Ejemplo n.º 1
0
/* Subroutine */
int cgelsd_(integer *m, integer *n, integer *nrhs, complex * a, integer *lda, complex *b, integer *ldb, real *s, real *rcond, integer *rank, complex *work, integer *lwork, real *rwork, integer * iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
    /* Builtin functions */
    double log(doublereal);
    /* Local variables */
    integer ie, il, mm;
    real eps, anrm, bnrm;
    integer itau, nlvl, iascl, ibscl;
    real sfmin;
    integer minmn, maxmn, itaup, itauq, mnthr, nwork;
    extern /* Subroutine */
    int cgebrd_(integer *, integer *, complex *, integer *, real *, real *, complex *, complex *, complex *, integer *, integer *), slabad_(real *, real *);
    extern real clange_(char *, integer *, integer *, complex *, integer *, real *);
    extern /* Subroutine */
    int cgelqf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clalsd_( char *, integer *, integer *, integer *, real *, real *, complex * , integer *, real *, integer *, complex *, real *, integer *, integer *), clascl_(char *, integer *, integer *, real *, real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *);
    extern real slamch_(char *);
    extern /* Subroutine */
    int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *);
    real bignum;
    extern /* Subroutine */
    int slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), cunmbr_(char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), slaset_( char *, integer *, integer *, real *, real *, real *, integer *), cunmlq_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *);
    integer ldwork;
    extern /* Subroutine */
    int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *);
    integer liwork, minwrk, maxwrk;
    real smlnum;
    integer lrwork;
    logical lquery;
    integer nrwork, smlsiz;
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input arguments. */
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --s;
    --work;
    --rwork;
    --iwork;
    /* Function Body */
    *info = 0;
    minmn = min(*m,*n);
    maxmn = max(*m,*n);
    lquery = *lwork == -1;
    if (*m < 0)
    {
        *info = -1;
    }
    else if (*n < 0)
    {
        *info = -2;
    }
    else if (*nrhs < 0)
    {
        *info = -3;
    }
    else if (*lda < max(1,*m))
    {
        *info = -5;
    }
    else if (*ldb < max(1,maxmn))
    {
        *info = -7;
    }
    /* Compute workspace. */
    /* (Note: Comments in the code beginning "Workspace:" describe the */
    /* minimal amount of workspace needed at that point in the code, */
    /* as well as the preferred amount for good performance. */
    /* NB refers to the optimal block size for the immediately */
    /* following subroutine, as returned by ILAENV.) */
    if (*info == 0)
    {
        minwrk = 1;
        maxwrk = 1;
        liwork = 1;
        lrwork = 1;
        if (minmn > 0)
        {
            smlsiz = ilaenv_(&c__9, "CGELSD", " ", &c__0, &c__0, &c__0, &c__0);
            mnthr = ilaenv_(&c__6, "CGELSD", " ", m, n, nrhs, &c_n1);
            /* Computing MAX */
            i__1 = (integer) (log((real) minmn / (real) (smlsiz + 1)) / log( 2.f)) + 1;
            nlvl = max(i__1,0);
            liwork = minmn * 3 * nlvl + minmn * 11;
            mm = *m;
            if (*m >= *n && *m >= mnthr)
            {
                /* Path 1a - overdetermined, with many more rows than */
                /* columns. */
                mm = *n;
                /* Computing MAX */
                i__1 = maxwrk;
                i__2 = *n * ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1); // , expr subst
                maxwrk = max(i__1,i__2);
                /* Computing MAX */
                i__1 = maxwrk;
                i__2 = *nrhs * ilaenv_(&c__1, "CUNMQR", "LC", m, nrhs, n, &c_n1); // , expr subst
                maxwrk = max(i__1,i__2);
            }
            if (*m >= *n)
            {
                /* Path 1 - overdetermined or exactly determined. */
                /* Computing MAX */
                /* Computing 2nd power */
                i__3 = smlsiz + 1;
                i__1 = i__3 * i__3;
                i__2 = *n * (*nrhs + 1) + (*nrhs << 1); // , expr subst
                lrwork = *n * 10 + (*n << 1) * smlsiz + (*n << 3) * nlvl + smlsiz * 3 * *nrhs + max(i__1,i__2);
                /* Computing MAX */
                i__1 = maxwrk;
                i__2 = (*n << 1) + (mm + *n) * ilaenv_(&c__1, "CGEBRD", " ", &mm, n, &c_n1, &c_n1); // , expr subst
                maxwrk = max(i__1,i__2);
                /* Computing MAX */
                i__1 = maxwrk;
                i__2 = (*n << 1) + *nrhs * ilaenv_(&c__1, "CUNMBR", "QLC", &mm, nrhs, n, &c_n1); // , expr subst
                maxwrk = max(i__1,i__2);
                /* Computing MAX */
                i__1 = maxwrk;
                i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1, "CUNMBR", "PLN", n, nrhs, n, &c_n1); // , expr subst
                maxwrk = max(i__1,i__2);
                /* Computing MAX */
                i__1 = maxwrk;
                i__2 = (*n << 1) + *n * *nrhs; // , expr subst
                maxwrk = max(i__1,i__2);
                /* Computing MAX */
                i__1 = (*n << 1) + mm;
                i__2 = (*n << 1) + *n * *nrhs; // , expr subst
                minwrk = max(i__1,i__2);
            }
            if (*n > *m)
            {
                /* Computing MAX */
                /* Computing 2nd power */
                i__3 = smlsiz + 1;
                i__1 = i__3 * i__3;
                i__2 = *n * (*nrhs + 1) + (*nrhs << 1); // , expr subst
                lrwork = *m * 10 + (*m << 1) * smlsiz + (*m << 3) * nlvl + smlsiz * 3 * *nrhs + max(i__1,i__2);
                if (*n >= mnthr)
                {
                    /* Path 2a - underdetermined, with many more columns */
                    /* than rows. */
                    maxwrk = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, & c_n1, &c_n1);
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = *m * *m + (*m << 2) + (*m << 1) * ilaenv_(&c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1); // , expr subst
                    maxwrk = max(i__1,i__2);
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = *m * *m + (*m << 2) + *nrhs * ilaenv_(&c__1, "CUNMBR", "QLC", m, nrhs, m, &c_n1); // , expr subst
                    maxwrk = max(i__1,i__2);
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = *m * *m + (*m << 2) + (*m - 1) * ilaenv_(&c__1, "CUNMLQ", "LC", n, nrhs, m, &c_n1); // , expr subst
                    maxwrk = max(i__1,i__2);
                    if (*nrhs > 1)
                    {
                        /* Computing MAX */
                        i__1 = maxwrk;
                        i__2 = *m * *m + *m + *m * *nrhs; // , expr subst
                        maxwrk = max(i__1,i__2);
                    }
                    else
                    {
                        /* Computing MAX */
                        i__1 = maxwrk;
                        i__2 = *m * *m + (*m << 1); // , expr subst
                        maxwrk = max(i__1,i__2);
                    }
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = *m * *m + (*m << 2) + *m * *nrhs; // , expr subst
                    maxwrk = max(i__1,i__2);
                    /* XXX: Ensure the Path 2a case below is triggered. The workspace */
                    /* calculation should use queries for all routines eventually. */
                    /* Computing MAX */
                    /* Computing MAX */
                    i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4);
                    i__3 = max(i__3,*nrhs);
                    i__4 = *n - *m * 3; // ; expr subst
                    i__1 = maxwrk;
                    i__2 = (*m << 2) + *m * *m + max(i__3,i__4) ; // , expr subst
                    maxwrk = max(i__1,i__2);
                }
                else
                {
                    /* Path 2 - underdetermined. */
                    maxwrk = (*m << 1) + (*n + *m) * ilaenv_(&c__1, "CGEBRD", " ", m, n, &c_n1, &c_n1);
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = (*m << 1) + *nrhs * ilaenv_(&c__1, "CUNMBR", "QLC", m, nrhs, m, &c_n1); // , expr subst
                    maxwrk = max(i__1,i__2);
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = (*m << 1) + *m * ilaenv_(&c__1, "CUNMBR", "PLN", n, nrhs, m, &c_n1); // , expr subst
                    maxwrk = max(i__1,i__2);
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = (*m << 1) + *m * *nrhs; // , expr subst
                    maxwrk = max(i__1,i__2);
                }
                /* Computing MAX */
                i__1 = (*m << 1) + *n;
                i__2 = (*m << 1) + *m * *nrhs; // , expr subst
                minwrk = max(i__1,i__2);
            }
        }
        minwrk = min(minwrk,maxwrk);
        work[1].r = (real) maxwrk;
        work[1].i = 0.f; // , expr subst
        iwork[1] = liwork;
        rwork[1] = (real) lrwork;
        if (*lwork < minwrk && ! lquery)
        {
            *info = -12;
        }
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("CGELSD", &i__1);
        return 0;
    }
    else if (lquery)
    {
        return 0;
    }
    /* Quick return if possible. */
    if (*m == 0 || *n == 0)
    {
        *rank = 0;
        return 0;
    }
    /* Get machine parameters. */
    eps = slamch_("P");
    sfmin = slamch_("S");
    smlnum = sfmin / eps;
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);
    /* Scale A if max entry outside range [SMLNUM,BIGNUM]. */
    anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
    iascl = 0;
    if (anrm > 0.f && anrm < smlnum)
    {
        /* Scale matrix norm up to SMLNUM */
        clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, info);
        iascl = 1;
    }
    else if (anrm > bignum)
    {
        /* Scale matrix norm down to BIGNUM. */
        clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, info);
        iascl = 2;
    }
    else if (anrm == 0.f)
    {
        /* Matrix all zero. Return zero solution. */
        i__1 = max(*m,*n);
        claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
        slaset_("F", &minmn, &c__1, &c_b80, &c_b80, &s[1], &c__1);
        *rank = 0;
        goto L10;
    }
    /* Scale B if max entry outside range [SMLNUM,BIGNUM]. */
    bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
    ibscl = 0;
    if (bnrm > 0.f && bnrm < smlnum)
    {
        /* Scale matrix norm up to SMLNUM. */
        clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, info);
        ibscl = 1;
    }
    else if (bnrm > bignum)
    {
        /* Scale matrix norm down to BIGNUM. */
        clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, info);
        ibscl = 2;
    }
    /* If M < N make sure B(M+1:N,:) = 0 */
    if (*m < *n)
    {
        i__1 = *n - *m;
        claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
    }
    /* Overdetermined case. */
    if (*m >= *n)
    {
        /* Path 1 - overdetermined or exactly determined. */
        mm = *m;
        if (*m >= mnthr)
        {
            /* Path 1a - overdetermined, with many more rows than columns */
            mm = *n;
            itau = 1;
            nwork = itau + *n;
            /* Compute A=Q*R. */
            /* (RWorkspace: need N) */
            /* (CWorkspace: need N, prefer N*NB) */
            i__1 = *lwork - nwork + 1;
            cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1, info);
            /* Multiply B by transpose(Q). */
            /* (RWorkspace: need N) */
            /* (CWorkspace: need NRHS, prefer NRHS*NB) */
            i__1 = *lwork - nwork + 1;
            cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[ b_offset], ldb, &work[nwork], &i__1, info);
            /* Zero out below R. */
            if (*n > 1)
            {
                i__1 = *n - 1;
                i__2 = *n - 1;
                claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
            }
        }
        itauq = 1;
        itaup = itauq + *n;
        nwork = itaup + *n;
        ie = 1;
        nrwork = ie + *n;
        /* Bidiagonalize R in A. */
        /* (RWorkspace: need N) */
        /* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */
        i__1 = *lwork - nwork + 1;
        cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], & work[itaup], &work[nwork], &i__1, info);
        /* Multiply B by transpose of left bidiagonalizing vectors of R. */
        /* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */
        i__1 = *lwork - nwork + 1;
        cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
        /* Solve the bidiagonal least squares problem. */
        clalsd_("U", &smlsiz, n, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info);
        if (*info != 0)
        {
            goto L10;
        }
        /* Multiply B by right bidiagonalizing vectors of R. */
        i__1 = *lwork - nwork + 1;
        cunmbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], & b[b_offset], ldb, &work[nwork], &i__1, info);
    }
    else /* if(complicated condition) */
    {
        /* Computing MAX */
        i__1 = *m, i__2 = (*m << 1) - 4, i__1 = max(i__1,i__2);
        i__1 = max( i__1,*nrhs);
        i__2 = *n - *m * 3; // ; expr subst
        if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__1,i__2))
        {
            /* Path 2a - underdetermined, with many more columns than rows */
            /* and sufficient workspace for an efficient algorithm. */
            ldwork = *m;
            /* Computing MAX */
            /* Computing MAX */
            i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4);
            i__3 = max(i__3,*nrhs);
            i__4 = *n - *m * 3; // ; expr subst
            i__1 = (*m << 2) + *m * *lda + max(i__3,i__4);
            i__2 = *m * *lda + *m + *m * *nrhs; // , expr subst
            if (*lwork >= max(i__1,i__2))
            {
                ldwork = *lda;
            }
            itau = 1;
            nwork = *m + 1;
            /* Compute A=L*Q. */
            /* (CWorkspace: need 2*M, prefer M+M*NB) */
            i__1 = *lwork - nwork + 1;
            cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1, info);
            il = nwork;
            /* Copy L to WORK(IL), zeroing out above its diagonal. */
            clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
            i__1 = *m - 1;
            i__2 = *m - 1;
            claset_("U", &i__1, &i__2, &c_b1, &c_b1, &work[il + ldwork], & ldwork);
            itauq = il + ldwork * *m;
            itaup = itauq + *m;
            nwork = itaup + *m;
            ie = 1;
            nrwork = ie + *m;
            /* Bidiagonalize L in WORK(IL). */
            /* (RWorkspace: need M) */
            /* (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB) */
            i__1 = *lwork - nwork + 1;
            cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq], &work[itaup], &work[nwork], &i__1, info);
            /* Multiply B by transpose of left bidiagonalizing vectors of L. */
            /* (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
            i__1 = *lwork - nwork + 1;
            cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[ itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);
            /* Solve the bidiagonal least squares problem. */
            clalsd_("U", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info);
            if (*info != 0)
            {
                goto L10;
            }
            /* Multiply B by right bidiagonalizing vectors of L. */
            i__1 = *lwork - nwork + 1;
            cunmbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[ itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);
            /* Zero out below first M rows of B. */
            i__1 = *n - *m;
            claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
            nwork = itau + *m;
            /* Multiply transpose(Q) by B. */
            /* (CWorkspace: need NRHS, prefer NRHS*NB) */
            i__1 = *lwork - nwork + 1;
            cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[ b_offset], ldb, &work[nwork], &i__1, info);
        }
        else
        {
            /* Path 2 - remaining underdetermined cases. */
            itauq = 1;
            itaup = itauq + *m;
            nwork = itaup + *m;
            ie = 1;
            nrwork = ie + *m;
            /* Bidiagonalize A. */
            /* (RWorkspace: need M) */
            /* (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */
            i__1 = *lwork - nwork + 1;
            cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &work[itaup], &work[nwork], &i__1, info);
            /* Multiply B by transpose of left bidiagonalizing vectors. */
            /* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */
            i__1 = *lwork - nwork + 1;
            cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq] , &b[b_offset], ldb, &work[nwork], &i__1, info);
            /* Solve the bidiagonal least squares problem. */
            clalsd_("L", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info);
            if (*info != 0)
            {
                goto L10;
            }
            /* Multiply B by right bidiagonalizing vectors of A. */
            i__1 = *lwork - nwork + 1;
            cunmbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup] , &b[b_offset], ldb, &work[nwork], &i__1, info);
        }
    }
    /* Undo scaling. */
    if (iascl == 1)
    {
        clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, info);
        slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], & minmn, info);
    }
    else if (iascl == 2)
    {
        clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, info);
        slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], & minmn, info);
    }
    if (ibscl == 1)
    {
        clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, info);
    }
    else if (ibscl == 2)
    {
        clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, info);
    }
L10:
    work[1].r = (real) maxwrk;
    work[1].i = 0.f; // , expr subst
    iwork[1] = liwork;
    rwork[1] = (real) lrwork;
    return 0;
    /* End of CGELSD */
}
Ejemplo n.º 2
0
/* Subroutine */ int cgelsd_(integer *m, integer *n, integer *nrhs, complex *
	a, integer *lda, complex *b, integer *ldb, real *s, real *rcond, 
	integer *rank, complex *work, integer *lwork, real *rwork, integer *
	iwork, integer *info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
    real r__1;
    complex q__1;

