Ejemplo n.º 1
0
ifft2d_hermitian_inplace::ifft2d_hermitian_inplace(
    gpu::compute::command_queue queue,
    const math::ivec2 &size,
    size_t num_batches)
{
    static detail::fft_api fft_api;
    size_t N = size.x;
    size_t M = size.y;
    size_t lenghts[] = { N, M };
    size_t in_stride[] = { 1, N / 2 + 1 };
    size_t out_stride[] = { 1, N + 2 };

    auto context = queue.getInfo<CL_QUEUE_CONTEXT>();
    CLFFT_CHECK(clfftCreateDefaultPlan(&fft_plan, context(), CLFFT_2D, lenghts));
    CLFFT_CHECK(clfftSetPlanBatchSize(fft_plan, num_batches));
    CLFFT_CHECK(clfftSetPlanPrecision(fft_plan, detail::clfft_precision<math::real>::value));
    CLFFT_CHECK(clfftSetResultLocation(fft_plan, CLFFT_INPLACE));
    CLFFT_CHECK(clfftSetLayout(fft_plan, CLFFT_HERMITIAN_INTERLEAVED, CLFFT_REAL));
    CLFFT_CHECK(clfftSetPlanInStride(fft_plan, CLFFT_2D, in_stride));
    CLFFT_CHECK(clfftSetPlanOutStride(fft_plan, CLFFT_2D, out_stride));
    CLFFT_CHECK(clfftSetPlanScale(fft_plan, CLFFT_BACKWARD, cl_float(1)));
    CLFFT_CHECK(clfftSetPlanDistance(fft_plan, M * (N / 2 + 1), M * (N + 2)));

    CLFFT_CHECK(clfftBakePlan(fft_plan, 1, &queue(), nullptr, nullptr));

    size_t tmp_sz;
    CLFFT_CHECK(clfftGetTmpBufSize(fft_plan, &tmp_sz));
    tmp_buf = gpu::compute::buffer(context, CL_MEM_READ_WRITE, tmp_sz);
}
Ejemplo n.º 2
0
JNIEXPORT jlong JNICALL Java_ffx_numerics_fft_Complex3DOpenCL_createDefaultPlanNative
(JNIEnv *env, jclass object, jlong jContext, jint dimension, jint dimX, jint dimY, jint dimZ) {
    clfftStatus_ err;
    clfftDim dim;
    clfftPlanHandle planHandle;
    size_t clLengths[(int) dimension];
    size_t clStrides[(int) dimension];
    cl_float scale = 1.0;
    cl_context context = (cl_context) jContext;

    switch ((int) dimension) {
        case 3:
            dim = CLFFT_3D;
            clLengths[0] = (size_t) dimX;
            clLengths[1] = (size_t) dimY;
            clLengths[2] = (size_t) dimZ;
            clStrides[0] = (size_t) 1;
            clStrides[1] = (size_t) dimX;
            clStrides[2] = (size_t) dimX * dimY;
            break;
        case 2:
            dim = CLFFT_2D;
            clLengths[0] = (size_t) dimX;
            clLengths[1] = (size_t) dimY;
            clStrides[0] = (size_t) 1;
            clStrides[1] = (size_t) dimX;
            break;
        case 1:
        default:
            dim = CLFFT_1D;
            clLengths[0] = (size_t) dimX;
            clStrides[0] = (size_t) 1;
            break;
    }

