t m_size = ccn_write_uint_size(ccrsa_ctx_n(fullkey), ccrsa_ctx_m(fullkey));

    cc_unit s[ccrsa_ctx_n(fullkey)];
    uint8_t recoveredData[ccn_sizeof_n(ccrsa_ctx_n(fullkey))];

    ccn_read_uint(ccrsa_ctx_n(fullkey), s, cipherTextLen, cipherText);
    ccrsa_priv_crypt(ccrsa_ctx_private(fullkey), s, s);

    const uint8_t* sBytes = (uint8_t*) s;
    const uint8_t* sEnd = (uint8_t*) (s + ccrsa_ctx_n(fullkey));

    require(plainTextLen, errOut);

    switch (padding) {
        case kSecPaddingNone:
            ccn_swap(ccrsa_ctx_n(fullkey), s);
            // Skip Zeros since our contract is to do so.
            while (sBytes < sEnd && *sBytes == 0x00)
                ++sBytes;
            break;

        case kSecPaddingPKCS1:
        {
            ccn_swap(ccrsa_ctx_n(fullkey), s);
            // Verify and skip PKCS1 padding:
            //
            // 0x00, 0x01 (RSA_PKCS1_PAD_ENCRYPT), 0xFF .. 0x00, signedData
            //
            
            size_t prefix_zeros = ccn_sizeof_n(ccrsa_ctx_n(fullkey)) - m_size;
            
            while (prefix_zeros--)
                require_quiet(*sBytes++ == 0x00, errOut);
            
            require_quiet(*sBytes++ == 0x00, errOut);
            require_quiet(*sBytes++ == RSA_PKCS1_PAD_ENCRYPT, errOut);

            while (*sBytes != 0x00) {
                require_quiet(++sBytes < sEnd, errOut);
            }
            // Required to have at least 8 non-zeros
            require_quiet((sBytes - (uint8_t*)s) - 2 >= 8, errOut);

            require_quiet(*sBytes == 0x00, errOut);
            require_quiet(++sBytes < sEnd, errOut);
            break;
        }
        case kSecPaddingOAEP:
        {
            size_t length = sizeof(recoveredData);

            require_noerr_quiet(ccrsa_oaep_decode(ccsha1_di(),
                                                  ccn_write_uint_size(ccrsa_ctx_n(fullkey),ccrsa_ctx_m(fullkey)), s,
                                                  &length, recoveredData), errOut);

            sBytes = recoveredData;
            sEnd = recoveredData + length;
            break;
        }
        default:
            goto errOut;
    }

    require((sEnd - sBytes) <= (ptrdiff_t)*plainTextLen, errOut);
    *plainTextLen = sEnd - sBytes;
    memcpy(plainText, sBytes, *plainTextLen);

    result = errSecSuccess;

errOut:
    bzero(recoveredData, sizeof(recoveredData));
    ccn_zero(ccrsa_ctx_n(fullkey), s);

    return result;
}
Ejemplo n.º 4
0
static OSStatus SecRSAPrivateKeyRawSign(SecKeyRef key, SecPadding padding,
    const uint8_t *dataToSign, size_t dataToSignLen,
    uint8_t *sig, size_t *sigLen) {

    OSStatus result = errSecParam;

    ccrsa_full_ctx_t fullkey;
    fullkey.full = key->key;

    size_t m_size = ccn_write_uint_size(ccrsa_ctx_n(fullkey), ccrsa_ctx_m(fullkey));
    cc_unit s[ccrsa_ctx_n(fullkey)];

    uint8_t* sBytes = (uint8_t*) s;

    require(sigLen, errOut);
    require(*sigLen >= m_size, errOut);

    switch (padding) {
        case kSecPaddingNone:
            require_noerr_quiet(ccn_read_uint(ccrsa_ctx_n(fullkey), s, dataToSignLen, dataToSign), errOut);
            require_quiet(ccn_cmp(ccrsa_ctx_n(fullkey), s, ccrsa_ctx_m(fullkey)) < 0, errOut);
            break;

        case kSecPaddingPKCS1:
        {
            // Create PKCS1 padding:
            //
            // 0x00, 0x01 (RSA_PKCS1_PAD_SIGN), 0xFF .. 0x00, signedData
            //
            const int kMinimumPadding = 1 + 1 + 8 + 1;

            require(dataToSignLen < m_size - kMinimumPadding, errOut);

            size_t prefix_zeros = ccn_sizeof_n(ccrsa_ctx_n(fullkey)) - m_size;
            
            while (prefix_zeros--)
                *sBytes++ = 0x00;
            
            size_t pad_size = m_size - dataToSignLen;

            *sBytes++ = 0x00;
            *sBytes++ = RSA_PKCS1_PAD_SIGN;

            size_t ff_size;
            for(ff_size = pad_size - 3; ff_size > 0; --ff_size)
                *sBytes++ = 0xFF;