    /* Local variables */
    static real anrm, bnrm;
    static integer itau, iascl, ibscl;
    static real sfmin;
    static integer minmn, maxmn, itaup, itauq, mnthr, nwork, ie, il;
    extern /* Subroutine */ int cgebrd_(integer *, integer *, complex *, 
	    integer *, real *, real *, complex *, complex *, complex *, 
	    integer *, integer *), slabad_(real *, real *);
    extern doublereal clange_(char *, integer *, integer *, complex *, 
	    integer *, real *);
    static integer mm;
    extern /* Subroutine */ int cgelqf_(integer *, integer *, complex *, 
	    integer *, complex *, complex *, integer *, integer *), clalsd_(
	    char *, integer *, integer *, integer *, real *, real *, complex *
	    , integer *, real *, integer *, complex *, real *, integer *, 
	    integer *), clascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, 
	    complex *, complex *, integer *, integer *);
    extern doublereal slamch_(char *);
    extern /* Subroutine */ int clacpy_(char *, integer *, integer *, complex 
	    *, integer *, complex *, integer *), claset_(char *, 
	    integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
	    integer *, integer *, ftnlen, ftnlen);
    static real bignum;
    extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, 
	    real *, integer *, integer *, real *, integer *, integer *), cunmbr_(char *, char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *), slaset_(
	    char *, integer *, integer *, real *, real *, real *, integer *), cunmlq_(char *, char *, integer *, integer *, integer *, 
	    complex *, integer *, complex *, complex *, integer *, complex *, 
	    integer *, integer *);
    static integer ldwork;
    extern /* Subroutine */ int cunmqr_(char *, char *, integer *, integer *, 
	    integer *, complex *, integer *, complex *, complex *, integer *, 
	    complex *, integer *, integer *);
    static integer minwrk, maxwrk;
    static real smlnum;
    static logical lquery;
    static integer nrwork, smlsiz;
    static real eps;


