Ejemplo n.º 1
0
bool AABB::Contains(const vec &point) const
{
// Benchmarking this code is very difficult, since branch prediction makes the scalar version
// look very good. In isolation the scalar version might be better, however when joined with
// other SSE computation, the SIMD variants are probably more efficient because the data is
// already "hot" in the registers. Therefore favoring the SSE version over the scalar version
// when possible.

#if defined(MATH_AUTOMATIC_SSE) && defined(MATH_SIMD)
	// Benchmark 'AABBContains_positive': AABB::Contains(point) positive
	//    Best: 2.048 nsecs / 3.5128 ticks, Avg: 2.241 nsecs, Worst: 4.277 nsecs
	// Benchmark 'AABBContains_negative': AABB::Contains(point) negative
	//    Best: 2.048 nsecs / 3.467 ticks, Avg: 2.115 nsecs, Worst: 4.156 nsecs
	// Benchmark 'AABBContains_unpredictable': AABB::Contains(point) unpredictable
	//    Best: 2.590 nsecs / 4.4106 ticks, Avg: 2.978 nsecs, Worst: 6.084 nsecs
	simd4f a = cmplt_ps(point, minPoint);
	simd4f b = cmpgt_ps(point, maxPoint);
	a = or_ps(a, b);
	return allzero_ps(a) != 0;
#else
	// Benchmark 'AABBContains_positive': AABB::Contains(point) positive
	//    Best: 2.108 nsecs / 3.6022 ticks, Avg: 2.232 nsecs, Worst: 4.638 nsecs
	// Benchmark 'AABBContains_negative': AABB::Contains(point) negative
	//    Best: 1.988 nsecs / 3.361 ticks, Avg: 2.148 nsecs, Worst: 4.457 nsecs
	// Benchmark 'AABBContains_unpredictable': AABB::Contains(point) unpredictable
	//    Best: 3.554 nsecs / 6.0764 ticks, Avg: 3.803 nsecs, Worst: 6.264 nsecs
	return minPoint.x <= point.x && point.x <= maxPoint.x &&
	       minPoint.y <= point.y && point.y <= maxPoint.y &&
	       minPoint.z <= point.z && point.z <= maxPoint.z;
#endif
}
Ejemplo n.º 2
0
bool AABB::Contains(const vec &aabbMinPoint, const vec &aabbMaxPoint) const
{
#if defined(MATH_AUTOMATIC_SSE) && defined(MATH_SIMD)
	simd4f a = cmplt_ps(aabbMinPoint, minPoint);
	simd4f b = cmpgt_ps(aabbMaxPoint, maxPoint);
	a = or_ps(a, b);
	return allzero_ps(a) != 0;
#else
	return minPoint.x <= aabbMinPoint.x && maxPoint.x >= aabbMaxPoint.x &&
	       minPoint.y <= aabbMinPoint.y && maxPoint.y >= aabbMaxPoint.y &&
	       minPoint.z <= aabbMinPoint.z && maxPoint.z >= aabbMaxPoint.z;
#endif
}
Ejemplo n.º 3
0
float Quat::Normalize()
{
#ifdef MATH_AUTOMATIC_SSE
	simd4f lenSq = vec4_length_sq_ps(q);
	simd4f len = vec4_rsqrt(lenSq);
	simd4f isZero = cmplt_ps(lenSq, simd4fEpsilon); // Was the length zero?
	simd4f normalized = mul_ps(q, len); // Normalize.
	q = cmov_ps(normalized, float4::unitX.v, isZero); // If length == 0, output the vector (1,0,0,0).
	return s4f_x(len);
#else
	float length = Length();
	if (length < 1e-4f)
		return 0.f;
	float rcpLength = 1.f / length;
	x *= rcpLength;
	y *= rcpLength;
	z *= rcpLength;
	w *= rcpLength;
	return length;
#endif
}
Ejemplo n.º 4
0
bool AABB::IntersectLineAABB_SSE(const float4 &rayPos, const float4 &rayDir, float tNear, float tFar) const
{
	assume(rayDir.IsNormalized4());
	assume(tNear <= tFar && "AABB::IntersectLineAABB: User gave a degenerate line as input for the intersection test!");
	/* For reference, this is the C++ form of the vectorized SSE code below.

