CursorView::CursorView() // construct view { struct List { CursorShape shape; const char* name; // cursor name }; static List list[] = { { ArrowCursor, "arrowCursor" }, { UpArrowCursor, "upArrowCursor" }, { CrossCursor, "crossCursor" }, { WaitCursor, "waitCursor" }, { IbeamCursor, "ibeamCursor" }, { SizeVerCursor, "sizeVerCursor" }, { SizeHorCursor, "sizeHorCursor" }, { SizeBDiagCursor, "sizeBDiagCursor" }, { SizeFDiagCursor, "sizeFDiagCursor" }, { SizeAllCursor, "sizeAllCursor" }, { BlankCursor, "blankCursor" }, { SplitVCursor, "splitVCursor" }, { SplitHCursor, "splitHCursor" }, { PointingHandCursor, "pointingHandCursor" }, { ForbiddenCursor, "forbiddenCursor" }, { WhatsThisCursor, "whatsThisCursor" }, { BusyCursor, "busyCursor" } }; setCaption( "CursorView" ); // set window caption QGridLayout* grid = new QGridLayout( this, 5, 4, 20 ); QLabel *label; int i=0; for ( int y=0; y<4; y++ ) { // create the small labels for ( int x=0; x<4; x++ ) { label = new QLabel( this ); label->setCursor( QCursor( list[i].shape ) ); label->setText( list[i].name ); label->setAlignment( AlignCenter ); label->setMargin( 10 ); label->setFrameStyle( QFrame::Box | QFrame::Raised ); grid->addWidget( label, x, y ); i++; } } label = new QLabel( this ); label->setCursor( QCursor( list[i].shape ) ); label->setText( list[i].name ); label->setAlignment( AlignCenter ); label->setMargin( 10 ); label->setFrameStyle( QFrame::Box | QFrame::Raised ); grid->addWidget( label, 4, 0 ); QBitmap cb( cb_width, cb_height, cb_bits, TRUE ); QBitmap cm( cm_width, cm_height, cm_bits, TRUE ); QCursor custom( cb, cm ); // create bitmap cursor label = new QLabel( this ); // create the big label label->setCursor( custom ); label->setText( "Custom bitmap cursor" ); label->setAlignment( AlignCenter ); label->setMargin( 10 ); label->setFrameStyle( QFrame::Box | QFrame::Sunken ); grid->addMultiCellWidget( label, 4, 4, 1, 3 ); }
void ConcurrentMarkThread::run() { initialize_in_thread(); _vtime_start = os::elapsedVTime(); wait_for_universe_init(); G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1CollectorPolicy* g1_policy = g1h->g1_policy(); G1MMUTracker *mmu_tracker = g1_policy->mmu_tracker(); Thread *current_thread = Thread::current(); while (!_should_terminate) { // wait until started is set. sleepBeforeNextCycle(); { ResourceMark rm; HandleMark hm; double cycle_start = os::elapsedVTime(); char verbose_str[128]; // We have to ensure that we finish scanning the root regions // before the next GC takes place. To ensure this we have to // make sure that we do not join the STS until the root regions // have been scanned. If we did then it's possible that a // subsequent GC could block us from joining the STS and proceed // without the root regions have been scanned which would be a // correctness issue. double scan_start = os::elapsedTime(); if (!cm()->has_aborted()) { if (G1Log::fine()) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-root-region-scan-start]"); } _cm->scanRootRegions(); double scan_end = os::elapsedTime(); if (G1Log::fine()) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-root-region-scan-end, %1.7lf]", scan_end - scan_start); } } double mark_start_sec = os::elapsedTime(); if (G1Log::fine()) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-mark-start]"); } int iter = 0; do { iter++; if (!cm()->has_aborted()) { _cm->markFromRoots(); } double mark_end_time = os::elapsedVTime(); double mark_end_sec = os::elapsedTime(); _vtime_mark_accum += (mark_end_time - cycle_start); if (!cm()->has_aborted()) { if (g1_policy->adaptive_young_list_length()) { double now = os::elapsedTime(); double remark_prediction_ms = g1_policy->predict_remark_time_ms(); jlong sleep_time_ms = mmu_tracker->when_ms(now, remark_prediction_ms); os::sleep(current_thread, sleep_time_ms, false); } if (G1Log::fine()) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-mark-end, %1.7lf sec]", mark_end_sec - mark_start_sec); } CMCheckpointRootsFinalClosure final_cl(_cm); sprintf(verbose_str, "GC remark"); VM_CGC_Operation op(&final_cl, verbose_str, true /* needs_pll */); VMThread::execute(&op); } if (cm()->restart_for_overflow() && G1TraceMarkStackOverflow) { gclog_or_tty->print_cr("Restarting