            *sBytes++ = 0x00;

            // Get the user data into s looking like a ccn.
            memcpy(sBytes, dataToSign, dataToSignLen);
            ccn_swap(ccrsa_ctx_n(fullkey), s);

            break;
        }
        case kSecPaddingOAEP:
            result = errSecParam;
        default:
            goto errOut;
    }

    ccrsa_priv_crypt(ccrsa_ctx_private(fullkey), s, s);

    // Pad with leading zeros to fit in modulus size
    ccn_write_uint_padded(ccrsa_ctx_n(fullkey), s, m_size, sig);
    *sigLen = m_size;

    result = errSecSuccess;

errOut:
    ccn_zero(ccrsa_ctx_n(fullkey), s);
    return result;
}
Ejemplo n.º 5
0
static OSStatus SecRSAPublicKeyRawDecrypt(SecKeyRef key, SecPadding padding,
	const uint8_t *cipherText, size_t cipherTextLen, uint8_t *plainText, size_t *plainTextLen) {
    OSStatus result = errSSLCrypto;

    ccrsa_pub_ctx_t pubkey;
    pubkey.pub = key->key;

    cc_unit s[ccrsa_ctx_n(pubkey)];

    require_action_quiet(cipherText != NULL, errOut, result = errSecParam);
    require_action_quiet(plainText != NULL, errOut, result = errSecParam);
    require_action_quiet(plainTextLen != NULL, errOut, result = errSecParam);

    ccn_read_uint(ccrsa_ctx_n(pubkey), s, cipherTextLen, cipherText);
    ccrsa_pub_crypt(pubkey, s, s);
    ccn_swap(ccrsa_ctx_n(pubkey), s);

    const uint8_t* sBytes = (uint8_t*) s;
    const uint8_t* sEnd = (uint8_t*) (s + ccrsa_ctx_n(pubkey));

    switch (padding) {
        case kSecPaddingNone:
            // Skip leading zeros
            // We return the bytes for a number and
            // trim leading zeroes
            while (sBytes < sEnd && *sBytes == 0x00)
                ++sBytes;
            break;

        case kSecPaddingPKCS1:
        {
            // Verify and skip PKCS1 padding:
            //
            // 0x00, 0x01 (RSA_PKCS1_PAD_ENCRYPT), 0xFF .. 0x00, signedData
            //
            size_t m_size = ccn_write_uint_size(ccrsa_ctx_n(pubkey), ccrsa_ctx_m(pubkey));
            size_t prefix_zeros = ccn_sizeof_n(ccrsa_ctx_n(pubkey)) - m_size;
            
            while (prefix_zeros--)
                require_quiet(*sBytes++ == 0x00, errOut);

            require_quiet(*sBytes++ == 0x00, errOut);
            require_quiet(*sBytes++ == RSA_PKCS1_PAD_ENCRYPT, errOut);

            while (*sBytes != 0x00) {
                require_quiet(++sBytes < sEnd, errOut);
            }
            // Required to have at least 8 0xFFs
            require_quiet((sBytes - (uint8_t*)s) - 2 >= 8, errOut);

            require_quiet(*sBytes == 0x00, errOut);
            require_quiet(++sBytes < sEnd, errOut);

            break;
        }
        case kSecPaddingOAEP:
            result = errSecParam;
        default:
            goto errOut;
    }

    // Return the rest.
    require_action((sEnd - sBytes) <= (ptrdiff_t)*plainTextLen, errOut, result = errSecParam);

    *plainTextLen = sEnd - sBytes;
    memcpy(plainText, sBytes, *plainTextLen);

    result = errSecSuccess;

errOut:
    ccn_zero(ccrsa_ctx_n(pubkey), s);

    return result;
}
Ejemplo n.º 6
0
static OSStatus SecRSAPublicKeyRawEncrypt(SecKeyRef key, SecPadding padding,
    const uint8_t *plainText, size_t plainTextLen,
	uint8_t *cipherText, size_t *cipherTextLen) {
    OSStatus result = errSecParam;
    ccrsa_pub_ctx_t pubkey;
    pubkey.pub = key->key;

    cc_unit s[ccrsa_ctx_n(pubkey)];
    const size_t m_size = ccn_write_uint_size(ccrsa_ctx_n(pubkey), ccrsa_ctx_m(pubkey));

    require(cipherTextLen, errOut);
    require(*cipherTextLen >= m_size, errOut);

    uint8_t* sBytes = (uint8_t*) s;

    switch (padding) {
        case kSecPaddingNone:
            require_noerr_quiet(ccn_read_uint(ccrsa_ctx_n(pubkey), s, plainTextLen, plainText), errOut);
            require_quiet(ccn_cmp(ccrsa_ctx_n(pubkey), s, ccrsa_ctx_m(pubkey)) < 0, errOut);
            break;

        case kSecPaddingPKCS1:
        {
            // Create PKCS1 padding:
            //
            // 0x00, 0x01 (RSA_PKCS1_PAD_ENCRYPT), 0xFF .. 0x00, signedData
            //
            const int kMinimumPadding = 1 + 1 + 8 + 1;

            require_quiet(plainTextLen < m_size - kMinimumPadding, errOut);

            size_t prefix_zeros = ccn_sizeof_n(ccrsa_ctx_n(pubkey)) - m_size;
            
            while (prefix_zeros--)
                 *sBytes++ = 0x00;

           size_t pad_size = m_size - plainTextLen;