	float4 recipDir = rayDir.RecipFast4();
	float4 t1 = (aabbMinPoint - rayPos).Mul(recipDir);
	float4 t2 = (aabbMaxPoint - rayPos).Mul(recipDir);
	float4 near = t1.Min(t2);
	float4 far = t1.Max(t2);
	float4 rayDirAbs = rayDir.Abs();

	if (rayDirAbs.x > 1e-4f) // ray is parallel to plane in question
	{
		tNear = Max(near.x, tNear); // tNear tracks distance to intersect (enter) the AABB.
		tFar = Min(far.x, tFar); // tFar tracks the distance to exit the AABB.
	}
	else if (rayPos.x < aabbMinPoint.x || rayPos.x > aabbMaxPoint.x) // early-out if the ray can't possibly enter the box.
		return false;

	if (rayDirAbs.y > 1e-4f) // ray is parallel to plane in question
	{
		tNear = Max(near.y, tNear); // tNear tracks distance to intersect (enter) the AABB.
		tFar = Min(far.y, tFar); // tFar tracks the distance to exit the AABB.
	}
	else if (rayPos.y < aabbMinPoint.y || rayPos.y > aabbMaxPoint.y) // early-out if the ray can't possibly enter the box.
		return false;

	if (rayDirAbs.z > 1e-4f) // ray is parallel to plane in question
	{
		tNear = Max(near.z, tNear); // tNear tracks distance to intersect (enter) the AABB.
		tFar = Min(far.z, tFar); // tFar tracks the distance to exit the AABB.
	}
	else if (rayPos.z < aabbMinPoint.z || rayPos.z > aabbMaxPoint.z) // early-out if the ray can't possibly enter the box.
		return false;

	return tNear < tFar;
	*/

	simd4f recipDir = rcp_ps(rayDir.v);
	// Note: The above performs an approximate reciprocal (11 bits of precision).
	// For a full precision reciprocal, perform a div:
//	simd4f recipDir = div_ps(set1_ps(1.f), rayDir.v);

	simd4f t1 = mul_ps(sub_ps(minPoint, rayPos.v), recipDir);
	simd4f t2 = mul_ps(sub_ps(maxPoint, rayPos.v), recipDir);

	simd4f nearD = min_ps(t1, t2); // [0 n3 n2 n1]
	simd4f farD = max_ps(t1, t2);  // [0 f3 f2 f1]

	// Check if the ray direction is parallel to any of the cardinal axes, and if so,
	// mask those [near, far] ranges away from the hit test computations.
	simd4f rayDirAbs = abs_ps(rayDir.v);

	const simd4f epsilon = set1_ps(1e-4f);
	// zeroDirections[i] will be nonzero for each axis i the ray is parallel to.
	simd4f zeroDirections = cmple_ps(rayDirAbs, epsilon);

	const simd4f floatInf = set1_ps(FLOAT_INF);
	const simd4f floatNegInf = set1_ps(-FLOAT_INF);

	// If the ray is parallel to one of the axes, replace the slab range for that axis
	// with [-inf, inf] range instead. (which is a no-op in the comparisons below)
	nearD = cmov_ps(nearD, floatNegInf, zeroDirections);
	farD = cmov_ps(farD, floatInf, zeroDirections);

	// Next, we need to compute horizontally max(nearD[0], nearD[1], nearD[2]) and min(farD[0], farD[1], farD[2])
	// to see if there is an overlap in the hit ranges.
	simd4f v1 = axx_bxx_ps(nearD, farD); // [f1 f1 n1 n1]
	simd4f v2 = ayy_byy_ps(nearD, farD); // [f2 f2 n2 n2]
	simd4f v3 = azz_bzz_ps(nearD, farD); // [f3 f3 n3 n3]
	nearD = max_ps(v1, max_ps(v2, v3));
	farD = min_ps(v1, min_ps(v2, v3));
	farD = wwww_ps(farD); // Unpack the result from high offset in the register.
	nearD = max_ps(nearD, setx_ps(tNear));
	farD = min_ps(farD, setx_ps(tFar));

	// Finally, test if the ranges overlap.
	simd4f rangeIntersects = cmple_ps(nearD, farD); // Only x channel used, higher ones ignored.

	// To store out out the interval of intersection, uncomment the following:
	// These are disabled, since without these, the whole function runs without a single memory store,
	// which has been profiled to be very fast! Uncommenting these causes an order-of-magnitude slowdown.
	// For now, using the SSE version only where the tNear and tFar ranges are not interesting.
//	_mm_store_ss(&tNear, nearD);
//	_mm_store_ss(&tFar, farD);

	// To avoid false positives, need to have an additional rejection test for each cardinal axis the ray direction
	// is parallel to.
	simd4f out2 = cmplt_ps(rayPos.v, minPoint);
	simd4f out3 = cmpgt_ps(rayPos.v, maxPoint);
	out2 = or_ps(out2, out3);
	zeroDirections = and_ps(zeroDirections, out2);

	simd4f yOut = yyyy_ps(zeroDirections);
	simd4f zOut = zzzz_ps(zeroDirections);

	zeroDirections = or_ps(or_ps(zeroDirections, yOut), zOut);
	// Intersection occurs if the slab ranges had positive overlap and if the test was not rejected by the ray being
	// parallel to some cardinal axis.
	simd4f intersects = andnot_ps(zeroDirections, rangeIntersects);
	simd4f epsilonMasked = and_ps(epsilon, intersects);
	return comieq_ss(epsilon, epsilonMasked) != 0;
}
Ejemplo n.º 5
0
Quat MUST_USE_RESULT Quat::Slerp(const Quat &q2, float t) const
{
	assume(0.f <= t && t <= 1.f);
	assume(IsNormalized());
	assume(q2.IsNormalized());