conc marking because of MS overflow " "in remark (restart #%d).", iter); } if (cm()->restart_for_overflow()) { if (G1Log::fine()) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-mark-restart-for-overflow]"); } } } while (cm()->restart_for_overflow()); double end_time = os::elapsedVTime(); // Update the total virtual time before doing this, since it will try // to measure it to get the vtime for this marking. We purposely // neglect the presumably-short "completeCleanup" phase here. _vtime_accum = (end_time - _vtime_start); if (!cm()->has_aborted()) { if (g1_policy->adaptive_young_list_length()) { double now = os::elapsedTime(); double cleanup_prediction_ms = g1_policy->predict_cleanup_time_ms(); jlong sleep_time_ms = mmu_tracker->when_ms(now, cleanup_prediction_ms); os::sleep(current_thread, sleep_time_ms, false); } CMCleanUp cl_cl(_cm); sprintf(verbose_str, "GC cleanup"); VM_CGC_Operation op(&cl_cl, verbose_str, false /* needs_pll */); VMThread::execute(&op); } else { // We don't want to update the marking status if a GC pause // is already underway. _sts.join(); g1h->set_marking_complete(); _sts.leave(); } // Check if cleanup set the free_regions_coming flag. If it // hasn't, we can just skip the next step. if (g1h->free_regions_coming()) { // The following will finish freeing up any regions that we // found to be empty during cleanup. We'll do this part // without joining the suspendible set. If an evacuation pause // takes place, then we would carry on freeing regions in // case they are needed by the pause. If a Full GC takes // place, it would wait for us to process the regions // reclaimed by cleanup. double cleanup_start_sec = os::elapsedTime(); if (G1Log::fine()) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-cleanup-start]"); } // Now do the concurrent cleanup operation. _cm->completeCleanup(); // Notify anyone who's waiting that there are no more free // regions coming. We have to do this before we join the STS // (in fact, we should not attempt to join the STS in the // interval between finishing the cleanup pause and clearing // the free_regions_coming flag) otherwise we might deadlock: // a GC worker could be blocked waiting for the notification // whereas this thread will be blocked for the pause to finish // while it's trying to join the STS, which is conditional on // the GC workers finishing. g1h->reset_free_regions_coming(); double cleanup_end_sec = os::elapsedTime(); if (G1Log::fine()) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-cleanup-end, %1.7lf]", cleanup_end_sec - cleanup_start_sec); } } guarantee(cm()->cleanup_list_is_empty(), "at this point there should be no regions on the cleanup list"); // There is a tricky race before recording that the concurrent // cleanup has completed and a potential Full GC starting around // the same time. We want to make sure that the Full GC calls // abort() on concurrent mark after // record_concurrent_mark_cleanup_completed(), since abort() is // the method that will reset the concurrent mark state. If we // end up calling record_concurrent_mark_cleanup_completed() // after abort() then we might incorrectly undo some of the work // abort() did. Checking the has_aborted() flag after joining // the STS allows the correct ordering of the two methods. There // are two scenarios: // // a) If we reach here before the Full GC, the fact that we have // joined the STS means that the Full GC cannot start until we // leave the STS, so record_concurrent_mark_cleanup_completed() // will complete before abort() is called. // // b) If we reach here during the Full GC, we'll be held up from // joining the STS until the Full GC is done, which means that // abort() will have completed and has_aborted() will return // true to prevent us from calling // record_concurrent_mark_cleanup_completed() (and, in fact, it's // not needed any more as the concurrent mark state has been // already reset). _sts.join(); if (!cm()->has_aborted()) { g1_policy->record_concurrent_mark_cleanup_completed(); } _sts.leave(); if (cm()->has_aborted()) { if (G1Log::fine()) { gclog_or_tty->date_stamp(PrintGCDateStamps); gclog_or_tty->stamp(PrintGCTimeStamps); gclog_or_tty->print_cr("[GC concurrent-mark-abort]"); } } // We now want to allow clearing of the marking bitmap to be // suspended by a collection pause. _sts.join(); _cm->clearNextBitmap(); _sts.leave(); } // Update the number of full collections that have been // completed. This will also notify the FullGCCount_lock in case a // Java thread is waiting for a full GC to happen (e.g., it // called System.gc() with +ExplicitGCInvokesConcurrent). _sts.join(); g1h->increment_old_marking_cycles_completed(true /* concurrent */); _sts.leave(); } assert(_should_terminate, "just checking"); terminate(); }
