Ejemplo n.º 1
0
/* Open the device */
static int
cgm_open(gx_device * dev)
{
    gx_device_cgm *cdev = (gx_device_cgm *) dev;
    cgm_allocator cal;
    static const int elements[] =
    {-1, 1};
    cgm_metafile_elements meta;
    cgm_result result;

    cdev->file = fopen(cdev->fname, "wb");
    if (cdev->file == 0)
	return_error(gs_error_ioerror);
    cal.private_data = cdev;
    cal.alloc = cgm_gs_alloc;
    cal.free = cgm_gs_free;
    cdev->st = cgm_initialize(cdev->file, &cal);
    if (cdev->st == 0)
	return_error(gs_error_VMerror);
    result = cgm_BEGIN_METAFILE(cdev->st, "", 0);
    check_result(result);
    meta.metafile_version = 1;
    meta.vdc_type = cgm_vdc_integer;
    meta.integer_precision = sizeof(cgm_int) * 8;
    meta.index_precision = sizeof(cgm_int) * 8;
    meta.color_precision = 8;
    /* If we use color indices at all, they are only 1 byte. */
    meta.color_index_precision = 8;
    meta.maximum_color_index = (1L << cdev->color_info.depth) - 1;
    meta.metafile_element_list = elements,
	meta.metafile_element_list_count = countof(elements) / 2;
    result = cgm_set_metafile_elements(cdev->st, &meta,
				       cgm_set_METAFILE_VERSION |
				       cgm_set_VDC_TYPE |
				       cgm_set_INTEGER_PRECISION |
				       cgm_set_INDEX_PRECISION |
				       cgm_set_COLOR_PRECISION |
				       cgm_set_COLOR_INDEX_PRECISION |
				       cgm_set_MAXIMUM_COLOR_INDEX |
				       cgm_set_METAFILE_ELEMENT_LIST);
    check_result(result);
    cdev->in_picture = false;
    return 0;
}
Ejemplo n.º 2
0
int
goma_init_(dbl *time1, int *nnodes, int *nelems,
           int *nnv_in, int *nev_in, int *i_soln, int *i_post)
     
     /*
      * Initial main driver for GOMA. Derived from a (1/93) release of
      * the rf_salsa program by
      *        
      *        Original Authors: John  Shadid (1421)
      *		                 Scott Hutchinson (1421)
      *        		         Harry Moffat (1421)
      *       
      *        Date:		12/3/92
      * 
      *
      *        Updates and Changes by:
      *                           Randy Schunk (9111)
      *                           P. A. Sackinger (9111)
      *                           R. R. Rao       (9111)
      *                           R. A. Cairncross (Univ. of Delaware)
      *        Dates:           2/93 - 6/96
      *
      *       Modified for continuation
      *                           Ian Gates
      *       Dates:            2/98 - 10/98
      *       Dates:            7/99 - 8/99
      * 
      * Last modified: Wed  June 26 14:21:35 MST 1994 [email protected]
      * Hello.
      * 
      * Note: Many modifications from an early 2/93 pre-release
      *	      version of rf_salsa were made by various persons 
      *       in order to test ideas about moving/deforming meshes...
      */ 
{
  /* Local Declarations */

  double time_start, total_time;   /* timing variables */
#ifndef PARALLEL
  struct tm *tm_ptr;               /* additional serial timing variables */
  time_t the_time;
#endif

  int error;
  int i;
  int j;
  static int first_goma_call=TRUE;

  char	**ptmp;
  static const char *yo="goma_init";

  struct Command_line_command **clc=NULL; /* point to command line structure */
  int           nclc = 0;		/* number of command line commands */

/********************** BEGIN EXECUTION ***************************************/
  
/* assume number of commands is less than or equal to the number of 
 * arguments in the command line minus 1 (1st is program name) */

  /*
  *  Get the name of the executable, yo
  */

#ifdef PARALLEL
if( first_goma_call ) {
	Argc = 1;
	Argv = (char **) smalloc( Argc*sizeof(char *) );
	Argv[0] = (char *) yo;
	MPI_Init(&Argc, &Argv);  /*PRS will have to fix this.  Too late TAB already did. */
  }
  time_start = MPI_Wtime();
#else /* PARALLEL */
  (void) time(&the_time);
  tm_ptr = gmtime(&the_time);
  time_start = (double)  ( tm_ptr->tm_sec
               + 60. * (   60. * ( tm_ptr->tm_yday * 24. + tm_ptr->tm_hour )
                                                         + tm_ptr->tm_min  )
                         );
#endif /* PARALLEL */
  *time1 = time_start;