#define a_subscr(a_1,a_2) (a_2)*a_dim1 + a_1
#define a_ref(a_1,a_2) a[a_subscr(a_1,a_2)]
#define b_subscr(a_1,a_2) (a_2)*b_dim1 + a_1
#define b_ref(a_1,a_2) b[b_subscr(a_1,a_2)]


/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1999   


    Purpose   
    =======   

    CGELSD computes the minimum-norm solution to a real linear least   
    squares problem:   
        minimize 2-norm(| b - A*x |)   
    using the singular value decomposition (SVD) of A. A is an M-by-N   
    matrix which may be rank-deficient.   

    Several right hand side vectors b and solution vectors x can be   
    handled in a single call; they are stored as the columns of the   
    M-by-NRHS right hand side matrix B and the N-by-NRHS solution   
    matrix X.   

    The problem is solved in three steps:   
    (1) Reduce the coefficient matrix A to bidiagonal form with   
        Householder tranformations, reducing the original problem   
        into a "bidiagonal least squares problem" (BLS)   
    (2) Solve the BLS using a divide and conquer approach.   
    (3) Apply back all the Householder tranformations to solve   
        the original least squares problem.   

    The effective rank of A is determined by treating as zero those   
    singular values which are less than RCOND times the largest singular   
    value.   

    The divide and conquer algorithm makes very mild assumptions about   
    floating point arithmetic. It will work on machines with a guard   
    digit in add/subtract, or on those binary machines without guard   
    digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or   
    Cray-2. It could conceivably fail on hexadecimal or decimal machines   
    without guard digits, but we know of none.   

    Arguments   
    =========   

    M       (input) INTEGER   
            The number of rows of the matrix A. M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A. N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrices B and X. NRHS >= 0.   

    A       (input/output) COMPLEX array, dimension (LDA,N)   
            On entry, the M-by-N matrix A.   
            On exit, A has been destroyed.   

    LDA     (input) INTEGER   
            The leading dimension of the array A. LDA >= max(1,M).   

    B       (input/output) COMPLEX array, dimension (LDB,NRHS)   
            On entry, the M-by-NRHS right hand side matrix B.   
            On exit, B is overwritten by the N-by-NRHS solution matrix X.   
            If m >= n and RANK = n, the residual sum-of-squares for   
            the solution in the i-th column is given by the sum of   
            squares of elements n+1:m in that column.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,M,N).   

    S       (output) REAL array, dimension (min(M,N))   
            The singular values of A in decreasing order.   
            The condition number of A in the 2-norm = S(1)/S(min(m,n)).   

    RCOND   (input) REAL   
            RCOND is used to determine the effective rank of A.   
            Singular values S(i) <= RCOND*S(1) are treated as zero.   
            If RCOND < 0, machine precision is used instead.   

    RANK    (output) INTEGER   
            The effective rank of A, i.e., the number of singular values   
            which are greater than RCOND*S(1).   

    WORK    (workspace/output) COMPLEX array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK. LWORK must be at least 1.   
            The exact minimum amount of workspace needed depends on M,   
            N and NRHS. As long as LWORK is at least   
                2 * N + N * NRHS   
            if M is greater than or equal to N or   
                2 * M + M * NRHS   
            if M is less than N, the code will execute correctly.   
            For good performance, LWORK should generally be larger.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   


    RWORK   (workspace) REAL array, dimension at least   
               10*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +   
               (SMLSIZ+1)**2   
            if M is greater than or equal to N or   
               10*M + 2*M*SMLSIZ + 8*M*NLVL + 3*SMLSIZ*NRHS +   
               (SMLSIZ+1)**2   
            if M is less than N, the code will execute correctly.   
            SMLSIZ is returned by ILAENV and is equal to the maximum   
            size of the subproblems at the bottom of the computation   
            tree (usually about 25), and   
               NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )   

    IWORK   (workspace) INTEGER array, dimension (LIWORK)   
            LIWORK >= 3 * MINMN * NLVL + 11 * MINMN,   
            where MINMN = MIN( M,N ).   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -i, the i-th argument had an illegal value.   
            > 0:  the algorithm for computing the SVD failed to converge;   
                  if INFO = i, i off-diagonal elements of an intermediate   
                  bidiagonal form did not converge to zero.   

    Further Details   
    ===============   

    Based on contributions by   
       Ming Gu and Ren-Cang Li, Computer Science Division, University of   
         California at Berkeley, USA   
       Osni Marques, LBNL/NERSC, USA   

    =====================================================================   


       Test the input arguments.   

       Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --s;
    --work;
    --rwork;
    --iwork;

    /* Function Body */
    *info = 0;
    minmn = min(*m,*n);
    maxmn = max(*m,*n);
    mnthr = ilaenv_(&c__6, "CGELSD", " ", m, n, nrhs, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    lquery = *lwork == -1;
    if (*m < 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*lda < max(1,*m)) {
	*info = -5;
    } else if (*ldb < max(1,maxmn)) {
	*info = -7;
    }

    smlsiz = ilaenv_(&c__9, "CGELSD", " ", &c__0, &c__0, &c__0, &c__0, (
	    ftnlen)6, (ftnlen)1);

/*     Compute workspace.   
       (Note: Comments in the code beginning "Workspace:" describe the   
       minimal amount of workspace needed at that point in the code,   
       as well as the preferred amount for good performance.   
       NB refers to the optimal block size for the immediately   
       following subroutine, as returned by ILAENV.) */

    minwrk = 1;
    if (*info == 0) {
	maxwrk = 0;
	mm = *m;
	if (*m >= *n && *m >= mnthr) {

/*           Path 1a - overdetermined, with many more rows than columns. */

	    mm = *n;
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *n * ilaenv_(&c__1, "CGEQRF", " ", m, n, &
		    c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = maxwrk, i__2 = *nrhs * ilaenv_(&c__1, "CUNMQR", "LC", m, 
		    nrhs, n, &c_n1, (ftnlen)6, (ftnlen)2);
	    maxwrk = max(i__1,i__2);
	}
	if (*m >= *n) {

/*           Path 1 - overdetermined or exactly determined.   

