doublereal ctzt01_(integer *m, integer *n, complex *a, complex *af, integer * lda, complex *tau, complex *work, integer *lwork) { /* System generated locals */ integer a_dim1, a_offset, af_dim1, af_offset, i__1, i__2, i__3, i__4; real ret_val; /* Local variables */ integer i__, j; real norma; real rwork[1]; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* CTZT01 returns */ /* || A - R*Q || / ( M * eps * ||A|| ) */ /* for an upper trapezoidal A that was factored with CTZRQF. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrices A and AF. */ /* N (input) INTEGER */ /* The number of columns of the matrices A and AF. */ /* A (input) COMPLEX array, dimension (LDA,N) */ /* The original upper trapezoidal M by N matrix A. */ /* AF (input) COMPLEX array, dimension (LDA,N) */ /* The output of CTZRQF for input matrix A. */ /* The lower triangle is not referenced. */ /* LDA (input) INTEGER */ /* The leading dimension of the arrays A and AF. */ /* TAU (input) COMPLEX array, dimension (M) */ /* Details of the Householder transformations as returned by */ /* CTZRQF. */ /* WORK (workspace) COMPLEX array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The length of the array WORK. LWORK >= m*n + m. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ af_dim1 = *lda; af_offset = 1 + af_dim1; af -= af_offset; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --tau; --work; /* Function Body */ ret_val = 0.f; if (*lwork < *m * *n + *m) { this_xerbla_("CTZT01", &c__8); return ret_val; } /* Quick return if possible */ if (*m <= 0 || *n <= 0) { return ret_val; } norma = clange_("One-norm", m, n, &a[a_offset], lda, rwork); /* Copy upper triangle R */ claset_("Full", m, n, &c_b6, &c_b6, &work[1], m); i__1 = *m; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = (j - 1) * *m + i__; i__4 = i__ + j * af_dim1; work[i__3].r = af[i__4].r, work[i__3].i = af[i__4].i; /* L10: */ } /* L20: */ } /* R = R * P(1) * ... *P(m) */ i__1 = *m; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n - *m + 1; clatzm_("Right", &i__, &i__2, &af[i__ + (*m + 1) * af_dim1], lda, & tau[i__], &work[(i__ - 1) * *m + 1], &work[*m * *m + 1], m, & work[*m * *n + 1]); /* L30: */ } /* R = R - A */ i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { caxpy_(m, &c_b15, &a[i__ * a_dim1 + 1], &c__1, &work[(i__ - 1) * *m + 1], &c__1); /* L40: */ } ret_val = clange_("One-norm", m, n, &work[1], m, rwork); ret_val /= slamch_("Epsilon") * (real) max(*m,*n); if (norma != 0.f) { ret_val /= norma; } return ret_val; /* End of CTZT01 */ } /* ctzt01_ */
/* Subroutine */ int cgelsx_(integer *m, integer *n, integer *nrhs, complex * a, integer *lda, complex *b, integer *ldb, integer *jpvt, real *rcond, integer *rank, complex *work, real *rwork, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3; complex q__1; /* Builtin functions */ double c_abs(complex *); void r_cnjg(complex *, complex *); /* Local variables */ static integer i__, j, k; static complex c1, c2, s1, s2, t1, t2; static integer mn; static real anrm, bnrm, smin, smax; static integer iascl, ibscl, ismin, ismax; extern /* Subroutine */ int ctrsm_(char *, char *, char *, char *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, ftnlen, ftnlen, ftnlen, ftnlen), claic1_(integer *, integer *, complex *, real *, complex *, complex *, real *, complex *, complex *), cunm2r_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, ftnlen, ftnlen), slabad_(real *, real *); extern doublereal