/*   Argv = argv; */

/*   Argc = argc; */

  time_goma_started = time_start;

#ifdef PARALLEL
  /*
   * Determine the parallel processing status, if any. We need to know
   * pretty early if we're "one of many" or the only process.
   */

  error = MPI_Comm_size(MPI_COMM_WORLD, &Num_Proc);
  error = MPI_Comm_rank(MPI_COMM_WORLD, &ProcID);

  /*
   * Setup a default Proc_config so we can use utility routines 
   * from Aztec
   */

  AZ_set_proc_config(Proc_Config, MPI_COMM_WORLD);

  /* set the output limit flag if need be */

  if( Num_Proc > DP_PROC_PRINT_LIMIT ) Unlimited_Output = FALSE;

#ifdef HAVE_MPE_H
  error = MPE_Init_log();
#endif /* HAVE_MPE_H */

  Dim = 0;			/* for any hypercube legacy code...  */

#endif /* PARALLEL */
  
#ifndef PARALLEL
  Dim        = 0;
  ProcID     = 0;
  Num_Proc   = 1;
#endif /* PARALLEL */


  /*
  *   HKM - Change the ieee exception handling based on the machine and
  *         the level of debugging/speed desired. This call currently causes
  *         core dumps for floating point exceptions.
  */

  handle_ieee();
  
  log_msg("--------------");
  log_msg("GOMA begins...");

#ifdef USE_CGM
  cgm_initialize();
#endif
  /*
   * Some initial stuff that only the master process does.
   */

/*PRS: Disable this command line stuff for the jas coupled version */
/*-----------------------------------------------------------------*/
/*   if ( ProcID == 0 ) */
/*     { */
/*       if (argc > 1) */
/* 	{ */
/* 	  log_msg("Preprocessing command line options."); */
/* 	  clc = (struct Command_line_command **)  */
/* 	    smalloc( argc * sizeof(struct Command_line_command *)); */
/* 	  for (i=0; i<argc; i++) */
/* 	    { */
/* 	      clc[i] = (struct Command_line_command *)  */
/* 		smalloc(sizeof(struct Command_line_command)); */
/* 	      clc[i]->type   = 0; /\* initialize command line structure *\/ */
/* 	      clc[i]->i_val  = 0; */
/* 	      clc[i]->r_val  = 0.; */
/* 	      clc[i]->string = (char *)  */
/* 		smalloc(MAX_COMMAND_LINE_LENGTH*sizeof(char)); */
/* 	      for ( j=0; j<MAX_COMMAND_LINE_LENGTH; j++) */
/* 		{ */
/* 		  clc[i]->string[j] = '\0'; */
/* 		} */
/* #ifdef DEBUG */
/* 	      fprintf(stderr, "clc[%d]->string is at 0x%x\n", i, clc[i]->string); */
/* 	      fprintf(stderr, "clc[%d]         is at 0x%x\n", i, clc[i]); */
/* #endif */
/* 	    } */
/* 	} */

/* PRS For the JAS version we will use the default input file name "input" */
      strcpy(Input_File, "input");

/* if (argc > 1) translate_command_line(argc, argv, clc, &nclc); */
      
/*       print_code_version(); */
/*       ptmp = legal_notice; */
/*       while ( strcmp(*ptmp, LAST_LEGAL_STRING) != 0 ) */
/* 	{ */
/* 	  fprintf(stderr, "%s", *ptmp++); */
/* 	} */
/* } */

  /*
   *  Allocate the uniform problem description structure and
   *  the problem description structures on all processors
   */
  error = pd_alloc();
  EH(error, "pd_alloc problem");