   Computing MAX */
	    i__1 = maxwrk, i__2 = (*n << 1) + (mm + *n) * ilaenv_(&c__1, 
		    "CGEBRD", " ", &mm, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1)
		    ;
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = maxwrk, i__2 = (*n << 1) + *nrhs * ilaenv_(&c__1, "CUNMBR",
		     "QLC", &mm, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1, "CUN"
		    "MBR", "PLN", n, nrhs, n, &c_n1, (ftnlen)6, (ftnlen)3);
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = maxwrk, i__2 = (*n << 1) + *n * *nrhs;
	    maxwrk = max(i__1,i__2);
/* Computing MAX */
	    i__1 = (*n << 1) + mm, i__2 = (*n << 1) + *n * *nrhs;
	    minwrk = max(i__1,i__2);
	}
	if (*n > *m) {
	    if (*n >= mnthr) {

/*              Path 2a - underdetermined, with many more columns   
                than rows. */

		maxwrk = *m + *m * ilaenv_(&c__1, "CGELQF", " ", m, n, &c_n1, 
			&c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m << 1) * 
			ilaenv_(&c__1, "CGEBRD", " ", m, m, &c_n1, &c_n1, (
			ftnlen)6, (ftnlen)1);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *nrhs * ilaenv_(&
			c__1, "CUNMBR", "QLC", m, nrhs, m, &c_n1, (ftnlen)6, (
			ftnlen)3);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + (*m - 1) * 
			ilaenv_(&c__1, "CUNMLQ", "LC", n, nrhs, m, &c_n1, (
			ftnlen)6, (ftnlen)2);
		maxwrk = max(i__1,i__2);
		if (*nrhs > 1) {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
		    maxwrk = max(i__1,i__2);
		} else {
/* Computing MAX */
		    i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
		    maxwrk = max(i__1,i__2);
		}
/* Computing MAX */
		i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + *m * *nrhs;
		maxwrk = max(i__1,i__2);
	    } else {

/*              Path 2 - underdetermined. */

		maxwrk = (*m << 1) + (*n + *m) * ilaenv_(&c__1, "CGEBRD", 
			" ", m, n, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
		i__1 = maxwrk, i__2 = (*m << 1) + *nrhs * ilaenv_(&c__1, 
			"CUNMBR", "QLC", m, nrhs, m, &c_n1, (ftnlen)6, (
			ftnlen)3);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = (*m << 1) + *m * ilaenv_(&c__1, "CUNMBR"
			, "PLN", n, nrhs, m, &c_n1, (ftnlen)6, (ftnlen)3);
		maxwrk = max(i__1,i__2);
/* Computing MAX */
		i__1 = maxwrk, i__2 = (*m << 1) + *m * *nrhs;
		maxwrk = max(i__1,i__2);
	    }
/* Computing MAX */
	    i__1 = (*m << 1) + *n, i__2 = (*m << 1) + *m * *nrhs;
	    minwrk = max(i__1,i__2);
	}
	minwrk = min(minwrk,maxwrk);
	r__1 = (real) maxwrk;
	q__1.r = r__1, q__1.i = 0.f;
	work[1].r = q__1.r, work[1].i = q__1.i;
	if (*lwork < minwrk && ! lquery) {
	    *info = -12;
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("CGELSD", &i__1);
	return 0;
    } else if (lquery) {
	goto L10;
    }

/*     Quick return if possible. */

    if (*m == 0 || *n == 0) {
	*rank = 0;
	return 0;
    }

/*     Get machine parameters. */

    eps = slamch_("P");
    sfmin = slamch_("S");
    smlnum = sfmin / eps;
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);

/*     Scale A if max entry outside range [SMLNUM,BIGNUM]. */

    anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
    iascl = 0;
    if (anrm > 0.f && anrm < smlnum) {

/*        Scale matrix norm up to SMLNUM */

	clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
		info);
	iascl = 1;
    } else if (anrm > bignum) {

/*        Scale matrix norm down to BIGNUM. */

	clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
		info);
	iascl = 2;
    } else if (anrm == 0.f) {

/*        Matrix all zero. Return zero solution. */

	i__1 = max(*m,*n);
	claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
	slaset_("F", &minmn, &c__1, &c_b81, &c_b81, &s[1], &c__1);
	*rank = 0;
	goto L10;
    }

/*     Scale B if max entry outside range [SMLNUM,BIGNUM]. */

    bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
    ibscl = 0;
    if (bnrm > 0.f && bnrm < smlnum) {

/*        Scale matrix norm up to SMLNUM. */

	clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
		 info);
	ibscl = 1;
    } else if (bnrm > bignum) {

/*        Scale matrix norm down to BIGNUM. */

	clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
		 info);
	ibscl = 2;
    }

/*     If M < N make sure B(M+1:N,:) = 0 */

    if (*m < *n) {
	i__1 = *n - *m;
	claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b_ref(*m + 1, 1), ldb);
    }

/*     Overdetermined case. */

    if (*m >= *n) {

/*        Path 1 - overdetermined or exactly determined. */

	mm = *m;
	if (*m >= mnthr) {

/*           Path 1a - overdetermined, with many more rows than columns */

	    mm = *n;
	    itau = 1;
	    nwork = itau + *n;

/*           Compute A=Q*R.   
             (RWorkspace: need N)   
             (CWorkspace: need N, prefer N*NB) */

	    i__1 = *lwork - nwork + 1;
	    cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
		     info);

/*           Multiply B by transpose(Q).   
             (RWorkspace: need N)   
             (CWorkspace: need NRHS, prefer NRHS*NB) */

	    i__1 = *lwork - nwork + 1;
	    cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
		    b_offset], ldb, &work[nwork], &i__1, info);

/*           Zero out below R. */

	    if (*n > 1) {
		i__1 = *n - 1;
		i__2 = *n - 1;
		claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a_ref(2, 1), lda);
	    }
	}

	itauq = 1;
	itaup = itauq + *n;
	nwork = itaup + *n;
	ie = 1;
	nrwork = ie + *n;

/*        Bidiagonalize R in A.   
          (RWorkspace: need N)   
          (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */

	i__1 = *lwork - nwork + 1;
	cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &
		work[itaup], &work[nwork], &i__1, info);

/*        Multiply B by transpose of left bidiagonalizing vectors of R.   
          (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */

	i__1 = *lwork - nwork + 1;
	cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], 
		&b[b_offset], ldb, &work[nwork], &i__1, info);

/*        Solve the bidiagonal least squares problem. */

	clalsd_("U", &smlsiz, n, nrhs, &s[1], &rwork[ie], &b[b_offset], ldb, 
		rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1], info);
	if (*info != 0) {
	    goto L10;
	}

/*        Multiply B by right bidiagonalizing vectors of R. */

	i__1 = *lwork - nwork + 1;
	cunmbr_("P", "L", "N", n, nrhs, n, &a[a_offset], lda, &work[itaup], &
		b[b_offset], ldb, &work[nwork], &i__1, info);

    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = *m, i__2 = (*m << 1) - 4, i__1 = max(i__1,i__2), i__1 = max(
		i__1,*nrhs), i__2 = *n - *m * 3;
	if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + max(i__1,i__2)) {

/*        Path 2a - underdetermined, with many more columns than rows   
          and sufficient workspace for an efficient algorithm. */

	    ldwork = *m;
/* Computing MAX   
   Computing MAX */
	    i__3 = *m, i__4 = (*m << 1) - 4, i__3 = max(i__3,i__4), i__3 = 
		    max(i__3,*nrhs), i__4 = *n - *m * 3;
	    i__1 = (*m << 2) + *m * *lda + max(i__3,i__4), i__2 = *m * *lda + 
		    *m + *m * *nrhs;
	    if (*lwork >= max(i__1,i__2)) {
		ldwork = *lda;
	    }
	    itau = 1;
	    nwork = *m + 1;

/*        Compute A=L*Q.   
          (CWorkspace: need 2*M, prefer M+M*NB) */

	    i__1 = *lwork - nwork + 1;
	    cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &i__1,
		     info);
	    il = nwork;

/*        Copy L to WORK(IL), zeroing out above its diagonal. */

	    clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
	    i__1 = *m - 1;
	    i__2 = *m - 1;
	    claset_("U", &i__1, &i__2, &c_b1, &c_b1, &work[il + ldwork], &
		    ldwork);
	    itauq = il + ldwork * *m;
	    itaup = itauq + *m;
	    nwork = itaup + *m;
	    ie = 1;
	    nrwork = ie + *m;

/*        Bidiagonalize L in WORK(IL).   
          (RWorkspace: need M)   
          (CWorkspace: need M*M+4*M, prefer M*M+4*M+2*M*NB) */

	    i__1 = *lwork - nwork + 1;
	    cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq],
		     &work[itaup], &work[nwork], &i__1, info);

/*        Multiply B by transpose of left bidiagonalizing vectors of L.   
          (CWorkspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */

	    i__1 = *lwork - nwork + 1;
	    cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[
		    itauq], &b[b_offset], ldb, &work[nwork], &i__1, info);