    err = clfftCreateDefaultPlan(&planHandle, context, dim, clLengths);
    //printf(" Lengths %zd %d\n", planHandle, err);
    err = clfftSetPlanInStride(planHandle, dim, clStrides);
    //printf(" In Strides %zd %d\n", planHandle, err);
    err = clfftSetPlanOutStride(planHandle, dim, clStrides);
    //printf(" Out Strides %zd %d\n", planHandle, err);
    err = clfftSetPlanScale(planHandle, CLFFT_FORWARD, scale);
    //printf(" Forward Scale %zd %d\n", planHandle, err);
    err = clfftSetPlanScale(planHandle, CLFFT_BACKWARD, scale);
    //printf(" Backward Scale %zd %d\n", planHandle, err);
    err = clfftSetPlanPrecision(planHandle, CLFFT_DOUBLE);
    //printf(" Precision %zd %d\n", planHandle, err);
    err = clfftSetLayout(planHandle,  CLFFT_COMPLEX_INTERLEAVED,  CLFFT_COMPLEX_INTERLEAVED);
    //printf(" Layout %zd %d\n", planHandle, err);
    return ((jlong) planHandle);
}
Ejemplo n.º 3
0
void FC_FUNC_(clfftsetplaninstride_low, CLFFTSETPLANINSTRIDE_LOW)(clfftPlanHandle ** plHandle, 
									const int * dim, 
									const cl_long * clStrides, 
									int * status){
  size_t * strides;
  int i;

  strides = (size_t *) malloc(sizeof(size_t)*(*dim));

  for(i = 0; i < *dim; i++){
    strides[i] = (size_t) clStrides[i];
    /* printf("%d %d\n", clStrides[i], strides[i]);*/
  }

  *status = clfftSetPlanInStride(**plHandle, *dim, strides);
  
  free(strides);

}
Ejemplo n.º 4
0
int transform( size_t* lengths, const size_t *inStrides, const size_t *outStrides, size_t batch_size,
				clfftLayout in_layout, clfftLayout out_layout,
				clfftResultLocation place, clfftPrecision precision, clfftDirection dir,
				cl_device_type deviceType, cl_int deviceId, cl_int platformId, bool printInfo,
				cl_uint command_queue_flags, cl_uint profile_count,
				std::auto_ptr< clfftSetupData > setupData )
{
	//	Our command line does not specify what dimension FFT we wish to transform; we decode
	//	this from the lengths that the user specifies for X, Y, Z.  A length of one means that
	//	The user does not want that dimension.

	const size_t max_dimensions = 3;
	size_t strides[ 4 ];
	size_t o_strides[ 4 ];
	size_t fftVectorSize = 0;
	size_t fftVectorSizePadded = 0;
	size_t fftBatchSize = 0;
	size_t outfftVectorSize = 0;
	size_t outfftVectorSizePadded = 0;
	size_t outfftBatchSize = 0;
	size_t size_of_input_buffers_in_bytes = 0;
	size_t size_of_output_buffers_in_bytes = 0;
	cl_uint number_of_output_buffers = 0;
	clfftDim	dim = CLFFT_1D;
	cl_mem input_cl_mem_buffers [2] = { NULL, NULL };
	cl_mem output_cl_mem_buffers[2] = { NULL, NULL };
	std::vector< cl_device_id > device_id;
	cl_context context;
	cl_command_queue queue;
	cl_event outEvent = NULL;
	clfftPlanHandle plan_handle;

	for (unsigned u = 0; u < max_dimensions; ++u) {
		if (0 != lengths[u])
			continue;
		lengths[u] = 1;
	}

	if( lengths[ 1 ] > 1 )
	{
		dim	= CLFFT_2D;
	}
	if( lengths[ 2 ] > 1 )
	{
		dim	= CLFFT_3D;
	}

	strides[ 0 ] = inStrides[0];
	strides[ 1 ] = inStrides[1];
	strides[ 2 ] = inStrides[2];
	strides[ 3 ] = inStrides[3];

	o_strides[ 0 ] = outStrides[0];
	o_strides[ 1 ] = outStrides[1];
	o_strides[ 2 ] = outStrides[2];
	o_strides[ 3 ] = outStrides[3];

	fftVectorSize = lengths[0] * lengths[1] * lengths[2];
	fftVectorSizePadded = strides[3];
	fftBatchSize = fftVectorSizePadded * batch_size;

	size_t Nt = 1 + lengths[0]/2;

	if(place == CLFFT_INPLACE)
	{
		outfftVectorSize = fftVectorSize;
		outfftVectorSizePadded = fftVectorSizePadded;
		outfftBatchSize = fftBatchSize;
	}
	else
	{
		outfftVectorSize = lengths[0] * lengths[1] * lengths[2];
		outfftVectorSizePadded = o_strides[3];
		outfftBatchSize = outfftVectorSizePadded * batch_size;
	}


