Ejemplo n.º 1
0
void compute_state_imu(){
  compute_position_acceleration();
  compute_position_velocity();
  compute_position();

  compute_angle(); //use gyro + mag 
  compute_angular_velocity(); // differentiate above
  compute_angular_acceleration(); // differentiate above
}
Ejemplo n.º 2
0
FragmentSeparatorCanvas::FragmentSeparatorCanvas(UmlCanvas * canvas, FragmentCanvas * f,
						 double vp)
    : DiagramCanvas(0, canvas, 0, 0, LIFE_LINE_HEIGHT, 0, -1),
      fragment(f), vpos(vp) {
  if (canvas->paste())
    // must not be selected else the move done after if wrong
    canvas->unselect(this);
  else
    compute_position();
  
  show();
}
Ejemplo n.º 3
0
/**
* uint8_t request_rssi(unsigned char *p) - attain rssi value from the received packet
*		and calls the related functions to do the calculation
*/
float request_rssi(unsigned char *p)
{	
       char node=p[1];
	switch(node)
	{	case 'B':
		rssi_store.current_node=0;
		break;
		case 'C':
		rssi_store.current_node=1;
		break;
		case 'E':
		rssi_store.current_node=2;
		break;
                default:
                return 0.0;
	}
        int j=8;
	for(int i=0;i<10;i++)
	{
          rssi_store.rssi[rssi_store.current_node][i]=(p[j+1]-'0')*10+(p[j+2]-'0');                
          if(!(p[j]==' '))
            rssi_store.rssi[rssi_store.current_node][i]=(p[j]-'0')*100;
	  j+=4;
	}
//        if(!(rssi_store.ready[1][0]||rssi_store.ready[1][1]||rssi_store.ready[1][2]))
//        {
//          if(rtc_get_ticks()-time<60)
//          {
//            for(int i=0;i<10;i++)
//	    {
//              rssi_store.pre_rssi[rssi_store.current_node][i]=rssi_store.rssi[rssi_store.current_node][i];
//	    }
//          }
//          time=rtc_get_ticks();
//        }
//        else
//        {
	  rssi_store.ready[1][rssi_store.current_node]=1;
//        }
	if(rssi_store.ready[1][0]&&rssi_store.ready[1][1]&&rssi_store.ready[1][2])
	{
		if(!(rssi_store.ready[0][0]||rssi_store.ready[0][1]||rssi_store.ready[0][2]))
		{
                  res_store();
		}
		compute_position();
//		sprintf(str,"%20f",rssi_store.radius);
//		strcpy((char*)p, p1);
                return rssi_store.radius;
	}
        return 0.0;
}
Ejemplo n.º 4
0
	uint16_t compute_y_position(uint16_t sourcevalue)
	{
		if(hasYAnchor)
		{
			if(sourcevalue >= slaveYAnchorMin)
			{
				if(sourcevalue <= slaveYAnchorMax)
				{
					// main (central) area
					return compute_position(sourcevalue,
						slaveYAnchorMin, slaveYAnchorMax,
						usbYAnchorMin, usbYAnchorMax);
				}
				else
				{
					// max area
					return compute_position(sourcevalue,
						slaveYAnchorMax, slaveYMax,
						usbYAnchorMax, usbYMax);
				}
			}
			else
			{
				// min area
				return compute_position(sourcevalue,
						slaveYMin, slaveYAnchorMin,
						usbYMin, usbYAnchorMin);
			}
		}
		else
		{
			// no anchor processing
			return compute_position(sourcevalue,
					slaveYMin, slaveYMax,
					usbYMin, usbYMax);
		}
	}
Ejemplo n.º 5
0
int SurfaceEdgeCollapse::compute_newpoint(int v1, int v2, Star &star, pair *link, int num_link, float &x_0, float &y_0, float &z_0)
{ // This procedure choses the strategy according to which the position of
    // the new point is to be computed.
    int okay;
    switch (new_point)
    {
    case 1:
        okay = compute_midpoint(v1, v2, star, link, num_link, x_0, y_0, z_0);
        break;
    case 2:
        okay = compute_position(v1, v2, star, link, num_link, x_0, y_0, z_0);
        break;
    case 3:
        okay = compute_endpoint(v1, v2, star, link, num_link, x_0, y_0, z_0);
        break;
    default:
        okay = compute_midpoint(v1, v2, star, link, num_link, x_0, y_0, z_0);
        break;
    };
    return (okay);
}
Ejemplo n.º 6
0
/*Algoritmo Principal*/
int main(int argc, char *argv[])
{
    char name[20];// = "_kita_1";
    char archiveName[20] = "archive";
	char fitputName[20] = "fitput";
	char varputName[20] = "varput";
	char hvName[20]= "hv";
	unsigned int i, j, t;
	unsigned int fun, gen;
	clock_t  startTime, endTime;
	double duration, clocktime;
	FILE *fitfile,*varfile;
/*Parametros iniciales*/