            *sBytes++ = 0x00;
            *sBytes++ = RSA_PKCS1_PAD_ENCRYPT;

            ccrng_generate(ccrng_seckey, pad_size - 3, sBytes);
            // Remove zeroes from the random pad

            const uint8_t* sEndOfPad = sBytes + (pad_size - 3);
            while (sBytes < sEndOfPad)
            {
                if (*sBytes == 0x00)
                    *sBytes = 0xFF; // Michael said 0xFF was good enough.

                ++sBytes;
            }

            *sBytes++ = 0x00;

            memcpy(sBytes, plainText, plainTextLen);

            ccn_swap(ccrsa_ctx_n(pubkey), s);
            break;
        }
        case kSecPaddingOAEP:
        {
            const struct ccdigest_info* di = ccsha1_di();

            const size_t encodingOverhead = 2 + 2 * di->output_size;

            require_action(m_size > encodingOverhead, errOut, result = errSecParam);
            require_action_quiet(plainTextLen < m_size - encodingOverhead, errOut, result = errSSLCrypto);

            require_noerr_action(ccrsa_oaep_encode(di,
                                                   ccrng_seckey,
                                                   m_size, s,
                                                   plainTextLen, plainText), errOut, result = errSecInternal);
           break;
        }
        default:
            goto errOut;
    }


    ccrsa_pub_crypt(pubkey, s, s);

    ccn_write_uint_padded(ccrsa_ctx_n(pubkey), s, m_size, cipherText);
    *cipherTextLen = m_size;

    result = errSecSuccess;

errOut:
    ccn_zero(ccrsa_ctx_n(pubkey), s);
    return result;
}
Ejemplo n.º 7
0
static OSStatus SecRSAPublicKeyRawVerify(SecKeyRef key, SecPadding padding,
    const uint8_t *signedData, size_t signedDataLen,
    const uint8_t *sig, size_t sigLen) {
    OSStatus result = errSSLCrypto;

    ccrsa_pub_ctx_t pubkey;
    pubkey.pub = key->key;

    cc_unit s[ccrsa_ctx_n(pubkey)];

    ccn_read_uint(ccrsa_ctx_n(pubkey), s, sigLen, sig);
    ccrsa_pub_crypt(pubkey, s, s);
    ccn_swap(ccrsa_ctx_n(pubkey), s);

    const uint8_t* sBytes = (uint8_t*) s;
    const uint8_t* sEnd = (uint8_t*) (s + ccrsa_ctx_n(pubkey));

    switch (padding) {
        case kSecPaddingNone:
            // Skip leading zeros as long as s is bigger than signedData.
            while (((ptrdiff_t)signedDataLen < (sEnd - sBytes)) && (*sBytes == 0))
                ++sBytes;
            break;

        case kSecPaddingPKCS1:
        {
            // Verify and skip PKCS1 padding:
            //
            // 0x00, 0x01 (RSA_PKCS1_PAD_SIGN), 0xFF .. 0x00, signedData
            //
            size_t m_size = ccn_write_uint_size(ccrsa_ctx_n(pubkey), ccrsa_ctx_m(pubkey));
            size_t prefix_zeros = ccn_sizeof_n(ccrsa_ctx_n(pubkey)) - m_size;
            
            while (prefix_zeros--)
                require_quiet(*sBytes++ == 0x00, errOut);

            require_quiet(*sBytes++ == 0x00, errOut);
            require_quiet(*sBytes++ == RSA_PKCS1_PAD_SIGN, errOut);

            while (*sBytes == 0xFF) {
                require_quiet(++sBytes < sEnd, errOut);
            }
            // Required to have at least 8 0xFFs
            require_quiet((sBytes - (uint8_t*)s) - 2 >= 8, errOut);

            require_quiet(*sBytes == 0x00, errOut);
            require_quiet(++sBytes < sEnd, errOut);
            break;
        }
        case kSecPaddingOAEP:
            result = errSecParam;
            goto errOut;

        default:
            result = errSecUnimplemented;
            goto errOut;
    }

    // Compare the rest.
    require_quiet((sEnd - sBytes) == (ptrdiff_t)signedDataLen, errOut);
    require_quiet(memcmp(sBytes, signedData, signedDataLen) == 0, errOut);

    result = errSecSuccess;

errOut:
    cc_zero(ccrsa_ctx_n(pubkey), s);

    return result;
}