cdiagmat complexm(diagmat &Re) { cdiagmat cm(Re.Sz); for (int i=0;i<Re.Sz;i++) cm(i)=complex(Re(i)); return cm; }
/*! * Shape Matching法 * - 目標位置を計算して,m_pNewPosをその位置に近づける * @param[in] dt タイムステップ幅 */ void rxShapeMatching::shapeMatching(double dt) { if(m_iNumVertices <= 1) return; Vec3 cm(0.0), cm_org(0.0); // 重心 double mass = 0.0f; // 総質量 // 重心座標の計算 for(int i = 0; i < m_iNumVertices;++i){ double m = m_pMass[i]; if(m_pFix[i]) m *= 300.0; // 固定点の質量を大きくする mass += m; Vec3 np(m_pNewPos[i*SM_DIM+0], m_pNewPos[i*SM_DIM+1], m_pNewPos[i*SM_DIM+2]); Vec3 op(m_pOrgPos[i*SM_DIM+0], m_pOrgPos[i*SM_DIM+1], m_pOrgPos[i*SM_DIM+2]); cm += np*m; cm_org += op*m; } cm /= mass; cm_org /= mass; rxMatrix3 Apq(0.0), Aqq(0.0); Vec3 p, q; // Apq = Σmpq^T // Aqq = Σmqq^T for(int i = 0; i < m_iNumVertices; ++i){ Vec3 np(m_pNewPos[i*SM_DIM+0], m_pNewPos[i*SM_DIM+1], m_pNewPos[i*SM_DIM+2]); Vec3 op(m_pOrgPos[i*SM_DIM+0], m_pOrgPos[i*SM_DIM+1], m_pOrgPos[i*SM_DIM+2]); p = np-cm; q = op-cm_org; double m = m_pMass[i]; Apq(0,0) += m*p[0]*q[0]; Apq(0,1) += m*p[0]*q[1]; Apq(0,2) += m*p[0]*q[2]; Apq(1,0) += m*p[1]*q[0]; Apq(1,1) += m*p[1]*q[1]; Apq(1,2) += m*p[1]*q[2]; Apq(2,0) += m*p[2]*q[0]; Apq(2,1) += m*p[2]*q[1]; Apq(2,2) += m*p[2]*q[2]; Aqq(0,0) += m*q[0]*q[0]; Aqq(0,1) += m*q[0]*q[1]; Aqq(0,2) += m*q[0]*q[2]; Aqq(1,0) += m*q[1]*q[0]; Aqq(1,1) += m*q[1]*q[1]; Aqq(1,2) += m*q[1]*q[2]; Aqq(2,0) += m*q[2]*q[0]; Aqq(2,1) += m*q[2]*q[1]; Aqq(2,2) += m*q[2]*q[2]; } rxMatrix3 R, S; PolarDecomposition(Apq, R, S); if(true/*m_bLinearDeformation*/){ // Linear Deformations rxMatrix3 A; A = Apq*Aqq.Inverse(); // A = Apq*Aqq^-1 // 体積保存のために√(det(A))で割る if(m_bVolumeConservation){ double det = fabs(A.Determinant()); if(det > RX_FEQ_EPS){ det = 1.0/sqrt(det); if(det > 2.0) det = 2.0; A *= det; } } // 回転行列Rの代わりの行列RL=βA+(1-β)Rを計算 rxMatrix3 RL = m_dBeta*A+(1.0-m_dBeta)*R; // 目標座標を計算し,現在の頂点座標を移動 for(int i = 0; i < m_iNumVertices; ++i){ if(m_pFix[i]) continue; Vec3 np(m_pNewPos[i*SM_DIM+0], m_pNewPos[i*SM_DIM+1], m_pNewPos[i*SM_DIM+2]); Vec3 op(m_pOrgPos[i*SM_DIM+0], m_pOrgPos[i*SM_DIM+1], m_pOrgPos[i*SM_DIM+2]); q = op-cm_org; Vec3 gp = RL*q+cm; for(int j = 0; j < SM_DIM; j++) { m_pGoalPos[i*SM_DIM+j] = gp[j]; m_pNewPos[i*SM_DIM+j] += (m_pGoalPos[i*SM_DIM+j]-np[j])*m_dAlpha; } } } else{ //// Quadratic Deformations //double Atpq[3][9]; //for(int j = 0; j < 9; ++j){ // Atpq[0][j] = 0.0; // Atpq[1][j] = 0.0; // Atpq[2][j] = 0.0; //} //rxMatrixN<double,9> Atqq; //Atqq.SetValue(0.0); //for(int i = 0; i < m_iNumVertices; ++i){ // p = m_pNewPos[i]-cm; // q = m_pOrgPos[i]-cm_org; // // q~の計算 // double qt[9]; // qt[0] = q[0]; qt[1] = q[1]; qt[2] = q[2]; // qt[3] = q[0]*q[0]; qt[4] = q[1]*q[1]; qt[5] = q[2]*q[2]; // qt[6] = q[0]*q[1]; qt[7] = q[1]*q[2]; qt[8] = q[2]*q[0]; // // A~pq = Σmpq~ の計算 // double m = m_vMass[i]; // for(int j = 0; j < 9; ++j){ // Atpq[0][j] += m*p[0]*qt[j]; // Atpq[1][j] += m*p[1]*qt[j]; // Atpq[2][j] += m*p[2]*qt[j]; // } // // A~qq = Σmq~q~ の計算 // for(int j = 0; j < 9; ++j){ // for(int k = 0; k < 9; ++k){ // Atqq(j,k) += m*qt[j]*qt[k]; // } // } //} //// A~qqの逆行列算出 //Atqq.Invert(); //double At[3][9]; //for(int i = 0; i < 3; ++i){ // for(int j = 0; j < 9; j++){ // At[i][j] = 0.0f; // for(int k = 0; k < 9; k++){ // At[i][j] += Atpq[i][k]*Atqq(k,j); // } // // βA~+(1-β)R~ // At[i][j] *= m_dBeta; // if(j < 3){ // At[i][j] += (1.0f-m_dBeta)*R(i,j); // } // } //} // // a00a11a22+a10a21a02+a20a01a12-a00a21a12-a20a11a02-a10a01a22 //double det = At[0][0]*At[1][1]*At[2][2]+At[1][0]*At[2][1]*At[0][2]+At[2][0]*At[0][1]*At[1][2] // -At[0][0]*At[2][1]*At[1][2]-At[2][0]*At[1][1]*At[0][2]-At[1][0]*At[0][1]*At[2][2]; //// 