    strcpy(name,argv[1]);
    fun = atoi(argv[2]);
    gen = atoi(argv[3]);

    printf("%s %d %d \n",name,fun,gen);

    initialize_data(fun,gen);
/*Iniciar variables*/
	initialize_memory();

	/*
	sprintf(name,"kita_1_");
	sprintf(archiveName,strcat(name,"archive.out"));
	sprintf(fitputName, strcat(name,"fitput.out"));
	sprintf(varputName, strcat(name,"varput.out"));
	sprintf(hvName,strcat(name,"hv.out"));
*/
	//fitfile = fopen(strcat(strcat(fitputName,name),".out"),"w");
	//varfile = fopen(strcat(strcat(varputName,name),".out"),"w");
	//hv = fopen(strcat(strcat(hvName,name),".out"),"w");
/* Iniciar generador de aleatorios*/
	initialize_rand();
	startTime = clock();
/* Iniciar contador de generaciones*/
	t = 0;
/* Iniciar valores de la poblacion de manera aleatoria*/
	initialize_pop();
/* Calcular velocidad inicial*/
	initialize_vel();
/* Evaluar las particulas de la poblacion*/
	evaluate();
/* Almacenar el pBest inicial (variables and valor de aptitud) de las particulas*/
	store_pbests();
/* Insertar las particulas no domindas de la poblacion en el archivo*/

	insert_nondom();
	//printf("\n%d",nondomCtr);
/*Ciclo Principal*/
	while(t <= maxgen)
	{
		//clocktime = (clock() - startTime)/(double)CLOCKS_PER_SEC;
		/*if(verbose > 0 && t%printevery==0 || t == maxgen)
		{
			fprintf(stdout,"Generation %d Time: %.2f sec\n",t,clocktime);
			fflush(stdout);
		}*/
		/*if(t%printevery==0 || t == maxgen)
		{
			fprintf(outfile,"Generation %d Time: %.2f sec\n",t,clocktime);
		}*/
    /* Calcular la nueva velocidad de cada particula en la pooblacion*/
		//printf("\n 1");
		compute_velocity();

    /* Calcular la nueva posicion de cada particula en la poblacion*/
        //printf("\n 2");
        compute_position();
    /* Mantener las particulas en la poblacion de la poblacion en el espacio de busqueda*/
		//printf("\n 3");
		maintain_particles();
    /* Pertubar las particulas en la poblacion*/
		if(t < maxgen * pMut)
			mutate(t);