	// Real to complex case
	if( (in_layout == CLFFT_REAL) || (out_layout == CLFFT_REAL) )
	{
		fftVectorSizePadded = strides[3];
		fftBatchSize = fftVectorSizePadded * batch_size;

		outfftVectorSizePadded = o_strides[3];
		outfftBatchSize = outfftVectorSizePadded * batch_size;

		fftVectorSize = lengths[0] * lengths[1] * lengths[2];
		outfftVectorSize = fftVectorSize;

	}


	switch( out_layout )
	{
	case CLFFT_COMPLEX_INTERLEAVED:
		number_of_output_buffers = 1;
		size_of_output_buffers_in_bytes = outfftBatchSize * sizeof( std::complex< T > );
		break;
	case CLFFT_COMPLEX_PLANAR:
		number_of_output_buffers = 2;
		size_of_output_buffers_in_bytes = outfftBatchSize * sizeof(T);
		break;
	case CLFFT_HERMITIAN_INTERLEAVED:
		number_of_output_buffers = 1;
		size_of_output_buffers_in_bytes = outfftBatchSize * sizeof( std::complex< T > );
		break;
	case CLFFT_HERMITIAN_PLANAR:
		number_of_output_buffers = 2;
		size_of_output_buffers_in_bytes = outfftBatchSize * sizeof(T);
		break;
	case CLFFT_REAL:
		number_of_output_buffers = 1;
		size_of_output_buffers_in_bytes = outfftBatchSize * sizeof(T);
		break;
	}

	// Fill the input buffers
	switch( in_layout )
	{
	case CLFFT_COMPLEX_INTERLEAVED:
		{
			//	This call creates our openCL context and sets up our devices; expected to throw on error
			size_of_input_buffers_in_bytes = fftBatchSize * sizeof( std::complex< T > );

			device_id = initializeCL( deviceType, deviceId, platformId, context, printInfo );
			createOpenCLCommandQueue( context,
				command_queue_flags, queue,
				device_id,
				size_of_input_buffers_in_bytes, 1, input_cl_mem_buffers,
				size_of_output_buffers_in_bytes, number_of_output_buffers, output_cl_mem_buffers);

			std::vector< std::complex< T > > input( fftBatchSize );

			// set zero
			for( cl_uint i = 0; i < fftBatchSize; ++i )
			{
				input[ i ] = 0;
			}

			// impulse test case
			for(size_t b = 0; b < batch_size; b++)
			{
				size_t p3 = b * strides[3];
				for(size_t k = 0; k < lengths[2]; k++)
				{
					size_t p2 = p3 + k * strides[2];
					for(size_t j = 0; j < lengths[1]; j++)
					{
						size_t p1 = p2 + j * strides[1];
						for(size_t i = 0; i < lengths[0]; i++)
						{
							size_t p0 = p1 + i * strides[0];
							input[p0] = 1;
						}
					}
				}
			}


			OPENCL_V_THROW( clEnqueueWriteBuffer( queue, input_cl_mem_buffers[ 0 ], CL_TRUE, 0, size_of_input_buffers_in_bytes, &input[ 0 ],
				0, NULL, &outEvent ),
				"clEnqueueWriteBuffer failed" );