体積保存のために√(det(A))で割る //if(m_bVolumeConservation){ // if(det != 0.0f){ // det = 1.0f/sqrt(fabs(det)); // if(det > 2.0f) det = 2.0f; // for(int i = 0; i < 3; ++i){ // for(int j = 0; j < 3; ++j){ // At[i][j] *= det; // } // } // } //} //// 目標座標を計算し,現在の頂点座標を移動 //for(int i = 0; i < m_iNumVertices; ++i){ // if(m_pFix[i]) continue; // q = m_pOrgPos[i]-cm_org; // for(int k = 0; k < 3; ++k){ // m_pGoalPos[i][k] = At[k][0]*q[0]+At[k][1]*q[1]+At[k][2]*q[2] // +At[k][3]*q[0]*q[0]+At[k][4]*q[1]*q[1]+At[k][5]*q[2]*q[2]+ // +At[k][6]*q[0]*q[1]+At[k][7]*q[1]*q[2]+At[k][8]*q[2]*q[0]; // } // m_pGoalPos[i] += cm; // m_pNewPos[i] += (m_pGoalPos[i]-m_pNewPos[i])*m_dAlpha; //} } }
ChunkVersion forceShardFilteringMetadataRefresh(OperationContext* opCtx, const NamespaceString& nss, bool forceRefreshFromThisThread) { invariant(!opCtx->lockState()->isLocked()); invariant(!opCtx->getClient()->isInDirectClient()); auto* const shardingState = ShardingState::get(opCtx); invariant(shardingState->canAcceptShardedCommands()); auto routingInfo = uassertStatusOK(Grid::get(opCtx)->catalogCache()->getCollectionRoutingInfoWithRefresh( opCtx, nss, forceRefreshFromThisThread)); auto cm = routingInfo.cm(); if (!cm) { // No chunk manager, so unsharded. // Exclusive collection lock needed since we're now changing the metadata AutoGetCollection autoColl(opCtx, nss, MODE_IX, MODE_X); CollectionShardingRuntime::get(opCtx, nss) ->setFilteringMetadata(opCtx, CollectionMetadata()); return ChunkVersion::UNSHARDED(); } // Optimistic check with only IS lock in order to avoid threads piling up on the collection X // lock below { AutoGetCollection autoColl(opCtx, nss, MODE_IS); auto optMetadata = CollectionShardingState::get(opCtx, nss)->getCurrentMetadataIfKnown(); // We already have newer version if (optMetadata) { const auto& metadata = *optMetadata; if (metadata->isSharded() && metadata->getCollVersion().epoch() == cm->getVersion().epoch() && metadata->getCollVersion() >= cm->getVersion()) { LOG(1) << "Skipping refresh of metadata for " << nss << " " << metadata->getCollVersion() << " with an older " << cm->getVersion(); return metadata->getShardVersion(); } } } // Exclusive collection lock needed since we're now changing the metadata AutoGetCollection autoColl(opCtx, nss, MODE_IX, MODE_X); auto* const css = CollectionShardingRuntime::get(opCtx, nss); { auto optMetadata = CollectionShardingState::get(opCtx, nss)->getCurrentMetadataIfKnown(); // We already have newer version if (optMetadata) { const auto& metadata = *optMetadata; if (metadata->isSharded() && metadata->getCollVersion().epoch() == cm->getVersion().epoch() && metadata->getCollVersion() >= cm->getVersion()) { LOG(1) << "Skipping refresh of metadata for " << nss << " " << metadata->getCollVersion() << " with an older " << cm->getVersion(); return metadata->getShardVersion(); } } } CollectionMetadata metadata(std::move(cm), shardingState->shardId()); const auto newShardVersion = metadata.getShardVersion(); css->setFilteringMetadata(opCtx, std::move(metadata)); return newShardVersion; }
EXPORTABLE(int) myserver_main (char *cmd, MsCgiData* data) { try { MscgiManager cm(data); program_name = cmd; if (strlen (cmd) == 0) { cm.write ("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\r\n" "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.1//EN\"\r\n" "\"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd\">\r\n" "<html xmlns=\"http://www.w3.org/1999/xhtml\" xml:lang=\"en\">\r\n" "<head>\r\n<title>MyServer</title>\r\n" "<meta http-equiv=\"content-type\" content=\"text/html;charset=UTF-8\" />\r\n" "</head>\r\n<body style=\"color: #666699;\">\r\n" "<div style=\"text-align: center;\">\r\n" "<br />\r\n<img src=\"/logo.png\" alt=\"\" style=\"border: 0px;\" />\r\n" "<br /><br />\r\n" "<form action=\"math_sum.mscgi\" method=\"get\" enctype=\"text/plain\">\r\n" "<div>\r\n<input type=\"text\" name=\"a\" size=\"20\" />\r\n" "<br /><br />\r\n+<br /><br />\r\n" "<input type=\"text\" name=\"b\" size=\"20\" />\r\n" "<br /><br />\r\n<input type=\"submit\" value=\"Compute!