    /* Evaluar las particulas en la poblacion*/
		//printf("\n 4");
		evaluate();
    /* Insertar nuevas particulas no domindas en el archivo*/
		//printf("\n 5");
		update_archive();
    /* Actualizar el pBest de las particulas en la poblacion*/
		//printf("\n 6");
		update_pbests();
    /* Escribir resultados del mejor hasta ahora*/
    //verbose > 0 && t%printevery==0 || t == maxgen
		/*if(t%printevery==0 || t == maxgen)
		{
			//fprintf(outfile, "Size of Pareto Set: %d\n", nondomCtr);
			fprintf(fitfile, "%d\n",t);
			fprintf(varfile, "%d\n",t);
			for(i = 0; i < nondomCtr; i++)
			{
			    for(j = 0; j < maxfun; j++)
                    fprintf(fitfile, "%f ", archiveFit[i][j]);
                fprintf(fitfile, "\n");
			}
			fprintf(fitfile, "\n\n");
			fflush(fitfile);
			for(i = 0; i < nondomCtr; i++)
			{
			    for(j = 0; j < maxfun; j++)
                    fprintf(varfile, "%f ", archiveVar[i][j]);
                fprintf(varfile, "\n");
			}
			fprintf(varfile, "\n\n");
			fflush(varfile);
		}*/
    /* Incrementar contador de generaciones*/
        t++;
        //printf("%d\n",t);
	}
 /* Escribir resultados en el archivo */
	save_results(strcat(strcat(archiveName,name),".out"));
	endTime = clock();
	duration = ( endTime - startTime ) / (double)CLOCKS_PER_SEC;
	fprintf(stdout, "%lf sec\n", duration);
	//fclose(fitfile);
	//fclose(varfile);
	free_memory();
	return EXIT_SUCCESS;
}
Ejemplo n.º 7
0
void FragmentSeparatorCanvas::update() {
  hide();
  compute_position();
  show();
  canvas()->update();
}
Ejemplo n.º 8
0
void lzs_renderer_draw(lzs_renderer_t* self)
{
    assert(self);
    LOGD("debug");

    double t0 = a3d_utime();

    // stretch screen to 800x480
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    glOrthof(0.0f, SCREEN_W, SCREEN_H, 0.0f, 0.0f, 2.0f);
    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();

    // draw camera
    glEnable(GL_TEXTURE_EXTERNAL_OES);
    glEnableClientState(GL_TEXTURE_COORD_ARRAY);
    glBindTexture(GL_TEXTURE_EXTERNAL_OES, self->texid);
    glVertexPointer(3, GL_FLOAT, 0, VERTEX);
    glTexCoordPointer(2, GL_FLOAT, 0, COORDS);
    glDrawArrays(GL_TRIANGLE_FAN, 0, 4);
    glDisableClientState(GL_TEXTURE_COORD_ARRAY);
    glDisable(GL_TEXTURE_EXTERNAL_OES);
    utime_update("setup", &t0);

    // capture buffers
    GLint format = TEXGZ_BGRA;
    GLint type   = GL_UNSIGNED_BYTE;
    glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_FORMAT_OES, &format);
    glGetIntegerv(GL_IMPLEMENTATION_COLOR_READ_TYPE_OES, &type);
    if((format == TEXGZ_BGRA) && (type == GL_UNSIGNED_BYTE))
    {
        LOGD("readpixels format=0x%X, type=0x%X", format, type);

        // TODO - check for texgz errors

        // process buffers
        texgz_tex_t* bc  = self->buffer_color;
        texgz_tex_t* bg  = self->buffer_gray;
        texgz_tex_t* bsx = self->buffer_sx;
        texgz_tex_t* bsy = self->buffer_sy;
        glReadPixels(self->sphero_x - RADIUS_BALL, (SCREEN_H - self->sphero_y - 1) - RADIUS_BALL,
                     bc->width, bc->height, bc->format, bc->type, (void*) bc->pixels);
#ifdef DEBUG_BUFFERS
        texgz_tex_export(bc, "/sdcard/laser-shark/color.texgz");
#endif
        utime_update("readpixels", &t0);

        texgz_tex_computegray(bc, bg);
        utime_update("computegray", &t0);

        texgz_tex_computeedges3x3(bg, bsx, bsy);
        utime_update("computeedges", &t0);

        // compute peak
        {
            int    x;
            int    y;
            int    peak_x  = 0;
            int    peak_y  = 0;
            float  peak    = 0.0f;
            float* gpixels = (float*) bg->pixels;
            float* xpixels = (float*) bsx->pixels;
            float* ypixels = (float*) bsy->pixels;
            for(x = 0; x < bg->width; ++x)
            {
                for(y = 0; y < bg->height; ++y)
                {
                    int idx      = bg->width*y + x;
                    // compute magnitude squared
                    float magsq = xpixels[idx]*xpixels[idx] + ypixels[idx]*ypixels[idx];
                    gpixels[idx] = magsq;
                    if(magsq > peak)
                    {
                        peak_x = x;
                        peak_y = y;
                        peak   = magsq;
                    }
                }
            }
            LOGD("peak=%f, peak_x=%i, peak_y=%i", peak, peak_x, peak_y);
            utime_update("computepeak", &t0);
#ifdef DEBUG_BUFFERS
            texgz_tex_export(bg, "/sdcard/laser-shark/peak.texgz");
#endif