		}
		break;
	case CLFFT_COMPLEX_PLANAR:
		{
			//	This call creates our openCL context and sets up our devices; expected to throw on error
			size_of_input_buffers_in_bytes = fftBatchSize * sizeof( T );

			device_id = initializeCL( deviceType, deviceId, platformId, context, printInfo );
			createOpenCLCommandQueue( context,
				command_queue_flags, queue,
				device_id,
				size_of_input_buffers_in_bytes, 2, input_cl_mem_buffers,
				size_of_output_buffers_in_bytes, number_of_output_buffers, output_cl_mem_buffers);

			std::vector< T > real( fftBatchSize );
			std::vector< T > imag( fftBatchSize );

			// set zero
			for( cl_uint i = 0; i < fftBatchSize; ++i )
			{
				real[ i ] = 0;
				imag[ i ] = 0;
			}

			// impulse test case
			for(size_t b = 0; b < batch_size; b++)
			{
				size_t p3 = b * strides[3];
				for(size_t k = 0; k < lengths[2]; k++)
				{
					size_t p2 = p3 + k * strides[2];
					for(size_t j = 0; j < lengths[1]; j++)
					{
						size_t p1 = p2 + j * strides[1];
						for(size_t i = 0; i < lengths[0]; i++)
						{
							size_t p0 = p1 + i * strides[0];
							real[p0] = 1;
						}
					}
				}
			}


			OPENCL_V_THROW( clEnqueueWriteBuffer( queue, input_cl_mem_buffers[ 0 ], CL_TRUE, 0, size_of_input_buffers_in_bytes, &real[ 0 ],
				0, NULL, &outEvent ),
				"clEnqueueWriteBuffer failed" );
			OPENCL_V_THROW( clEnqueueWriteBuffer( queue, input_cl_mem_buffers[ 1 ], CL_TRUE, 0, size_of_input_buffers_in_bytes, &imag[ 0 ],
				0, NULL, &outEvent ),
				"clEnqueueWriteBuffer failed" );
		}
		break;
	case CLFFT_HERMITIAN_INTERLEAVED:
		{
			//	This call creates our openCL context and sets up our devices; expected to throw on error
			size_of_input_buffers_in_bytes = fftBatchSize * sizeof( std::complex< T > );

			device_id = initializeCL( deviceType, deviceId, platformId, context, printInfo );
			createOpenCLCommandQueue( context,
				command_queue_flags, queue,
				device_id,
				size_of_input_buffers_in_bytes, 1, input_cl_mem_buffers,
				size_of_output_buffers_in_bytes, number_of_output_buffers, output_cl_mem_buffers);

			std::vector< std::complex< T > > input( fftBatchSize );

			// set zero
			for( cl_uint i = 0; i < fftBatchSize; ++i )
			{
				input[ i ] = 0;
			}

			// impulse test case
			for(size_t b = 0; b < batch_size; b++)
			{
				size_t p3 = b * strides[3];
				input[p3] = static_cast<T>(outfftVectorSize);

			}


			OPENCL_V_THROW( clEnqueueWriteBuffer( queue, input_cl_mem_buffers[ 0 ], CL_TRUE, 0, size_of_input_buffers_in_bytes, &input[ 0 ],
				0, NULL, &outEvent ),
				"clEnqueueWriteBuffer failed" );
		}
		break;
	case CLFFT_HERMITIAN_PLANAR:
		{
			//	This call creates our openCL context and sets up our devices; expected to throw on error
			size_of_input_buffers_in_bytes = fftBatchSize * sizeof( T );

			device_id = initializeCL( deviceType, deviceId, platformId, context, printInfo );
			createOpenCLCommandQueue( context,
				command_queue_flags, queue,
				device_id,
				size_of_input_buffers_in_bytes, 2, input_cl_mem_buffers,
				size_of_output_buffers_in_bytes, number_of_output_buffers, output_cl_mem_buffers);

			std::vector< T > real( fftBatchSize );
			std::vector< T > imag( fftBatchSize );

			// set zero
			for( cl_uint i = 0; i < fftBatchSize; ++i )
			{
				real[ i ] = 0;
				imag[ i ] = 0;
			}