\" />\r\n" "</div>\r\n</form>\r\n<br />\r\n</div>\r\n</body>\r\n</html>"); } else { u_long dim = 120; char lb[120]; int a = 0; int b = 0; char *tmp; int validNumbers = 1; int iRes; char res[22]; // a 64-bit number has a maximum of 20 digits and 1 for the sign cm.write ("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\r\n" "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.1//EN\"\r\n" "\"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd\">\r\n" "<html xmlns=\"http://www.w3.org/1999/xhtml\" xml:lang=\"en\">\r\n" "<head>\r\n<title>MyServer</title>\r\n" "<meta http-equiv=\"content-type\" content=\"text/html;charset=UTF-8\" />\r\n" "</head>" "<body style=\"color: #666699;\">\r\n<div style=\"text-align: center;\">\r\n" "<br /><br />\r\n<img src=\"/logo.png\" alt=\"\" style=\"border: 0px;\" />\r\n" "<br /><br />\r\n"); tmp = cm.getParam ("a"); if(tmp && !isNumber (tmp)) validNumbers = 0; tmp = cm.getParam ("b"); if (tmp && !isNumber(tmp)) validNumbers = 0; if (validNumbers) { tmp = cm.getParam ("a"); if (tmp && tmp[0] != '\0') { if (strlen (tmp) > 11) tmp[11] = '\0'; a = atoi (tmp); cm.write (tmp); } else cm.write ("0"); cm.write (" + "); tmp = cm.getParam ("b"); if (tmp && tmp[0] != '\0') { if (strlen (tmp) > 11) tmp[11] = '\0'; b = atoi (tmp); cm.write (tmp); } else cm.write("0"); cm.write(" = "); iRes = a + b; #ifdef WIN32 _i64toa(iRes, res, 10); #else sprintf(res,"%i", (int) iRes); #endif cm.write (res); } else { cm.write ("Invalid input format"); } cm.getenv ("SERVER_NAME", lb, &dim); cm.write ("\r\n<br />\r\nRunning on: "); cm.write (lb); cm.write ("("); cm.getenv ("HTTP_HOST", lb, &dim); cm.write (lb); cm.write (")\r\n</div>\r\n</body>\r\n</html>"); } cm.clean (); } catch (exception & e) { return 1; } return 0; }
void resultCombiner(const char * name_dv1, const char * name_cm1, const int length1, const char * name_dv2, const char * name_cm2, const int length2, int ftr = 1, const char * outputNameStub = "output") { TVectorD dv1(length1), dv2(length2); TMatrixT<double> cm1(length1, length1), cm2(length2, length2); double binLimits1[length1][2], binLimits2[length2][2], ccCov1[length1], ccCov2[length1]; readDataVector(name_dv1, dv1, binLimits1, ftr, ccCov1); printf("Read data vector 1 (%d)\n",length1); readDataVector(name_dv2, dv2, binLimits2, ftr, ccCov2); printf("Read data vector 2 (%d)\n",length2); readCovMatrix(name_cm1, cm1); printf("Read covariance matrix 1\n"); readCovMatrix(name_cm2, cm2); printf("Read covariance matrix 2\n"); std::vector<double*> binLimits; std::vector<std::vector<int > > preU; int i1 = 0, i2 = 0; while(i1 < length1 || i2 < length2) { if(i1 < length1 && i2 < length2) { if((binLimits1[i1][1] + binLimits1[i1][0])/2 > binLimits2[i2][0] && (binLimits1[i1][1] + binLimits1[i1][0])/2 < binLimits2[i2][1]) { binLimits.push_back(binLimits1[i1]); std::vector<int> tmp; tmp.push_back(i1); tmp.push_back(i2); preU.push_back(tmp); i1++; i2++; } else if((binLimits1[i1][1] + binLimits1[i1][0])/2 <= binLimits2[i2][0]) { binLimits.push_back(binLimits1[i1]); std::vector<int> tmp; tmp.push_back(i1); tmp.push_back(-1); preU.push_back(tmp); i1++; } else { binLimits.push_back(binLimits2[i2]); std::vector<int> tmp; tmp.push_back(-1); tmp.push_back(i2); preU.push_back(tmp); i2++; } } else if(i1 < length1 && i2 >= length2) { binLimits.push_back(binLimits1[i1]); std::vector<int> tmp; tmp.push_back(i1); tmp.push_back(-1); preU.push_back(tmp); i1++; } else { binLimits.push_back(binLimits2[i2]); std::vector<int> tmp; tmp.push_back(-1); tmp.push_back(i2); preU.push_back(tmp); i2++; } } TVectorD dv(length1 + length2); for(int i = 0; i < length1 + length2; i++) { dv[i] = (i < length1) ? dv1[i] : dv2[i - length1]; } TMatrixT<double> cm(length1 + length2, length1 + length2), U(length1 + length2, preU.size()); for(int i = 0; i < length1; i++) { for(int j = 0; j < length1; j++) { cm[i][j] = cm1[i][j]; } } for(int i = length1; i < length1 + length2; i++) { for(int j = length1; j < length1 + length2; j++) { cm[i][j] = cm2[i - length1][j - length1]; } } for(unsigned int i = 0; i < preU.size(); i++) { if(preU[i][0] >= 0) U[preU[i][0]][i] = 1; if(preU[i][1] >= 0) U[preU[i][1] + length1][i] = 1; if(ftr > 1 && preU[i][0] >= 0 && preU[i][1] >= 0) cm[preU[i][0]][preU[i][1] + length1] = cm[preU[i][1] + length1][preU[i][0]] = ccCov1[preU[i][0]]*ccCov2[preU[i][1]]; } // cm.Print(); TMatrixT<double> Ut(U); Ut.T(); TMatrixT<double> cmInv(cm); cmInv.Invert(); TMatrixT<double> step1 = Ut * cmInv * U; TMatrixT<double> step2 = Ut * cmInv; TMatrixT<double> lambda = step1.Invert() * step2; TVectorD bV = lambda*dv; TMatrixT<double> bcm = (Ut * cmInv * U).Invert(); printf("Done with combination.