#if defined(MATH_AUTOMATIC_SSE) && defined(MATH_SSE)
	simd4f angle = dot4_ps(q, q2.q); // <q, q2.q>
	simd4f neg = cmplt_ps(angle, zero_ps()); // angle < 0?
	neg = and_ps(neg, set1_ps_hex(0x80000000)); // Convert 0/0xFFFFFFFF mask to a 0x/0x80000000 mask.
//	neg = s4i_to_s4f(_mm_slli_epi32(s4f_to_s4i(neg), 31)); // A SSE2-esque way to achieve the above would be this, but this seems to clock slower (12.04 clocks vs 11.97 clocks)
	angle = xor_ps(angle, neg); // if angle was negative, make it positive.
	simd4f one = set1_ps(1.f);
	angle = min_ps(angle, one); // If user passed t > 1 or t < -1, clamp the range.

	// Compute a fast polynomial approximation to arccos(angle).
	// arccos(x): (-0.69813170079773212f * x * x - 0.87266462599716477f) * x + 1.5707963267948966f;
	angle = madd_ps(msub_ps(mul_ps(set1_ps(-0.69813170079773212f), angle), angle, set1_ps(0.87266462599716477f)), angle, set1_ps(1.5707963267948966f));

	// Shuffle an appropriate vector from 't' and 'angle' for computing two sines in one go.
	simd4f T = _mm_set_ss(t); // (.., t)
	simd4f oneSubT = sub_ps(one, T); // (.., 1-t)
	T = _mm_movelh_ps(T, oneSubT); // (.., 1-t, .., t)
	angle = mul_ps(angle, T); // (.., (1-t)*angle, .., t*angle)

	// Compute a fast polynomial approximation to sin(t*angle) and sin((1-t)*angle).
	// Here could use "angle = sin_ps(angle);" for precision, but favor speed instead with the following polynomial expansion:
	// sin(x): ((5.64311797634681035370e-03 * x * x - 1.55271410633428644799e-01) * x * x + 9.87862135574673806965e-01) * x
	simd4f angle2 = mul_ps(angle, angle);
	angle = mul_ps(angle, madd_ps(madd_ps(angle2, set1_ps(5.64311797634681035370e-03f), set1_ps(-1.55271410633428644799e-01f)), angle2, set1_ps(9.87862135574673806965e-01f)));

	// Compute the final lerp factors a and b to scale q and q2.
	simd4f a = zzzz_ps(angle);
	simd4f b = xxxx_ps(angle);
	a = xor_ps(a, neg);
	a = mul_ps(q, a);
	a = madd_ps(q2, b, a);

	// The lerp above generates an unnormalized quaternion which needs to be renormalized.
	return mul_ps(a, rsqrt_ps(dot4_ps(a, a)));
#else
	float angle = this->Dot(q2);
	float sign = 1.f; // Multiply by a sign of +/-1 to guarantee we rotate the shorter arc.
	if (angle < 0.f)
	{
		angle = -angle;
		sign = -1.f;
	}

	float a;
	float b;
	if (angle < 0.999) // perform spherical linear interpolation.
	{
		// angle = Acos(angle); // After this, angle is in the range pi/2 -> 0 as the original angle variable ranged from 0 -> 1.
		angle = (-0.69813170079773212f * angle * angle - 0.87266462599716477f) * angle + 1.5707963267948966f;

		float ta = t*angle;
#ifdef MATH_USE_SINCOS_LOOKUPTABLE
		// If Sin() is based on a lookup table, prefer that over polynomial approximation.
		a = Sin(angle - ta);
		b = Sin(ta);
#else
		// Not using a lookup table, manually compute the two sines by using a very rough approximation.
		float ta2 = ta*ta;
		b = ((5.64311797634681035370e-03f * ta2 - 1.55271410633428644799e-01f) * ta2 + 9.87862135574673806965e-01f) * ta;
		a = angle - ta;
		float a2 = a*a;
		a = ((5.64311797634681035370e-03f * a2 - 1.55271410633428644799e-01f) * a2 + 9.87862135574673806965e-01f) * a;
#endif
	}
	else // If angle is close to taking the denominator to zero, resort to linear interpolation (and normalization).
	{
		a = 1.f - t;
		b = t;
	}
	// Lerp and renormalize.
	return (*this * (a * sign) + q2 * b).Normalized();
#endif
}