/*        Solve the bidiagonal least squares problem. */

	    clalsd_("U", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset], 
		    ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
		     info);
	    if (*info != 0) {
		goto L10;
	    }

/*        Multiply B by right bidiagonalizing vectors of L. */

	    i__1 = *lwork - nwork + 1;
	    cunmbr_("P", "L", "N", m, nrhs, m, &work[il], &ldwork, &work[
		    itaup], &b[b_offset], ldb, &work[nwork], &i__1, info);

/*        Zero out below first M rows of B. */

	    i__1 = *n - *m;
	    claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b_ref(*m + 1, 1), ldb);
	    nwork = itau + *m;

/*        Multiply transpose(Q) by B.   
          (CWorkspace: need NRHS, prefer NRHS*NB) */

	    i__1 = *lwork - nwork + 1;
	    cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
		    b_offset], ldb, &work[nwork], &i__1, info);

	} else {

/*        Path 2 - remaining underdetermined cases. */

	    itauq = 1;
	    itaup = itauq + *m;
	    nwork = itaup + *m;
	    ie = 1;
	    nrwork = ie + *m;

/*        Bidiagonalize A.   
          (RWorkspace: need M)   
          (CWorkspace: need 2*M+N, prefer 2*M+(M+N)*NB) */

	    i__1 = *lwork - nwork + 1;
	    cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], 
		    &work[itaup], &work[nwork], &i__1, info);

/*        Multiply B by transpose of left bidiagonalizing vectors.   
          (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */

	    i__1 = *lwork - nwork + 1;
	    cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq]
		    , &b[b_offset], ldb, &work[nwork], &i__1, info);

/*        Solve the bidiagonal least squares problem. */

	    clalsd_("L", &smlsiz, m, nrhs, &s[1], &rwork[ie], &b[b_offset], 
		    ldb, rcond, rank, &work[nwork], &rwork[nrwork], &iwork[1],
		     info);
	    if (*info != 0) {
		goto L10;
	    }

/*        Multiply B by right bidiagonalizing vectors of A. */

	    i__1 = *lwork - nwork + 1;
	    cunmbr_("P", "L", "N", n, nrhs, m, &a[a_offset], lda, &work[itaup]
		    , &b[b_offset], ldb, &work[nwork], &i__1, info);

	}
    }

/*     Undo scaling. */

    if (iascl == 1) {
	clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
		 info);
	slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
		minmn, info);
    } else if (iascl == 2) {
	clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
		 info);
	slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
		minmn, info);
    }
    if (ibscl == 1) {
	clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info);
    } else if (ibscl == 2) {
	clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
		 info);
    }

L10:
    r__1 = (real) maxwrk;
    q__1.r = r__1, q__1.i = 0.f;
    work[1].r = q__1.r, work[1].i = q__1.i;
    return 0;