\n"); //write output FILE *file; char bVoutName[128], CMoutName[128]; sprintf(bVoutName, "%s_data.txt", outputNameStub); file = fopen(bVoutName, "w"); if(file) { fprintf(file, "#\n#%9s %9s %9s %15s %15s\n", "Bin", "Y_min", "Y_max", "Value", "Uncertainty"); for(int i = 0; i < bV.GetNoElements(); i++) { fprintf(file, " %9i %9.2f %9.2f %15e %15e\n", i + 1, binLimits[i][0], binLimits[i][1], bV[i], sqrt(bcm[i][i])); } fclose(file); } sprintf(CMoutName, "%s_covMat.txt", outputNameStub); file = fopen(CMoutName, "w"); if(file) { fprintf(file, "#\n#%9s %9s %15s\n", "Bin i", "Bin j", "Value"); for(int i = 0; i < bcm.GetNrows(); i++) { for(int j = 0; j < bcm.GetNcols(); j++) { fprintf(file, " %9i %9i %15e\n", i + 1, j + 1, bcm[i][j]); } } fclose(file); } printf("Output complete.\n"); }
void ConcurrentMarkThread::run_service() { _vtime_start = os::elapsedVTime(); G1CollectedHeap* g1h = G1CollectedHeap::heap(); G1CollectorPolicy* g1_policy = g1h->g1_policy(); while (!_should_terminate) { // wait until started is set. sleepBeforeNextCycle(); if (_should_terminate) { break; } assert(GCId::current() != GCId::undefined(), "GC id should have been set up by the initial mark GC."); { ResourceMark rm; HandleMark hm; double cycle_start = os::elapsedVTime(); // We have to ensure that we finish scanning the root regions // before the next GC takes place. To ensure this we have to // make sure that we do not join the STS until the root regions // have been scanned. If we did then it's possible that a // subsequent GC could block us from joining the STS and proceed // without the root regions have been scanned which would be a // correctness issue. if (!cm()->has_aborted()) { GCConcPhaseTimer(_cm, "Concurrent Root Region Scanning"); _cm->scanRootRegions(); } // It would be nice to use the GCTraceConcTime class here but // the "end" logging is inside the loop and not at the end of // a scope. Mimicking the same log output as GCTraceConcTime instead. jlong mark_start = os::elapsed_counter(); log_info(gc)("Concurrent Mark (%.3fs)", TimeHelper::counter_to_seconds(mark_start)); int iter = 0; do { iter++; if (!cm()->has_aborted()) { GCConcPhaseTimer(_cm, "Concurrent Mark"); _cm->markFromRoots(); } double mark_end_time = os::elapsedVTime(); jlong mark_end = os::elapsed_counter(); _vtime_mark_accum += (mark_end_time - cycle_start); if (!cm()->has_aborted()) { delay_to_keep_mmu(g1_policy, true /* remark */); log_info(gc)("Concurrent Mark (%.3fs, %.3fs) %.3fms", TimeHelper::counter_to_seconds(mark_start), TimeHelper::counter_to_seconds(mark_end), TimeHelper::counter_to_millis(mark_end - mark_start)); CMCheckpointRootsFinalClosure final_cl(_cm); VM_CGC_Operation op(&final_cl, "Pause Remark", true /* needs_pll */); VMThread::execute(&op); } if (cm()->restart_for_overflow()) { log_debug(gc)("Restarting conc marking because of MS overflow in remark (restart #%d).", iter); log_info(gc)("Concurrent Mark restart for overflow"); } } while (cm()->restart_for_overflow()); double end_time = os::elapsedVTime(); // Update the total virtual time before doing this, since it will try // to measure it to get the vtime for this marking. We purposely // neglect the presumably-short "completeCleanup" phase here. _vtime_accum = (end_time - _vtime_start); if (!cm()->has_aborted()) { delay_to_keep_mmu(g1_policy, false /* cleanup */); CMCleanUp cl_cl(_cm); VM_CGC_Operation op(&cl_cl, "Pause Cleanup", false /* needs_pll */); VMThread::execute(&op); } else { // We don't want to update the marking status if a GC pause // is already underway. SuspendibleThreadSetJoiner sts_join; g1h->collector_state()->set_mark_in_progress(false); } // Check if cleanup set the free_regions_coming flag. If it // hasn't, we can just skip the next step. if (g1h->free_regions_coming()) { // The following