#ifdef DEBUG
  fprintf(stderr, "P_%d at barrier after pd_alloc\n", ProcID);
#ifdef PARALLEL
  error = MPI_Barrier(MPI_COMM_WORLD);
#endif
#endif

  log_msg("Allocating mp, gn, ...");

  error = mp_alloc();
  EH(error, "mp_alloc problem");

  error = gn_alloc();
  EH(error, "gn_alloc problem");

  error = ve_alloc();
  EH(error, "ve_alloc problem");

  error = elc_alloc();
  EH(error, "elc_alloc problem");

  error = elc_rs_alloc();
  EH(error, "elc_alloc problem");

  error = cr_alloc();
  EH(error, "cr_alloc problem");

  error = evp_alloc();
  EH(error, "evp_alloc problem");

  error = tran_alloc();
  EH(error, "tran_alloc problem");

  error = libio_alloc();
  EH(error, "libio_alloc problem");

  error = eigen_alloc();
  EH(error, "eigen_alloc problem");

  error = cont_alloc();
  EH(error, "cont_alloc problem");

  error = loca_alloc();
  EH(error, "loca_alloc problem");

  error = efv_alloc();
  EH(error, "efv_alloc problem");

#ifdef DEBUG
  fprintf(stderr, "P_%d at barrier before read_input_file()\n", ProcID);
#ifdef PARALLEL
  error = MPI_Barrier(MPI_COMM_WORLD);
#endif
#endif

/*PRS AGAIN, NO COMMAND LINE OVERRIDES IN THIS JAS3D VERSION */
  /*
   * Read ASCII input file, data files, related exodusII FEM databases.
   */	
   if ( ProcID == 0 ) 
       { 
         log_msg("Reading input file ..."); 
         read_input_file(clc, nclc); 

       }

  /*
   * The user-defined material properties, etc. available to goma users
   * mean that some dynamically allocated data needs to be communicated.
   *
   * To handle this, sizing information from the input file scan is
   * broadcast in stages so that the other processors can allocate space
   * accordingly to hold the data.
   *
   * Note: instead of handpacking a data structure, use MPI derived datatypes
   * to gather and scatter. Pray this is done efficiently. Certainly it costs
   * less from a memory standpoint.
   */

#ifdef PARALLEL

  /*
   *  Make sure the input file was successully processed before moving on
   */
  check_parallel_error("Input file error");


  /*
   * This is some sizing information that helps fit a little bit more
   * onto the ark later on.
   */

#ifdef DEBUG
  fprintf(stderr, "P_%d at barrier before noahs_raven()\n", ProcID);
  error = MPI_Barrier(MPI_COMM_WORLD);
#endif

  noahs_raven();

#ifdef DEBUG
  fprintf(stderr, "P_%d at barrier before MPI_Bcast of Noahs_Raven\n", ProcID);
  error = MPI_Barrier(MPI_COMM_WORLD);
#endif

  MPI_Bcast(MPI_BOTTOM, 1, Noahs_Raven->new_type, 0, MPI_COMM_WORLD);

#ifdef DEBUG
  fprintf(stderr, "P_%d at barrier after Bcast/before raven_landing()\n", 
	  ProcID);
  error = MPI_Barrier(MPI_COMM_WORLD);
#endif  
  /*
   * Get the other processors ready to handle ark data.
   */

  raven_landing();

#ifdef DEBUG
  fprintf(stderr, "P_%d at barrier before noahs_ark()\n", ProcID);
  error = MPI_Barrier(MPI_COMM_WORLD);
#endif
  
  
  /*
   * This is the main body of communicated information, including some
   * whose sizes were determined because of advanced legwork by the raven.
   */

  noahs_ark();
  MPI_Bcast(MPI_BOTTOM, 1, Noahs_Ark->new_type, 0, MPI_COMM_WORLD);

  /*
   * Chemkin was initialized on processor zero during the input file
   * process. Now, distribute it to all processors
   */
#ifdef USE_CHEMKIN
  if (Chemkin_Needed) {
    chemkin_initialize_mp();
  }
#endif 

  /*
   * Once the ark has landed, there are additional things that will need to
   * be sent by dove. Example: BC_Types[]->u-BC arrays.
   *
   */

  ark_landing();

  noahs_dove();
  MPI_Bcast(MPI_BOTTOM, 1, Noahs_Dove->new_type, 0, MPI_COMM_WORLD);


#endif          /* End of ifdef PARALLEL */


  /*
   * We sent the packed line to all processors that contained geometry
   * creation commands.  Now we need to step through it and create
   * geometry as we go (including possibly reading an ACIS .sat file).
   *
   */
#ifdef USE_CGM
  create_cgm_geometry();
#endif