			// impulse test case
			for(size_t b = 0; b < batch_size; b++)
			{
				size_t p3 = b * strides[3];
				real[p3] = static_cast<T>(outfftVectorSize);
			}



			OPENCL_V_THROW( clEnqueueWriteBuffer( queue, input_cl_mem_buffers[ 0 ], CL_TRUE, 0, size_of_input_buffers_in_bytes, &real[ 0 ],
				0, NULL, &outEvent ),
				"clEnqueueWriteBuffer failed" );
			OPENCL_V_THROW( clEnqueueWriteBuffer( queue, input_cl_mem_buffers[ 1 ], CL_TRUE, 0, size_of_input_buffers_in_bytes, &imag[ 0 ],
				0, NULL, &outEvent ),
				"clEnqueueWriteBuffer failed" );
		}
		break;
	case CLFFT_REAL:
		{
			//	This call creates our openCL context and sets up our devices; expected to throw on error
			size_of_input_buffers_in_bytes = fftBatchSize * sizeof( T );

			device_id = initializeCL( deviceType, deviceId, platformId, context, printInfo );
			createOpenCLCommandQueue( context,
				command_queue_flags, queue,
				device_id,
				size_of_input_buffers_in_bytes, 1, input_cl_mem_buffers,
				size_of_output_buffers_in_bytes, number_of_output_buffers, output_cl_mem_buffers);

			std::vector< T > real( fftBatchSize );

			// set zero
			for( cl_uint i = 0; i < fftBatchSize; ++i )
			{
				real[ i ] = 0;
			}

			// impulse test case
			for(size_t b = 0; b < batch_size; b++)
			{
				size_t p3 = b * strides[3];
				for(size_t k = 0; k < lengths[2]; k++)
				{
					size_t p2 = p3 + k * strides[2];
					for(size_t j = 0; j < lengths[1]; j++)
					{
						size_t p1 = p2 + j * strides[1];
						for(size_t i = 0; i < lengths[0]; i++)
						{
							size_t p0 = p1 + i * strides[0];
							real[p0] = 1;
						}
					}
				}
			}


			OPENCL_V_THROW( clEnqueueWriteBuffer( queue, input_cl_mem_buffers[ 0 ], CL_TRUE, 0, size_of_input_buffers_in_bytes, &real[ 0 ],
				0, NULL, &outEvent ),
				"clEnqueueWriteBuffer failed" );
		}
		break;
	default:
		{
			throw std::runtime_error( "Input layout format not yet supported" );
		}
		break;
	}

	//	Discover and load the timer module if present
	void* timerLibHandle = LoadSharedLibrary( "lib", "StatTimer", false );
	if( timerLibHandle == NULL )
	{
		terr << _T( "Could not find the external timing library; timings disabled" ) << std::endl;
	}


	//	Timer module discovered and loaded successfully
	//	Initialize function pointers to call into the shared module
	PFGETSTATTIMER get_timer = reinterpret_cast< PFGETSTATTIMER > ( LoadFunctionAddr( timerLibHandle, "getStatTimer" ) );

	//	Create and initialize our timer class, if the external timer shared library loaded
	baseStatTimer* timer = NULL;
	size_t	clFFTID = 0;
	if( get_timer )
	{
		timer = get_timer( CLFFT_GPU );
		timer->Reserve( 1, profile_count );
		timer->setNormalize( true );

		clFFTID	= timer->getUniqueID( "clFFT", 0 );
	}

	OPENCL_V_THROW( clfftSetup( setupData.get( ) ), "clfftSetup failed" );
	OPENCL_V_THROW( clfftCreateDefaultPlan( &plan_handle, context, dim, lengths ), "clfftCreateDefaultPlan failed" );