            // move sphero center to match peak
            self->sphero_x += (float) peak_x - (float) bg->width / 2.0f;
            self->sphero_y -= (float) peak_y - (float) bg->height / 2.0f;
        }
    }
    else
    {
        LOGE("unsupported format=0x%X, type=0x%X", format, type);
    }

    // compute phone X, Y center
    compute_position(self, SCREEN_CX, SCREEN_CY, &self->phone_X, &self->phone_Y);

    // compute sphero X, Y
    compute_position(self, self->sphero_x, self->sphero_y, &self->sphero_X, &self->sphero_Y);
    utime_update("computeposition", &t0);

    // compute goal
    float dx           = self->phone_X - self->sphero_X;
    float dy           = self->phone_Y - self->sphero_Y;
    float a            = fix_angle(atan2f(dx, dy) * 180.0f / M_PI);
    self->sphero_goal  = a - self->sphero_heading_offset;

    // compute speed
    float dotp = cosf((a - self->sphero_heading) * M_PI / 180.0f);
    if(dotp > 0.0f)
    {
        // linearly interpolate speed based on the turning angle
        self->sphero_speed = SPEED_MAX*dotp + SPEED_MIN*(1.0f - dotp);
    }
    else
    {
        // go slow to turn around
        self->sphero_speed = SPEED_MIN;
    }

    // draw camera cross-hair
    {
        float x = SCREEN_CX;
        float y = SCREEN_CY;
        float r = RADIUS_CROSS;
        limit_position(r, &x, &y);
        lzs_renderer_crosshair(y - r, x - r, y + r, x + r, 1.0f, 0.0f, 0.0f);
    }

    // draw sphero search box
    {
        float r = RADIUS_BALL;
        limit_position(r, &self->sphero_x, &self->sphero_y);
        float x = self->sphero_x;
        float y = self->sphero_y;
        lzs_renderer_drawbox(y - r, x - r, y + r, x + r, 0.0f, 1.0f, 0.0f, 0);
    }

    lzs_renderer_step(self);

    // draw string
    a3d_texstring_printf(self->string_sphero, "sphero: head=%i, x=%0.1f, y=%0.1f, spd=%0.2f, goal=%i", (int) fix_angle(self->sphero_heading + self->sphero_heading_offset), self->sphero_X, self->sphero_Y, self->sphero_speed, (int) fix_angle(self->sphero_goal));
    a3d_texstring_printf(self->string_phone, "phone: heading=%i, slope=%i, x=%0.1f, y=%0.1f", (int) fix_angle(self->phone_heading), (int) fix_angle(self->phone_slope), self->phone_X, self->phone_Y);
    a3d_texstring_draw(self->string_sphero, 400.0f, 16.0f, 800, 480);
    a3d_texstring_draw(self->string_phone,  400.0f, 16.0f + self->string_sphero->size, 800, 480);
    a3d_texstring_draw(self->string_fps, (float) SCREEN_W - 16.0f, (float) SCREEN_H - 16.0f, SCREEN_W, SCREEN_H);
    utime_update("draw", &t0);

    //texgz_tex_t* screen = texgz_tex_new(SCREEN_W, SCREEN_H, SCREEN_W, SCREEN_H, TEXGZ_UNSIGNED_BYTE, TEXGZ_BGRA, NULL);
    //glReadPixels(0, 0, screen->width, screen->height, screen->format, screen->type, (void*) screen->pixels);
    //texgz_tex_export(screen, "/sdcard/laser-shark/screen.texgz");
    //texgz_tex_delete(&screen);

    A3D_GL_GETERROR();
}