  /*
   * For parallel execution, assume the following variables will be changed
   * to reflect the multiple file aspect of the problem.
   *
   *	FEM file = file.exoII		--> file_3of15.exoII
   *
   *	Output EXODUS II file = out.exoII --> out_3of15.exoII
   *
   */


  /*
   * Allocate space for structures holding the EXODUS II finite element
   * database information and for the Distributed Processing information.
   *
   * These are mostly skeletons with pointers that get allocated in the
   * rd_exoII and rd_dpi routines. Remember to free up those arrays first
   * before freeing the major pointers.
   */

  EXO_ptr = alloc_struct_1(Exo_DB, 1);
  init_exo_struct(EXO_ptr);
  DPI_ptr = alloc_struct_1(Dpi, 1);
  init_dpi_struct(DPI_ptr);  

  log_msg("Reading mesh from EXODUS II file...");
  error = read_mesh_exoII(EXO_ptr, DPI_ptr);

  /*
   *   Missing files on any processor are detected at a lower level
   *   forcing a return to the higher level
   *         rd_exo -->  rd_mesh  -->  main
   *   Shutdown now, if any of the exodus files weren't found
   */
  if (error < 0) {
#ifdef PARALLEL
    MPI_Finalize();
#endif
    return(-1);
  }

  /*
   * All of the MPI_Type_commit() calls called behind the scenes that build
   * the dove, ark and raven really allocated memory. Let's free it up now that
   * the initial information has been communicated.
   */

#ifdef PARALLEL
  MPI_Type_free(&(Noahs_Raven->new_type));
  MPI_Type_free(&(Noahs_Ark->new_type));
  MPI_Type_free(&(Noahs_Dove->new_type));
#endif   

  /*
   * Setup the rest of the Problem Description structure that depends on
   * the mesh that was read in from the EXODUS II file...
   * 
   * Note that memory allocation and some setup has already been performed
   * in mm_input()...
   */

  error = setup_pd();
  EH( error, "Problem setting up Problem_Description.");
  /*
   * Let's check to see if we need the large elasto-plastic global tensors
   * and allocate them if so 
   */
  error = evp_tensor_alloc(EXO_ptr);
  EH( error, "Problems setting up evp tensors");
  
  /*
   * Now that we know about what kind of problem we're solving and the
   * mesh information, let's allocate space for elemental assembly structures
   *
   */
#ifdef DEBUG
  DPRINTF(stderr, "About to assembly_alloc()...\n");
#endif
  log_msg("Assembly allocation...");

  error = assembly_alloc(EXO_ptr);
  EH( error, "Problem from assembly_alloc");

  if (Debug_Flag)  {
    DPRINTF(stderr, "%s:  setting up EXODUS II output files...\n", yo);
  }

  /*
   * These are not critical - just niceties. Also, they should not overburden
   * your db with too much of this - they're capped verbiage compliant routines.
   */

  add_qa_stamp(EXO_ptr);

  add_info_stamp(EXO_ptr);

#ifdef DEBUG
  fprintf(stderr, "added qa and info stamps\n");
#endif

  /*
   * If the output EXODUS II database file is different from the input
   * file, then we'll need to replicate all the basic mesh information.
   * But, remember that if we're parallel, that the output file names must
   * be multiplexed first...
   */
  if ( Num_Proc > 1 )
    {
      multiname(ExoFileOut,     ProcID, Num_Proc);      
      multiname(Init_GuessFile, ProcID, Num_Proc);

      if ( strcmp( Soln_OutFile, "" ) != 0 )
	{
	  multiname(Soln_OutFile,   ProcID, Num_Proc);
	}

      if( strcmp( ExoAuxFile, "" ) != 0 )
        {
          multiname(ExoAuxFile,     ProcID, Num_Proc);
        }

      if( efv->Num_external_field != 0 )
        {
          for( i=0; i<efv->Num_external_field; i++ )
            {
              multiname(efv->file_nm[i], ProcID, Num_Proc);
            }
        }

    }



  /***********************************************************************/
  /***********************************************************************/
  /***********************************************************************/
  /*
   *   Preprocess the exodus mesh
   *        -> Allocate pointers to structures containing element
   *           side bc info, First_Elem_Side_BC_Array, and
   *           element edge info, First_Elem_Edge_BC_Array.
   *        -> Determine Unique_Element_Types[] array
   */
#ifdef DEBUG
  fprintf(stderr, "pre_process()...\n");
#endif
  log_msg("Pre processing of mesh...");
#ifdef PARALLEL
  error = MPI_Barrier(MPI_COMM_WORLD);
#endif
  pre_process(EXO_ptr);