	//	Default plan creates a plan that expects an inPlace transform with interleaved complex numbers
	OPENCL_V_THROW( clfftSetResultLocation( plan_handle, place ), "clfftSetResultLocation failed" );
	OPENCL_V_THROW( clfftSetLayout( plan_handle, in_layout, out_layout ), "clfftSetLayout failed" );
	OPENCL_V_THROW( clfftSetPlanBatchSize( plan_handle, batch_size ), "clfftSetPlanBatchSize failed" );
	OPENCL_V_THROW( clfftSetPlanPrecision( plan_handle, precision ), "clfftSetPlanPrecision failed" );

	OPENCL_V_THROW (clfftSetPlanInStride  ( plan_handle, dim, strides ), "clfftSetPlanInStride failed" );
	OPENCL_V_THROW (clfftSetPlanOutStride ( plan_handle, dim, o_strides ), "clfftSetPlanOutStride failed" );
	OPENCL_V_THROW (clfftSetPlanDistance  ( plan_handle, strides[ 3 ], o_strides[ 3 ]), "clfftSetPlanDistance failed" );

	// Set backward scale factor to 1.0 for non real FFTs to do correct output checks
	if(dir == CLFFT_BACKWARD && in_layout != CLFFT_REAL && out_layout != CLFFT_REAL)
		OPENCL_V_THROW (clfftSetPlanScale( plan_handle, CLFFT_BACKWARD, (cl_float)1.0f ), "clfftSetPlanScale failed" );

	OPENCL_V_THROW( clfftBakePlan( plan_handle, 1, &queue, NULL, NULL ), "clfftBakePlan failed" );

	//get the buffersize
	size_t buffersize=0;
	OPENCL_V_THROW( clfftGetTmpBufSize(plan_handle, &buffersize ), "clfftGetTmpBufSize failed" );

	//allocate the intermediate buffer
	cl_mem clMedBuffer=NULL;

	if (buffersize)
	{
		cl_int medstatus;
		clMedBuffer = clCreateBuffer ( context, CL_MEM_READ_WRITE, buffersize, 0, &medstatus);
		OPENCL_V_THROW( medstatus, "Creating intmediate Buffer failed" );
	}

	switch( in_layout )
	{
	case CLFFT_COMPLEX_INTERLEAVED:
	case CLFFT_COMPLEX_PLANAR:
	case CLFFT_HERMITIAN_INTERLEAVED:
	case CLFFT_HERMITIAN_PLANAR:
	case CLFFT_REAL:
		break;
	default:
		//	Don't recognize input layout
		return CLFFT_INVALID_ARG_VALUE;
	}

	switch( out_layout )
	{
	case CLFFT_COMPLEX_INTERLEAVED:
	case CLFFT_COMPLEX_PLANAR:
	case CLFFT_HERMITIAN_INTERLEAVED:
	case CLFFT_HERMITIAN_PLANAR:
	case CLFFT_REAL:
		break;
	default:
		//	Don't recognize output layout
		return CLFFT_INVALID_ARG_VALUE;
	}

	if (( place == CLFFT_INPLACE )
	&&  ( in_layout != out_layout )) {
		switch( in_layout )
		{
		case CLFFT_COMPLEX_INTERLEAVED:
			{
				if( (out_layout == CLFFT_COMPLEX_PLANAR) || (out_layout == CLFFT_HERMITIAN_PLANAR) )
				{
					throw std::runtime_error( "Cannot use the same buffer for interleaved->planar in-place transforms" );
				}
				break;
			}
		case CLFFT_COMPLEX_PLANAR:
			{
				if( (out_layout == CLFFT_COMPLEX_INTERLEAVED) || (out_layout == CLFFT_HERMITIAN_INTERLEAVED) )
				{
					throw std::runtime_error( "Cannot use the same buffer for planar->interleaved in-place transforms" );
				}
				break;
			}
		case CLFFT_HERMITIAN_INTERLEAVED:
			{
				if( out_layout != CLFFT_REAL )
				{
					throw std::runtime_error( "Cannot use the same buffer for interleaved->planar in-place transforms" );
				}
				break;
			}
		case CLFFT_HERMITIAN_PLANAR:
			{
				throw std::runtime_error( "Cannot use the same buffer for planar->interleaved in-place transforms" );
				break;
			}
		case CLFFT_REAL:
			{
				if( (out_layout == CLFFT_COMPLEX_PLANAR) || (out_layout == CLFFT_HERMITIAN_PLANAR) )
				{
					throw std::runtime_error( "Cannot use the same buffer for interleaved->planar in-place transforms" );
				}
				break;
			}
		}
	}