clange_(char *, integer *, integer *, complex *, integer *, real *, ftnlen); extern /* Subroutine */ int clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *, ftnlen), cgeqpf_(integer *, integer *, complex *, integer *, integer *, complex *, complex *, real *, integer *); extern doublereal slamch_(char *, ftnlen); extern /* Subroutine */ int claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *, ftnlen), xerbla_(char *, integer *, ftnlen); static real bignum; extern /* Subroutine */ int clatzm_(char *, integer *, integer *, complex *, integer *, complex *, complex *, complex *, integer *, complex *, ftnlen); static real sminpr; extern /* Subroutine */ int ctzrqf_(integer *, integer *, complex *, integer *, complex *, integer *); static real smaxpr, smlnum; /* -- LAPACK driver routine (version 3.0) -- */ /* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */ /* Courant Institute, Argonne National Lab, and Rice University */ /* September 30, 1994 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* This routine is deprecated and has been replaced by routine CGELSY. */ /* CGELSX computes the minimum-norm solution to a complex linear least */ /* squares problem: */ /* minimize || A * X - B || */ /* using a complete orthogonal factorization of A. A is an M-by-N */ /* matrix which may be rank-deficient. */ /* Several right hand side vectors b and solution vectors x can be */ /* handled in a single call; they are stored as the columns of the */ /* M-by-NRHS right hand side matrix B and the N-by-NRHS solution */ /* matrix X. */ /* The routine first computes a QR factorization with column pivoting: */ /* A * P = Q * [ R11 R12 ] */ /* [ 0 R22 ] */ /* with R11 defined as the largest leading submatrix whose estimated */ /* condition number is less than 1/RCOND. The order of R11, RANK, */ /* is the effective rank of A. */ /* Then, R22 is considered to be negligible, and R12 is annihilated */ /* by unitary transformations from the right, arriving at the */ /* complete orthogonal factorization: */ /* A * P = Q * [ T11 0 ] * Z */ /* [ 0 0 ] */ /* The minimum-norm solution is then */ /* X = P * Z' [ inv(T11)*Q1'*B ] */ /* [ 0 ] */ /* where Q1 consists of the first RANK columns of Q. */ /* Arguments */ /* ========= */ /* M (input) INTEGER */ /* The number of rows of the matrix A. M >= 0. */ /* N (input) INTEGER */ /* The number of columns of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of */ /* columns of matrices B and X. NRHS >= 0. */ /* A (input/output) COMPLEX array, dimension (LDA,N) */ /* On entry, the M-by-N matrix A. */ /* On exit, A has been overwritten by details of its */ /* complete orthogonal factorization. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,M). */ /* B (input/output) COMPLEX array, dimension (LDB,NRHS) */ /* On entry, the M-by-NRHS right hand side matrix B. */ /* On exit, the N-by-NRHS solution matrix X. */ /* If m >= n and RANK = n, the residual sum-of-squares for */ /* the solution in the i-th column is given by the sum of */ /* squares of elements N+1:M in that column. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,M,N). */ /* JPVT (input/output) INTEGER array, dimension (N) */ /* On entry, if JPVT(i) .ne. 0, the i-th column of A is an */ /* initial column, otherwise it is a free column. Before */ /* the QR factorization of A, all initial columns are */ /* permuted to the leading positions; only the remaining */ /* free columns are moved as a result of column pivoting */ /* during the factorization. */ /* On exit, if JPVT(i) = k, then the i-th column of A*P */ /* was the k-th column of A. */ /* RCOND (input) REAL */ /* RCOND is used to determine the effective rank of A, which */ /* is defined as the order of the largest leading triangular */ /* submatrix R11 in the QR factorization with pivoting of A, */ /* whose estimated condition number < 1/RCOND. */ /* RANK (output) INTEGER */ /* The effective rank of A, i.e., the order of the submatrix */ /* R11. This is the same as the order of the submatrix T11 */ /* in the complete orthogonal factorization of A. */ /* WORK (workspace) COMPLEX array, dimension */ /* (min(M,N) + max( N, 2*min(M,N)+NRHS )), */ /* RWORK (workspace) REAL array, dimension (2*N) */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --jpvt; --work; --rwork; /* Function Body */ mn = min(*m,*n); ismin = mn + 1; ismax = (mn << 1) + 1; /* Test the input arguments. */ *info = 0; if (*m < 0) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*m)) { *info = -5; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = max(1,*m); if (*ldb < max(i__1,*n)) { *info = -7; } } if (*info != 0) { i__1 = -(*info); xerbla_("CGELSX", &i__1, (ftnlen)6); return 0; } /* Quick return if possible */ /* Computing MIN */ i__1 = min(*m,*n); if (min(i__1,*nrhs) == 0) { *rank = 0; return 0; } /* Get machine parameters */ smlnum = slamch_("S", (ftnlen)1) / slamch_("P", (ftnlen)1); bignum = 1.f / smlnum; slabad_(&smlnum, &bignum); /* Scale A, B if max elements outside range [SMLNUM,BIGNUM] */ anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1], (ftnlen)1); iascl = 0; if (anrm > 0.f && anrm < smlnum) { /* Scale matrix norm up to SMLNUM */ clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, info, (ftnlen)1); iascl = 1; } else if (anrm > bignum) { /* Scale matrix norm down to BIGNUM */ clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, info, (ftnlen)1); iascl = 2; } else if (anrm == 0.f) { /* Matrix all zero. Return zero solution. */ i__1 = max(*m,*n); claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb, (ftnlen)1); *rank = 0; goto L100; } bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1], (ftnlen)1); ibscl = 0; if (bnrm > 0.f && bnrm < smlnum) { /* Scale matrix norm up to SMLNUM */ clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, info, (ftnlen)1); ibscl = 1; } else if (bnrm > bignum) { /* Scale matrix norm down to BIGNUM */ clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, info, (ftnlen)1); ibscl = 2; } /* Compute QR factorization with column pivoting of A: */ /* A * P = Q * R */ cgeqpf_(m, n, &a[a_offset], lda, &jpvt[1], &work[1], &work[mn + 1], & rwork[1], info); /* complex workspace MN+N. Real workspace 2*N. Details of Householder */ /* rotations stored in WORK(1:MN). */ /* Determine RANK using incremental condition estimation */ i__1 = ismin; work[i__1].r = 1.f, work[i__1].i = 0.f; i__1 = ismax; work[i__1].r = 1.f, work[i__1].i = 0.f; smax = c_abs(&a[a_dim1 + 1]); smin = smax; if (c_abs(&a[a_dim1 + 1]) == 0.f) { *rank = 0; i__1 = max(*m,*n); claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb, (ftnlen)1); goto L100; } else { *rank = 1; } L10: if (*rank < mn) { i__ = *rank + 1; claic1_(&c__2, rank, &work[ismin], &smin, &a[i__ * a_dim1 + 1], &a[ i__ + i__ * a_dim1], &sminpr, &s1, &c1); claic1_(&c__1, rank, &work[ismax], &smax, &a[i__ * a_dim1 + 1], &a[ i__ + i__ * a_dim1], &smaxpr, &s2, &c2); if (smaxpr * *rcond <= sminpr) { i__1 = *rank; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = ismin + i__ - 1; i__3 = ismin + i__ - 1; q__1.r = s1.r * work[i__3].r - s1.i * work[i__3].i, q__1.i = s1.r * work[i__3].i + s1.i * work[i__3].r; work[i__2].r = q__1.r, work[i__2].i = q__1.i; i__2 = ismax + i__ - 1; i__3 = ismax + i__ - 1; q__1.r = s2.r * work[i__3].r - s2.i * work[i__3].i, q__1.i = s2.r * work[i__3].i + s2.i * work[i__3].r; work[i__2].r = q__1.r, work[i__2].i = q__1.i; /* L20: */ } i__1 = ismin + *rank; work[i__1].r = c1.r, work[i__1].i = c1.i; i__1 = ismax + *rank; work[i__1].r = c2.r, work[i__1].i = c2.i; smin = sminpr; smax = smaxpr; ++(*rank); goto L10; } } /* Logically partition R = [ R11 R12 ] */ /* [ 0 R22 ] */ /* where R11 = R(1:RANK,1:RANK) */ /* [R11,R12] = [ T11, 0 ] * Y */ if (*rank < *n) { ctzrqf_(rank, n, &a[a_offset], lda, &work[mn + 1], info); } /* Details of Householder rotations stored in WORK(MN+1:2*MN) */ /* B(1:M,1:NRHS) := Q' * B(1:M,1:NRHS) */ cunm2r_("Left", "Conjugate transpose", m, nrhs, &mn, &a[a_offset], lda, & work[1], &b[b_offset], ldb, &work[(mn << 1) + 1], info, (ftnlen)4, (ftnlen)19); /* workspace NRHS */ /* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) */ ctrsm_("Left", "Upper", "No transpose", "Non-unit", rank, nrhs, &c_b2, &a[ a_offset], lda, &b[b_offset], ldb, (ftnlen)4, (ftnlen)5, (ftnlen) 12, (ftnlen)8); i__1 = *n; for (i__ = *rank + 1; i__ <= i__1; ++i__) { i__2 = *nrhs; for (j = 1; j <= i__2; ++j) { i__3 = i__ + j * b_dim1; b[i__3].r = 0.f, b[i__3].i = 0.f; /* L30: */ } /* L40: */ } /* B(1:N,1:NRHS) := Y' * B(1:N,1:NRHS) */ if (*rank < *n) { i__1 = *rank; for (i__ = 1; i__ <= i__1; ++i__) { i__2 = *n - *rank + 1; r_cnjg(&q__1, &work[mn + i__]); clatzm_("Left", &i__2, nrhs, &a[i__ + (*rank + 1) * a_dim1], lda, &q__1, &b[i__ + b_dim1], &b[*rank + 1 + b_dim1], ldb, & work[(mn << 1) + 1], (ftnlen)4); /* L50: */ } } /* workspace NRHS */ /* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) */ i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = (mn << 1) + i__; work[i__3].r = 1.f, work[i__3].i = 0.f; /* L60: */ } i__2 = *n; for (i__ = 1; i__ <= i__2; ++i__) { i__3 = (mn << 1) + i__; if (work[i__3].r == 1.f && work[i__3].i == 0.f) { if (jpvt[i__] != i__) { k = i__; i__3 = k + j * b_dim1; t1.r = b[i__3].r, t1.i = b[i__3].i; i__3 = jpvt[k] + j * b_dim1; t2.r = b[i__3].r, t2.i = b[i__3].i; L70: i__3 = jpvt[k] + j * b_dim1; b[i__3].r = t1.r, b[i__3].i = t1.i; i__3 = (mn << 1) + k; work[i__3].r = 0.f, work[i__3].i = 0.f; t1.r = t2.r, t1.i = t2.i; k = jpvt[k]; i__3 = jpvt[k] + j * b_dim1; t2.r = b[i__3].r, t2.i = b[i__3].i; if (jpvt[k] != i__) { goto L70; } i__3 = i__ + j * b_dim1; b[i__3].r = t1.r, b[i__3].i = t1.i; i__3 = (mn << 1) + k; work[i__3].r = 0.f, work[i__3].i = 0.f; } } /* L80: */ } /* L90: */ } /* Undo scaling */ if (iascl == 1) { clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, info, (ftnlen)1); clascl_("U", &c__0, &c__0, &smlnum, &anrm, rank, rank, &a[a_offset], lda, info, (ftnlen)1); } else if (iascl == 2) { clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, info, (ftnlen)1); clascl_("U", &c__0, &c__0, &bignum, &anrm, rank, rank, &a[a_offset], lda, info, (ftnlen)1); } if (ibscl == 1) { clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, info, (ftnlen)1); } else if (ibscl == 2) { clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, info, (ftnlen)1); } L100: return 0; /* End of CGELSX */ } /* cgelsx_ */