  /***********************************************************************/
  /***********************************************************************/
  /***********************************************************************/
  /*
   * Load up a few key indeces in the bfd prototype basis function structures
   * and make sure that each active eqn/vbl has a bf[v] that points to the
   * right bfd[]...needs pre_process to find out the number of unique
   * element types in the problem.
   */

#ifdef DEBUG
  fprintf(stderr, "bf_init()...\n");
#endif
  log_msg("Basis function initialization...");
  error = bf_init(EXO_ptr);
  EH( error, "Problem from bf_init");

  /*
   * check for parallel errors before continuing
   */
  check_parallel_error("Error encountered in problem setup");

  /***********************************************************************/
  /***********************************************************************/
  /***********************************************************************/  
  /*
   * Allocate space for each communication exchange description.
   */
#ifdef PARALLEL
#ifdef DEBUG
  fprintf(stderr, "P_%d: Parallel cx allocation\n", ProcID);
#endif
  if (DPI_ptr->num_neighbors > 0) {
    cx = alloc_struct_1(Comm_Ex, DPI_ptr->num_neighbors);
    Request = alloc_struct_1(MPI_Request, 
			     Num_Requests * DPI_ptr->num_neighbors);
    Status = alloc_struct_1(MPI_Status, 
			    Num_Requests * DPI_ptr->num_neighbors);
  }
#endif

  /***********************************************************************/
  /***********************************************************************/
  /***********************************************************************/
  /*
   *                           SET UP THE PROBLEM
   *
   * Setup node-based structures
   * Finalise how boundary conditions are to be handled
   * Determine what unknowns are at each owned node and then tell
   *  neighboring processors about your nodes
   * Set up communications pattern for fast unknown updates between
   *  processors.
   */
  (void) setup_problem(EXO_ptr, DPI_ptr);

  /*
   * check for parallel errors before continuing
   */
  check_parallel_error("Error encountered in problem setup");
  
  /***********************************************************************/
  /***********************************************************************/
  /***********************************************************************/
  /*
   *                     WRITE OUT INITIAL INFO TO EXODUS FILE
   */

  /*
   *  Only have to initialize the exodus file if we are using different
   *  files for the output versus the input mesh
   */
  if (strcmp(ExoFile, ExoFileOut)) {
    /*
     * Temporarily we'll need to renumber the nodes and elements in the
     * mesh to be 1-based. After writing, return to the 0 based indexing
     * that is more convenient in C.
     */
#ifdef DEBUG
    fprintf(stderr, "1-base; wr_mesh; 0-base\n");
#endif
    one_base(EXO_ptr);
    wr_mesh_exo(EXO_ptr, ExoFileOut, 0);
    zero_base(EXO_ptr);

    /*
     * If running on a distributed computer, augment the plain finite
     * element information of EXODUS with the description of how this
     * piece fits into the global problem.
     */
    if (Num_Proc > 1) {
#ifdef PARALLEL
#ifdef DEBUG
      fprintf(stderr, "P_%d at barrier before wr_dpi()\n", ProcID);
      fprintf(stderr, "P_%d ExoFileOut = \"%s\"\n", ProcID, ExoFileOut);
      error = MPI_Barrier(MPI_COMM_WORLD);
#endif
#endif
      wr_dpi(DPI_ptr, ExoFileOut, 0);
    }
  }

  if (Num_Import_NV > 0 || Num_Import_EV > 0) printf
    (" Goma will import %d nodal and %d element variables.\n",
     Num_Import_NV, Num_Import_EV);
  if (Num_Export_XS > 0 || Num_Export_XP > 0) printf
    (" Goma will export %d solution and %d post-processing variables.\n",
     Num_Export_XS, Num_Export_XP);

  /* Return counts to calling program */
  *nnodes = EXO_ptr->num_nodes;
  *nelems = EXO_ptr->num_elems;
  *nnv_in = Num_Import_NV;
  *nev_in = Num_Import_EV;
  *i_soln = Num_Export_XS;
  *i_post = Num_Export_XP;

  return (0); /* Back to  animas*/
}