	//	Loop as many times as the user specifies to average out the timings
	//
	cl_mem * BuffersOut = ( place == CLFFT_INPLACE ) ? NULL : &output_cl_mem_buffers[ 0 ];

	Timer tr;
	tr.Start();

	for( cl_uint i = 0; i < profile_count; ++i )
	{
		if( timer ) timer->Start( clFFTID );

		OPENCL_V_THROW( clfftEnqueueTransform( plan_handle, dir, 1, &queue, 0, NULL, &outEvent,
			&input_cl_mem_buffers[ 0 ], BuffersOut, clMedBuffer ),
			"clfftEnqueueTransform failed" );

		if( timer ) timer->Stop( clFFTID );
	}
	OPENCL_V_THROW( clFinish( queue ), "clFinish failed" );
	if(clMedBuffer) clReleaseMemObject(clMedBuffer);

	double wtime = tr.Sample()/((double)profile_count);
	size_t totalLen = 1;
	for(int i=0; i<dim; i++) totalLen *= lengths[i];
	double opsconst = 5.0 * (double)totalLen * log((double)totalLen) / log(2.0);

	if(profile_count > 1)
	{
		tout << "\nExecution wall time: " << 1000.0*wtime << " ms" << std::endl;
		tout << "Execution gflops: " << ((double)batch_size * opsconst)/(1000000000.0*wtime) << std::endl;
	}

	if( timer && (command_queue_flags & CL_QUEUE_PROFILING_ENABLE) )
	{
		//	Remove all timings that are outside of 2 stddev (keep 65% of samples); we ignore outliers to get a more consistent result
		timer->pruneOutliers( 2.0 );
		timer->Print( );
		timer->Reset( );
	}

	/*****************/
	FreeSharedLibrary( timerLibHandle );

	// Read and check output data
	// This check is not valid if the FFT is executed multiple times inplace.
	//
	if (( place == CLFFT_OUTOFPLACE )
	||  ( profile_count == 1))
	{
		bool checkflag= false;
		switch( out_layout )
		{
		case CLFFT_HERMITIAN_INTERLEAVED:
		case CLFFT_COMPLEX_INTERLEAVED:
			{
				std::vector< std::complex< T > > output( outfftBatchSize );

				if( place == CLFFT_INPLACE )
				{
					OPENCL_V_THROW( clEnqueueReadBuffer( queue, input_cl_mem_buffers[ 0 ], CL_TRUE, 0, size_of_input_buffers_in_bytes, &output[ 0 ],
						0, NULL, NULL ),
						"Reading the result buffer failed" );
				}
				else
				{
					OPENCL_V_THROW( clEnqueueReadBuffer( queue, BuffersOut[ 0 ], CL_TRUE, 0, size_of_output_buffers_in_bytes, &output[ 0 ],
						0, NULL, NULL ),
						"Reading the result buffer failed" );
				}

				//check output data
				for( cl_uint i = 0; i < outfftBatchSize; ++i )
				{
					if (0 == (i % outfftVectorSizePadded))
					{
						if (output[i].real() != outfftVectorSize)
						{
							checkflag = true;
							break;
						}
					}
					else
					{
						if (output[ i ].real() != 0)
						{
							checkflag = true;
							break;
						}
					}

					if (output[ i ].imag() != 0)
					{
						checkflag = true;
						break;
					}
				}
			}
			break;
		case CLFFT_HERMITIAN_PLANAR:
		case CLFFT_COMPLEX_PLANAR:
			{
				std::valarray< T > real( outfftBatchSize );
				std::valarray< T > imag( outfftBatchSize );