/*     End of CGELSD */

} /* cgelsd_ */
Ejemplo n.º 3
0
/* Subroutine */
int cgelss_(integer *m, integer *n, integer *nrhs, complex * a, integer *lda, complex *b, integer *ldb, real *s, real *rcond, integer *rank, complex *work, integer *lwork, real *rwork, integer * info)
{
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
    real r__1;
    /* Local variables */
    integer i__, bl, ie, il, mm;
    complex dum[1];
    real eps, thr, anrm, bnrm;
    integer itau, lwork_cgebrd__, lwork_cgelqf__, lwork_cgeqrf__, lwork_cungbr__, lwork_cunmbr__, lwork_cunmlq__, lwork_cunmqr__;
    extern /* Subroutine */
    int cgemm_(char *, char *, integer *, integer *, integer *, complex *, complex *, integer *, complex *, integer *, complex *, complex *, integer *);
    integer iascl, ibscl;
    extern /* Subroutine */
    int cgemv_(char *, integer *, integer *, complex * , complex *, integer *, complex *, integer *, complex *, complex * , integer *);
    integer chunk;
    real sfmin;
    extern /* Subroutine */
    int ccopy_(integer *, complex *, integer *, complex *, integer *);
    integer minmn, maxmn, itaup, itauq, mnthr, iwork;
    extern /* Subroutine */
    int cgebrd_(), slabad_(real *, real *);
    extern real clange_(char *, integer *, integer *, complex *, integer *, real *);
    extern /* Subroutine */
    int cgelqf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), clascl_( char *, integer *, integer *, real *, real *, integer *, integer * , complex *, integer *, integer *), cgeqrf_(integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *);
    extern real slamch_(char *);
    extern /* Subroutine */
    int clacpy_(char *, integer *, integer *, complex *, integer *, complex *, integer *), claset_(char *, integer *, integer *, complex *, complex *, complex *, integer *), xerbla_(char *, integer *), cbdsqr_(char *, integer *, integer *, integer *, integer *, real *, real *, complex *, integer *, complex *, integer *, complex *, integer *, real *, integer *);
    extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *);
    real bignum;
    extern /* Subroutine */
    int cungbr_(char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, integer *), slascl_(char *, integer *, integer *, real *, real *, integer *, integer *, real *, integer *, integer *), cunmbr_(char *, char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *), csrscl_(integer *, real *, complex *, integer *), slaset_(char *, integer *, integer *, real *, real *, real *, integer *), cunmlq_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *);
    integer ldwork;
    extern /* Subroutine */
    int cunmqr_(char *, char *, integer *, integer *, integer *, complex *, integer *, complex *, complex *, integer *, complex *, integer *, integer *);
    integer minwrk, maxwrk;
    real smlnum;
    integer irwork;
    logical lquery;
    /* -- LAPACK driver routine (version 3.4.0) -- */
    /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
    /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
    /* November 2011 */
    /* .. Scalar Arguments .. */
    /* .. */
    /* .. Array Arguments .. */
    /* .. */
    /* ===================================================================== */
    /* .. Parameters .. */
    /* .. */
    /* .. Local Scalars .. */
    /* .. */
    /* .. Local Arrays .. */
    /* .. */
    /* .. External Subroutines .. */
    /* .. */
    /* .. External Functions .. */
    /* .. */
    /* .. Intrinsic Functions .. */
    /* .. */
    /* .. Executable Statements .. */
    /* Test the input arguments */
    /* Parameter adjustments */
    a_dim1 = *lda;
    a_offset = 1 + a_dim1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    --s;
    --work;
    --rwork;
    /* Function Body */
    *info = 0;
    minmn = min(*m,*n);
    maxmn = max(*m,*n);
    lquery = *lwork == -1;
    if (*m < 0)
    {
        *info = -1;
    }
    else if (*n < 0)
    {
        *info = -2;
    }
    else if (*nrhs < 0)
    {
        *info = -3;
    }
    else if (*lda < max(1,*m))
    {
        *info = -5;
    }
    else if (*ldb < max(1,maxmn))
    {
        *info = -7;
    }
    /* Compute workspace */
    /* (Note: Comments in the code beginning "Workspace:" describe the */
    /* minimal amount of workspace needed at that point in the code, */
    /* as well as the preferred amount for good performance. */
    /* CWorkspace refers to complex workspace, and RWorkspace refers */
    /* to real workspace. NB refers to the optimal block size for the */
    /* immediately following subroutine, as returned by ILAENV.) */
    if (*info == 0)
    {
        minwrk = 1;
        maxwrk = 1;
        if (minmn > 0)
        {
            mm = *m;
            mnthr = ilaenv_(&c__6, "CGELSS", " ", m, n, nrhs, &c_n1);
            if (*m >= *n && *m >= mnthr)
            {
                /* Path 1a - overdetermined, with many more rows than */
                /* columns */
                /* Compute space needed for CGEQRF */
                cgeqrf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
                lwork_cgeqrf__ = dum[0].r;
                /* Compute space needed for CUNMQR */
                cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, dum, &b[ b_offset], ldb, dum, &c_n1, info);
                lwork_cunmqr__ = dum[0].r;
                mm = *n;
                /* Computing MAX */
                i__1 = maxwrk;
                i__2 = *n + *n * ilaenv_(&c__1, "CGEQRF", " ", m, n, &c_n1, &c_n1); // , expr subst
                maxwrk = max(i__1,i__2);
                /* Computing MAX */
                i__1 = maxwrk;
                i__2 = *n + *nrhs * ilaenv_(&c__1, "CUNMQR", "LC", m, nrhs, n, &c_n1); // , expr subst
                maxwrk = max(i__1,i__2);
            }
            if (*m >= *n)
            {
                /* Path 1 - overdetermined or exactly determined */
                /* Compute space needed for CGEBRD */
                cgebrd_(&mm, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum, &c_n1, info);
                lwork_cgebrd__ = dum[0].r;
                /* Compute space needed for CUNMBR */
                cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, dum, & b[b_offset], ldb, dum, &c_n1, info);
                lwork_cunmbr__ = dum[0].r;
                /* Compute space needed for CUNGBR */
                cungbr_("P", n, n, n, &a[a_offset], lda, dum, dum, &c_n1, info);
                lwork_cungbr__ = dum[0].r;
                /* Compute total workspace needed */
                /* Computing MAX */
                i__1 = maxwrk;
                i__2 = (*n << 1) + lwork_cgebrd__; // , expr subst
                maxwrk = max(i__1,i__2);
                /* Computing MAX */
                i__1 = maxwrk;
                i__2 = (*n << 1) + lwork_cunmbr__; // , expr subst
                maxwrk = max(i__1,i__2);
                /* Computing MAX */
                i__1 = maxwrk;
                i__2 = (*n << 1) + lwork_cungbr__; // , expr subst
                maxwrk = max(i__1,i__2);
                /* Computing MAX */
                i__1 = maxwrk;
                i__2 = *n * *nrhs; // , expr subst
                maxwrk = max(i__1,i__2);
                minwrk = (*n << 1) + max(*nrhs,*m);
            }
            if (*n > *m)
            {
                minwrk = (*m << 1) + max(*nrhs,*n);
                if (*n >= mnthr)
                {
                    /* Path 2a - underdetermined, with many more columns */
                    /* than rows */
                    /* Compute space needed for CGELQF */
                    cgelqf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
                    lwork_cgelqf__ = dum[0].r;
                    /* Compute space needed for CGEBRD */
                    cgebrd_(m, m, &a[a_offset], lda, &s[1], dum, dum, dum, dum, &c_n1, info);
                    lwork_cgebrd__ = dum[0].r;
                    /* Compute space needed for CUNMBR */
                    cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, dum, &b[b_offset], ldb, dum, &c_n1, info);
                    lwork_cunmbr__ = dum[0].r;
                    /* Compute space needed for CUNGBR */
                    cungbr_("P", m, m, m, &a[a_offset], lda, dum, dum, &c_n1, info);
                    lwork_cungbr__ = dum[0].r;
                    /* Compute space needed for CUNMLQ */
                    cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, dum, &b[ b_offset], ldb, dum, &c_n1, info);
                    lwork_cunmlq__ = dum[0].r;
                    /* Compute total workspace needed */
                    maxwrk = *m + lwork_cgelqf__;
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = *m * 3 + *m * *m + lwork_cgebrd__; // , expr subst
                    maxwrk = max(i__1,i__2);
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = *m * 3 + *m * *m + lwork_cunmbr__; // , expr subst
                    maxwrk = max(i__1,i__2);
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = *m * 3 + *m * *m + lwork_cungbr__; // , expr subst
                    maxwrk = max(i__1,i__2);
                    if (*nrhs > 1)
                    {
                        /* Computing MAX */
                        i__1 = maxwrk;
                        i__2 = *m * *m + *m + *m * *nrhs; // , expr subst
                        maxwrk = max(i__1,i__2);
                    }
                    else
                    {
                        /* Computing MAX */
                        i__1 = maxwrk;
                        i__2 = *m * *m + (*m << 1); // , expr subst
                        maxwrk = max(i__1,i__2);
                    }
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = *m + lwork_cunmlq__; // , expr subst
                    maxwrk = max(i__1,i__2);
                }
                else
                {
                    /* Path 2 - underdetermined */
                    /* Compute space needed for CGEBRD */
                    cgebrd_(m, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum, &c_n1, info);
                    lwork_cgebrd__ = dum[0].r;
                    /* Compute space needed for CUNMBR */
                    cunmbr_("Q", "L", "C", m, nrhs, m, &a[a_offset], lda, dum, &b[b_offset], ldb, dum, &c_n1, info);
                    lwork_cunmbr__ = dum[0].r;
                    /* Compute space needed for CUNGBR */
                    cungbr_("P", m, n, m, &a[a_offset], lda, dum, dum, &c_n1, info);
                    lwork_cungbr__ = dum[0].r;
                    maxwrk = (*m << 1) + lwork_cgebrd__;
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = (*m << 1) + lwork_cunmbr__; // , expr subst
                    maxwrk = max(i__1,i__2);
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = (*m << 1) + lwork_cungbr__; // , expr subst
                    maxwrk = max(i__1,i__2);
                    /* Computing MAX */
                    i__1 = maxwrk;
                    i__2 = *n * *nrhs; // , expr subst
                    maxwrk = max(i__1,i__2);
                }
            }
            maxwrk = max(minwrk,maxwrk);
        }
        work[1].r = (real) maxwrk;
        work[1].i = 0.f; // , expr subst
        if (*lwork < minwrk && ! lquery)
        {
            *info = -12;
        }
    }
    if (*info != 0)
    {
        i__1 = -(*info);
        xerbla_("CGELSS", &i__1);
        return 0;
    }
    else if (lquery)
    {
        return 0;
    }
    /* Quick return if possible */
    if (*m == 0 || *n == 0)
    {
        *rank = 0;
        return 0;
    }
    /* Get machine parameters */
    eps = slamch_("P");
    sfmin = slamch_("S");
    smlnum = sfmin / eps;
    bignum = 1.f / smlnum;
    slabad_(&smlnum, &bignum);
    /* Scale A if max element outside range [SMLNUM,BIGNUM] */
    anrm = clange_("M", m, n, &a[a_offset], lda, &rwork[1]);
    iascl = 0;
    if (anrm > 0.f && anrm < smlnum)
    {
        /* Scale matrix norm up to SMLNUM */
        clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, info);
        iascl = 1;
    }
    else if (anrm > bignum)
    {
        /* Scale matrix norm down to BIGNUM */
        clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, info);
        iascl = 2;
    }
    else if (anrm == 0.f)
    {
        /* Matrix all zero. Return zero solution. */
        i__1 = max(*m,*n);
        claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
        slaset_("F", &minmn, &c__1, &c_b59, &c_b59, &s[1], &minmn);
        *rank = 0;
        goto L70;
    }
    /* Scale B if max element outside range [SMLNUM,BIGNUM] */
    bnrm = clange_("M", m, nrhs, &b[b_offset], ldb, &rwork[1]);
    ibscl = 0;
    if (bnrm > 0.f && bnrm < smlnum)
    {
        /* Scale matrix norm up to SMLNUM */
        clascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb, info);
        ibscl = 1;
    }
    else if (bnrm > bignum)
    {
        /* Scale matrix norm down to BIGNUM */
        clascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb, info);
        ibscl = 2;
    }
    /* Overdetermined case */
    if (*m >= *n)
    {
        /* Path 1 - overdetermined or exactly determined */
        mm = *m;
        if (*m >= mnthr)
        {
            /* Path 1a - overdetermined, with many more rows than columns */
            mm = *n;
            itau = 1;
            iwork = itau + *n;
            /* Compute A=Q*R */
            /* (CWorkspace: need 2*N, prefer N+N*NB) */
            /* (RWorkspace: none) */
            i__1 = *lwork - iwork + 1;
            cgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__1, info);
            /* Multiply B by transpose(Q) */
            /* (CWorkspace: need N+NRHS, prefer N+NRHS*NB) */
            /* (RWorkspace: none) */
            i__1 = *lwork - iwork + 1;
            cunmqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[ b_offset], ldb, &work[iwork], &i__1, info);
            /* Zero out below R */
            if (*n > 1)
            {
                i__1 = *n - 1;
                i__2 = *n - 1;
                claset_("L", &i__1, &i__2, &c_b1, &c_b1, &a[a_dim1 + 2], lda);