will finish freeing up any regions that we // found to be empty during cleanup. We'll do this part // without joining the suspendible set. If an evacuation pause // takes place, then we would carry on freeing regions in // case they are needed by the pause. If a Full GC takes // place, it would wait for us to process the regions // reclaimed by cleanup. GCTraceConcTime(Info, gc) tt("Concurrent Cleanup"); GCConcPhaseTimer(_cm, "Concurrent Cleanup"); // Now do the concurrent cleanup operation. _cm->completeCleanup(); // Notify anyone who's waiting that there are no more free // regions coming. We have to do this before we join the STS // (in fact, we should not attempt to join the STS in the // interval between finishing the cleanup pause and clearing // the free_regions_coming flag) otherwise we might deadlock: // a GC worker could be blocked waiting for the notification // whereas this thread will be blocked for the pause to finish // while it's trying to join the STS, which is conditional on // the GC workers finishing. g1h->reset_free_regions_coming(); } guarantee(cm()->cleanup_list_is_empty(), "at this point there should be no regions on the cleanup list"); // There is a tricky race before recording that the concurrent // cleanup has completed and a potential Full GC starting around // the same time. We want to make sure that the Full GC calls // abort() on concurrent mark after // record_concurrent_mark_cleanup_completed(), since abort() is // the method that will reset the concurrent mark state. If we // end up calling record_concurrent_mark_cleanup_completed() // after abort() then we might incorrectly undo some of the work // abort() did. Checking the has_aborted() flag after joining // the STS allows the correct ordering of the two methods. There // are two scenarios: // // a) If we reach here before the Full GC, the fact that we have // joined the STS means that the Full GC cannot start until we // leave the STS, so record_concurrent_mark_cleanup_completed() // will complete before abort() is called. // // b) If we reach here during the Full GC, we'll be held up from // joining the STS until the Full GC is done, which means that // abort() will have completed and has_aborted() will return // true to prevent us from calling // record_concurrent_mark_cleanup_completed() (and, in fact, it's // not needed any more as the concurrent mark state has been // already reset). { SuspendibleThreadSetJoiner sts_join; if (!cm()->has_aborted()) { g1_policy->record_concurrent_mark_cleanup_completed(); } else { log_info(gc)("Concurrent Mark abort"); } } // We now want to allow clearing of the marking bitmap to be // suspended by a collection pause. // We may have aborted just before the remark. Do not bother clearing the // bitmap then, as it has been done during mark abort. if (!cm()->has_aborted()) { GCConcPhaseTimer(_cm, "Concurrent Bitmap Clearing"); _cm->clearNextBitmap(); } else { assert(!G1VerifyBitmaps || _cm->nextMarkBitmapIsClear(), "Next mark bitmap must be clear"); } } // Update the number of full collections that have been // completed. This will also notify the FullGCCount_lock in case a // Java thread is waiting for a full GC to happen (e.g., it // called System.gc() with +ExplicitGCInvokesConcurrent). { SuspendibleThreadSetJoiner sts_join; g1h->increment_old_marking_cycles_completed(true /* concurrent */); g1h->register_concurrent_cycle_end(); } } }
/* Compute analytic dynamics */ void computeAnalyticOutputs(std::map<const std::string, bool> &outs, struct PARAMETERS * p) { // energy spacing in bulk std::complex <double> dE ((p->kBandTop-p->kBandEdge)/(p->Nk-1), 0); // bulk-QD coupling std::complex <double> Vee (p->Vnobridge[0], 0); // rate constant (can be defined also as K/2) std::complex <double> K = std::complex <double> (3.1415926535,0)*pow(Vee,2)/dE; // time std::complex <double> t (0, 0); // energy differences std::complex <double> wnm (0, 0); std::complex <double> wnnp (0, 0); std::complex <double> wnpm (0, 0); // coefficients std::complex <double> cm (0, 0); std::complex <double> cn (0, 0); std::complex <double> cn_term1 (0, 0); std::complex <double> cn_term2 (0, 0); std::complex <double> cn_diag (0, 0); std::complex <double> cn_offdiag (0, 0); double cn_tot; // complex numbers are dumb std::complex <double> C0 (0.0, 0.0); std::complex <double> C1 (1.0, 0.0); std::complex <double> NEGC1 (-1.0, 0.0); std::complex <double> CI (0.0, 1.0); std::complex <double> NEGCI (0.0, -1.0); // unpack params a bit int Nk = p->Nk; int Nc = p->Nc; int Ik = p->Ik; int Ic = p->Ic; int N = p->NEQ; double * energies = &(p->energies[0]); double * startWfn = &(p->startWfn[0]); // Create matrix of energy differences std::vector<std::complex <double>> Elr (Nk*Nc, std::complex <double> (0.0, 0.0)); for (int ii = 0; ii < Nk; ii++) { for (int jj = 0; jj < Nc; jj++) { // array follows convention that first index is for QC state // e.g. Elr[i*Nc + j] = E_{ij} Elr[ii*Nc + jj] = std::complex <double> (energies[Ik + ii] - energies[Ic + jj], 0); } } #ifdef DEBUG_ANALYTIC std::cout << std::endl; std::cout << "Energy gaps:" << std::endl; for (int ii = 0; ii < Nc*Nk; ii++) { std::cout << Elr[ii] << " "; } std::cout << std::endl; std::cout << std::endl; #endif // Create matrix of prefactors for each QC (n) state std::complex <double> pref; std::vector<std::complex <double>> prefQC (Nk*Nc, std::complex <double> (0.0, 0.0)); for (int ii = 0; ii < Nk; ii++) { // V*c_l/(E_{lr} + i\kappa) pref = Vee*(std::complex <double> (startWfn[Ik + ii], startWfn[Ik + N + ii])); std::cout << startWfn[Ik + ii] << "," << pref << " "; for (int jj = 0; jj < Nc; jj++) { prefQC[ii*Nc + jj] = pref/(Elr[ii*Nc + jj] + CI*K); } } #ifdef DEBUG_ANALYTIC std::cout << std::endl; for (int ii = 0; ii < Nc*Nk; ii++) { std::cout << prefQC[ii] << " "; } std::cout << std::endl; std::cout << std::endl; #endif // calculate wavefunction coefficients on electron-accepting side over time std::vector<std::complex <double>> crt (Nc*p->numOutputSteps, std::complex <double> (0.0, 0.0)); int timeIndex = 0; for (std::complex <double> t = C0; std::real(t) <= p->tout; t += std::complex <double> (p->tout/p->numOutputSteps, 0.0), timeIndex++) { for (int ii = 0; ii < Nc; ii++) { // TODO add bit for multiple state terms for (int jj = 0; jj < Nk; jj++) { crt[timeIndex*Nc + ii] += prefQC[jj]*(exp(NEGCI*Elr[jj*Nc + ii]*t) - exp(NEGC1*K*t)); } } } // calculate populations on electron-accepting side over time std::vector<double> Prt (Nc*p->numOutputSteps, 0.0); for (int ii = 0; ii <= p->numOutputSteps; ii++) { for (int jj = 0; jj < Nc; jj++) { Prt[ii*Nc + jj] = pow(real(crt[ii*Nc + jj]), 2) + pow(imag(crt[ii*Nc + jj]), 2); } } if (isOutput(outs, "analytic_tcprob.out")) { std::ofstream output("analytic_tcprob.out"); for (int ii = 0; ii <= p->numOutputSteps; ii++) { output << p->times[ii]; for (int jj = 0; jj < Nc; jj++) { output << " " << Prt[ii*Nc + jj]; output << " " << real(crt[ii*Nc + jj]) << " " << imag(crt[ii*Nc + jj]); } output << std::endl; } output.close(); } return; }
static int bch_dec(int c[255], int n, int t) { int i, j, tmp; int s[4], a[6], b[6], temp[6], deg_a, deg_b; int sig[5], deg_sig; int errloc[4], errcnt; memset(s, 0, 4*sizeof(int)); for (j=0; j<n; j++) for (i=0; i<t*2; i++) s[i] = cm(i+1, s[i]) ^ (c[j]&1); memset(a, 0, 6*sizeof(int)); memset(b, 0, 6*sizeof(int)); a[0] = 1; deg_a = t*2; for (i=0; i<t*2; i++) b[i] = s[t*2-1-i]; deg_b = t*2-1; a[t*2+1] = 1; b[t*2+1] = 0; while (deg_b >= t) { if (b[0] == 0) { memmove(b, b+1, 5*sizeof(int)); b[5] = 0; deg_b--; } else { for (i=t*2+1; i>deg_a; i--) b[i] = gm(b[i], b[0]) ^ gm(a[i], a[0]); for (i=deg_a; i>deg_b; i--) { b[i] = gm(b[i], b[0]); a[i] = gm(a[i], b[0]); } for (; i>0; i--) a[i] = gm(a[i], b[0]) ^ gm(b[i], a[0]); memmove(a, a+1, 5*sizeof(int)); a[5] = 0; deg_a--; if (deg_a < deg_b) { memcpy(temp, a, 6*sizeof(int)); memcpy(a, b, 6*sizeof(int)); memcpy(b, temp, 6*sizeof(int)); tmp = deg_a; deg_a = deg_b; deg_b = tmp; } } } deg_sig = t*2 - deg_a; memcpy(sig, a+deg_a+1, (deg_sig+1)*sizeof(int)); errcnt = 0; for (j=0; j<255; j++) { tmp = 0; for (i=0; i<=deg_sig; i++) { sig[i] = cm(i, sig[i]); tmp ^= sig[i]; } if (tmp == 0) { errloc[errcnt] = j - (255-n); if (errloc[errcnt] >= 0) errcnt++; } } if (errcnt<deg_sig) { return -1; } for (i=0; i<errcnt; i++) { c[errloc[i]] ^= 1; __D("fix error at %4d\n", errloc[i]); } return errcnt; }