				if( place == CLFFT_INPLACE )
				{
					OPENCL_V_THROW( clEnqueueReadBuffer( queue, input_cl_mem_buffers[ 0 ], CL_TRUE, 0, size_of_input_buffers_in_bytes, &real[ 0 ],
						0, NULL, NULL ),
						"Reading the result buffer failed" );
					OPENCL_V_THROW( clEnqueueReadBuffer( queue, input_cl_mem_buffers[ 1 ], CL_TRUE, 0, size_of_input_buffers_in_bytes, &imag[ 0 ],
						0, NULL, NULL ),
						"Reading the result buffer failed" );
				}
				else
				{
					OPENCL_V_THROW( clEnqueueReadBuffer( queue, BuffersOut[ 0 ], CL_TRUE, 0, size_of_output_buffers_in_bytes, &real[ 0 ],
						0, NULL, NULL ),
						"Reading the result buffer failed" );
					OPENCL_V_THROW( clEnqueueReadBuffer( queue, BuffersOut[ 1 ], CL_TRUE, 0, size_of_output_buffers_in_bytes, &imag[ 0 ],
						0, NULL, NULL ),
						"Reading the result buffer failed" );
				}

				//  Check output data
				for( cl_uint i = 0; i < outfftBatchSize; ++i )
				{
					if (0 == (i % outfftVectorSizePadded))
					{
						if (real[i] != outfftVectorSize)
						{
							checkflag = true;
							break;
						}
					}
					else
					{
						if (real[i] != 0)
						{
							checkflag = true;
							break;
						}
					}

					if (imag[i] != 0)
					{
						checkflag = true;
						break;
					}
				}
			}
			break;
		case CLFFT_REAL:
			{
				std::valarray< T > real( outfftBatchSize );

				if( place == CLFFT_INPLACE )
				{
					OPENCL_V_THROW( clEnqueueReadBuffer( queue, input_cl_mem_buffers[ 0 ], CL_TRUE, 0, size_of_input_buffers_in_bytes, &real[ 0 ],
						0, NULL, NULL ),
						"Reading the result buffer failed" );
				}
				else
				{
					OPENCL_V_THROW( clEnqueueReadBuffer( queue, BuffersOut[ 0 ], CL_TRUE, 0, size_of_output_buffers_in_bytes, &real[ 0 ],
						0, NULL, NULL ),
						"Reading the result buffer failed" );
				}

				////check output data

				for(size_t b = 0; b < batch_size; b++)
				{
					size_t p3 = b * o_strides[3];
					for(size_t k = 0; k < lengths[2]; k++)
					{
						size_t p2 = p3 + k * o_strides[2];
						for(size_t j = 0; j < lengths[1]; j++)
						{
							size_t p1 = p2 + j * o_strides[1];
							for(size_t i = 0; i < lengths[0]; i++)
							{
								size_t p0 = p1 + i * o_strides[0];

								if (real[p0] != 1)
								{
									checkflag = true;
									break;
								}

							}
						}
					}
				}
			}
			break;
		default:
			{
				throw std::runtime_error( "Input layout format not yet supported" );
			}
			break;
		}

		if (checkflag)
		{
			std::cout << "\n\n\t\tInternal Client Test *****FAIL*****" << std::endl;
		}
		else
		{
			std::cout << "\n\n\t\tInternal Client Test *****PASS*****" << std::endl;
		}
	}

	OPENCL_V_THROW( clfftDestroyPlan( &plan_handle ), "clfftDestroyPlan failed" );
	OPENCL_V_THROW( clfftTeardown( ), "clfftTeardown failed" );

	cleanupCL( &context, &queue, countOf( input_cl_mem_buffers ), input_cl_mem_buffers, countOf( output_cl_mem_buffers ), output_cl_mem_buffers, &outEvent );
	return 0;
}