            }
        }
        ie = 1;
        itauq = 1;
        itaup = itauq + *n;
        iwork = itaup + *n;
        /* Bidiagonalize R in A */
        /* (CWorkspace: need 2*N+MM, prefer 2*N+(MM+N)*NB) */
        /* (RWorkspace: need N) */
        i__1 = *lwork - iwork + 1;
        cgebrd_(&mm, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], & work[itaup], &work[iwork], &i__1, info);
        /* Multiply B by transpose of left bidiagonalizing vectors of R */
        /* (CWorkspace: need 2*N+NRHS, prefer 2*N+NRHS*NB) */
        /* (RWorkspace: none) */
        i__1 = *lwork - iwork + 1;
        cunmbr_("Q", "L", "C", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], &b[b_offset], ldb, &work[iwork], &i__1, info);
        /* Generate right bidiagonalizing vectors of R in A */
        /* (CWorkspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
        /* (RWorkspace: none) */
        i__1 = *lwork - iwork + 1;
        cungbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[iwork], & i__1, info);
        irwork = ie + *n;
        /* Perform bidiagonal QR iteration */
        /* multiply B by transpose of left singular vectors */
        /* compute right singular vectors in A */
        /* (CWorkspace: none) */
        /* (RWorkspace: need BDSPAC) */
        cbdsqr_("U", n, n, &c__0, nrhs, &s[1], &rwork[ie], &a[a_offset], lda, dum, &c__1, &b[b_offset], ldb, &rwork[irwork], info);
        if (*info != 0)
        {
            goto L70;
        }
        /* Multiply B by reciprocals of singular values */
        /* Computing MAX */
        r__1 = *rcond * s[1];
        thr = max(r__1,sfmin);
        if (*rcond < 0.f)
        {
            /* Computing MAX */
            r__1 = eps * s[1];
            thr = max(r__1,sfmin);
        }
        *rank = 0;
        i__1 = *n;
        for (i__ = 1;
                i__ <= i__1;
                ++i__)
        {
            if (s[i__] > thr)
            {
                csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
                ++(*rank);
            }
            else
            {
                claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb);
            }
            /* L10: */
        }
        /* Multiply B by right singular vectors */
        /* (CWorkspace: need N, prefer N*NRHS) */
        /* (RWorkspace: none) */
        if (*lwork >= *ldb * *nrhs && *nrhs > 1)
        {
            cgemm_("C", "N", n, nrhs, n, &c_b2, &a[a_offset], lda, &b[ b_offset], ldb, &c_b1, &work[1], ldb);
            clacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb) ;
        }
        else if (*nrhs > 1)
        {
            chunk = *lwork / *n;
            i__1 = *nrhs;
            i__2 = chunk;
            for (i__ = 1;
                    i__2 < 0 ? i__ >= i__1 : i__ <= i__1;
                    i__ += i__2)
            {
                /* Computing MIN */
                i__3 = *nrhs - i__ + 1;
                bl = min(i__3,chunk);
                cgemm_("C", "N", n, &bl, n, &c_b2, &a[a_offset], lda, &b[i__ * b_dim1 + 1], ldb, &c_b1, &work[1], n);
                clacpy_("G", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1], ldb);
                /* L20: */
            }
        }
        else
        {
            cgemv_("C", n, n, &c_b2, &a[a_offset], lda, &b[b_offset], &c__1, & c_b1, &work[1], &c__1);
            ccopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
        }
    }
    else /* if(complicated condition) */
    {
        /* Computing MAX */
        i__2 = max(*m,*nrhs);
        i__1 = *n - (*m << 1); // , expr subst
        if (*n >= mnthr && *lwork >= *m * 3 + *m * *m + max(i__2,i__1))
        {
            /* Underdetermined case, M much less than N */
            /* Path 2a - underdetermined, with many more columns than rows */
            /* and sufficient workspace for an efficient algorithm */
            ldwork = *m;
            /* Computing MAX */
            i__2 = max(*m,*nrhs);
            i__1 = *n - (*m << 1); // , expr subst
            if (*lwork >= *m * 3 + *m * *lda + max(i__2,i__1))
            {
                ldwork = *lda;
            }
            itau = 1;
            iwork = *m + 1;
            /* Compute A=L*Q */
            /* (CWorkspace: need 2*M, prefer M+M*NB) */
            /* (RWorkspace: none) */
            i__2 = *lwork - iwork + 1;
            cgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__2, info);
            il = iwork;
            /* Copy L to WORK(IL), zeroing out above it */
            clacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
            i__2 = *m - 1;
            i__1 = *m - 1;
            claset_("U", &i__2, &i__1, &c_b1, &c_b1, &work[il + ldwork], & ldwork);
            ie = 1;
            itauq = il + ldwork * *m;
            itaup = itauq + *m;
            iwork = itaup + *m;
            /* Bidiagonalize L in WORK(IL) */
            /* (CWorkspace: need M*M+4*M, prefer M*M+3*M+2*M*NB) */
            /* (RWorkspace: need M) */
            i__2 = *lwork - iwork + 1;
            cgebrd_(m, m, &work[il], &ldwork, &s[1], &rwork[ie], &work[itauq], &work[itaup], &work[iwork], &i__2, info);
            /* Multiply B by transpose of left bidiagonalizing vectors of L */
            /* (CWorkspace: need M*M+3*M+NRHS, prefer M*M+3*M+NRHS*NB) */
            /* (RWorkspace: none) */
            i__2 = *lwork - iwork + 1;
            cunmbr_("Q", "L", "C", m, nrhs, m, &work[il], &ldwork, &work[ itauq], &b[b_offset], ldb, &work[iwork], &i__2, info);
            /* Generate right bidiagonalizing vectors of R in WORK(IL) */
            /* (CWorkspace: need M*M+4*M-1, prefer M*M+3*M+(M-1)*NB) */
            /* (RWorkspace: none) */
            i__2 = *lwork - iwork + 1;
            cungbr_("P", m, m, m, &work[il], &ldwork, &work[itaup], &work[ iwork], &i__2, info);
            irwork = ie + *m;
            /* Perform bidiagonal QR iteration, computing right singular */
            /* vectors of L in WORK(IL) and multiplying B by transpose of */
            /* left singular vectors */
            /* (CWorkspace: need M*M) */
            /* (RWorkspace: need BDSPAC) */
            cbdsqr_("U", m, m, &c__0, nrhs, &s[1], &rwork[ie], &work[il], & ldwork, &a[a_offset], lda, &b[b_offset], ldb, &rwork[ irwork], info);
            if (*info != 0)
            {
                goto L70;
            }
            /* Multiply B by reciprocals of singular values */
            /* Computing MAX */
            r__1 = *rcond * s[1];
            thr = max(r__1,sfmin);
            if (*rcond < 0.f)
            {
                /* Computing MAX */
                r__1 = eps * s[1];
                thr = max(r__1,sfmin);
            }
            *rank = 0;
            i__2 = *m;
            for (i__ = 1;
                    i__ <= i__2;
                    ++i__)
            {
                if (s[i__] > thr)
                {
                    csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
                    ++(*rank);
                }
                else
                {
                    claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb);
                }
                /* L30: */
            }
            iwork = il + *m * ldwork;
            /* Multiply B by right singular vectors of L in WORK(IL) */
            /* (CWorkspace: need M*M+2*M, prefer M*M+M+M*NRHS) */
            /* (RWorkspace: none) */
            if (*lwork >= *ldb * *nrhs + iwork - 1 && *nrhs > 1)
            {
                cgemm_("C", "N", m, nrhs, m, &c_b2, &work[il], &ldwork, &b[ b_offset], ldb, &c_b1, &work[iwork], ldb);
                clacpy_("G", m, nrhs, &work[iwork], ldb, &b[b_offset], ldb);
            }
            else if (*nrhs > 1)
            {
                chunk = (*lwork - iwork + 1) / *m;
                i__2 = *nrhs;
                i__1 = chunk;
                for (i__ = 1;
                        i__1 < 0 ? i__ >= i__2 : i__ <= i__2;
                        i__ += i__1)
                {
                    /* Computing MIN */
                    i__3 = *nrhs - i__ + 1;
                    bl = min(i__3,chunk);
                    cgemm_("C", "N", m, &bl, m, &c_b2, &work[il], &ldwork, &b[ i__ * b_dim1 + 1], ldb, &c_b1, &work[iwork], m);
                    clacpy_("G", m, &bl, &work[iwork], m, &b[i__ * b_dim1 + 1] , ldb);
                    /* L40: */
                }
            }
            else
            {
                cgemv_("C", m, m, &c_b2, &work[il], &ldwork, &b[b_dim1 + 1], & c__1, &c_b1, &work[iwork], &c__1);
                ccopy_(m, &work[iwork], &c__1, &b[b_dim1 + 1], &c__1);
            }
            /* Zero out below first M rows of B */
            i__1 = *n - *m;
            claset_("F", &i__1, nrhs, &c_b1, &c_b1, &b[*m + 1 + b_dim1], ldb);
            iwork = itau + *m;
            /* Multiply transpose(Q) by B */
            /* (CWorkspace: need M+NRHS, prefer M+NHRS*NB) */
            /* (RWorkspace: none) */
            i__1 = *lwork - iwork + 1;
            cunmlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[ b_offset], ldb, &work[iwork], &i__1, info);
        }
        else
        {
            /* Path 2 - remaining underdetermined cases */
            ie = 1;
            itauq = 1;
            itaup = itauq + *m;
            iwork = itaup + *m;
            /* Bidiagonalize A */
            /* (CWorkspace: need 3*M, prefer 2*M+(M+N)*NB) */
            /* (RWorkspace: need N) */
            i__1 = *lwork - iwork + 1;
            cgebrd_(m, n, &a[a_offset], lda, &s[1], &rwork[ie], &work[itauq], &work[itaup], &work[iwork], &i__1, info);
            /* Multiply B by transpose of left bidiagonalizing vectors */
            /* (CWorkspace: need 2*M+NRHS, prefer 2*M+NRHS*NB) */
            /* (RWorkspace: none) */
            i__1 = *lwork - iwork + 1;
            cunmbr_("Q", "L", "C", m, nrhs, n, &a[a_offset], lda, &work[itauq] , &b[b_offset], ldb, &work[iwork], &i__1, info);
            /* Generate right bidiagonalizing vectors in A */
            /* (CWorkspace: need 3*M, prefer 2*M+M*NB) */
            /* (RWorkspace: none) */
            i__1 = *lwork - iwork + 1;
            cungbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[ iwork], &i__1, info);
            irwork = ie + *m;
            /* Perform bidiagonal QR iteration, */
            /* computing right singular vectors of A in A and */
            /* multiplying B by transpose of left singular vectors */
            /* (CWorkspace: none) */
            /* (RWorkspace: need BDSPAC) */
            cbdsqr_("L", m, n, &c__0, nrhs, &s[1], &rwork[ie], &a[a_offset], lda, dum, &c__1, &b[b_offset], ldb, &rwork[irwork], info);
            if (*info != 0)
            {
                goto L70;
            }
            /* Multiply B by reciprocals of singular values */
            /* Computing MAX */
            r__1 = *rcond * s[1];
            thr = max(r__1,sfmin);
            if (*rcond < 0.f)
            {
                /* Computing MAX */
                r__1 = eps * s[1];
                thr = max(r__1,sfmin);
            }
            *rank = 0;
            i__1 = *m;
            for (i__ = 1;
                    i__ <= i__1;
                    ++i__)
            {
                if (s[i__] > thr)
                {
                    csrscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
                    ++(*rank);
                }
                else
                {
                    claset_("F", &c__1, nrhs, &c_b1, &c_b1, &b[i__ + b_dim1], ldb);
                }
                /* L50: */
            }
            /* Multiply B by right singular vectors of A */
            /* (CWorkspace: need N, prefer N*NRHS) */
            /* (RWorkspace: none) */
            if (*lwork >= *ldb * *nrhs && *nrhs > 1)
            {
                cgemm_("C", "N", n, nrhs, m, &c_b2, &a[a_offset], lda, &b[ b_offset], ldb, &c_b1, &work[1], ldb);
                clacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb);
            }
            else if (*nrhs > 1)
            {
                chunk = *lwork / *n;
                i__1 = *nrhs;
                i__2 = chunk;
                for (i__ = 1;
                        i__2 < 0 ? i__ >= i__1 : i__ <= i__1;
                        i__ += i__2)
                {
                    /* Computing MIN */
                    i__3 = *nrhs - i__ + 1;
                    bl = min(i__3,chunk);
                    cgemm_("C", "N", n, &bl, m, &c_b2, &a[a_offset], lda, &b[ i__ * b_dim1 + 1], ldb, &c_b1, &work[1], n);
                    clacpy_("F", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1], ldb);
                    /* L60: */
                }
            }
            else
            {
                cgemv_("C", m, n, &c_b2, &a[a_offset], lda, &b[b_offset], & c__1, &c_b1, &work[1], &c__1);
                ccopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
            }
        }
    }
    /* Undo scaling */
    if (iascl == 1)
    {
        clascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb, info);
        slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], & minmn, info);
    }
    else if (iascl == 2)
    {
        clascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb, info);
        slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], & minmn, info);
    }
    if (ibscl == 1)
    {
        clascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb, info);
    }
    else if (ibscl == 2)
    {
        clascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb, info);
    }
L70:
    work[1].r = (real) maxwrk;
    work[1].i = 0.f; // , expr subst
    return 0;
    /* End of CGELSS */
}
Ejemplo n.º 4
0
/* Subroutine */ int cerrbd_(char *path, integer *nunit)
{
    /* Format strings */
    static char fmt_9999[] = "(1x,a3,\002 routines passed the tests of the e"
                             "rror exits (\002,i3,\002 tests done)\002)";
    static char fmt_9998[] = "(\002 *** \002,a3,\002 routines failed the tes"
                             "ts of the error \002,\002exits ***\002)";

    /* System generated locals */
    integer i__1;
    real r__1;

    /* Local variables */
    complex a[16]	/* was [4][4] */;
    real d__[4], e[4];
    integer i__, j;
    complex u[16]	/* was [4][4] */, v[16]	/* was [4][4] */, w[4];
    char c2[2];
    integer nt;
    complex tp[4], tq[4];
    real rw[16];
    integer info;
    extern /* Subroutine */ int cgebrd_(integer *, integer *, complex *,
                                        integer *, real *, real *, complex *, complex *, complex *,
                                        integer *, integer *), cbdsqr_(char *, integer *, integer *,
                                                integer *, integer *, real *, real *, complex *, integer *,
                                                complex *, integer *, complex *, integer *, real *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int cungbr_(char *, integer *, integer *, integer
                                        *, complex *, integer *, complex *, complex *, integer *, integer
                                        *), chkxer_(char *, integer *, integer *, logical *,
                                                logical *), cunmbr_(char *, char *, char *, integer *,
                                                        integer *, integer *, complex *, integer *, complex *, complex *,
                                                        integer *, complex *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };
    static cilist io___16 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___17 = { 0, 0, 0, fmt_9998, 0 };



    /*  -- LAPACK test routine (version 3.1.1) -- */
    /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
    /*     November 2006 */

    /*     .. Scalar Arguments .. */
    /*     .. */

    /*  Purpose */
    /*  ======= */

    /*  CERRBD tests the error exits for CGEBRD, CUNGBR, CUNMBR, and CBDSQR. */

    /*  Arguments */
    /*  ========= */

    /*  PATH    (input) CHARACTER*3 */
    /*          The LAPACK path name for the routines to be tested. */

    /*  NUNIT   (input) INTEGER */
    /*          The unit number for output. */

    /*  ===================================================================== */

    /*     .. Parameters .. */
    /*     .. */
    /*     .. Local Scalars .. */
    /*     .. */
    /*     .. Local Arrays .. */
    /*     .. */
    /*     .. External Functions .. */
    /*     .. */
    /*     .. External Subroutines .. */
    /*     .. */
    /*     .. Scalars in Common .. */
    /*     .. */
    /*     .. Common blocks .. */
    /*     .. */
    /*     .. Intrinsic Functions .. */
    /*     .. */
    /*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

    /*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
        for (i__ = 1; i__ <= 4; ++i__) {
            i__1 = i__ + (j << 2) - 5;
            r__1 = 1.f / (real) (i__ + j);
            a[i__1].r = r__1, a[i__1].i = 0.f;
            /* L10: */
        }
        /* L20: */
    }
    infoc_1.ok = TRUE_;
    nt = 0;

    /*     Test error exits of the SVD routines. */

    if (lsamen_(&c__2, c2, "BD")) {

        /*        CGEBRD */

        s_copy(srnamc_1.srnamt, "CGEBRD", (ftnlen)32, (ftnlen)6);
        infoc_1.infot = 1;
        cgebrd_(&c_n1, &c__0, a, &c__1, d__, e, tq, tp, w, &c__1, &info);
        chkxer_("CGEBRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 2;
        cgebrd_(&c__0, &c_n1, a, &c__1, d__, e, tq, tp, w, &c__1, &info);
        chkxer_("CGEBRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 4;
        cgebrd_(&c__2, &c__1, a, &c__1, d__, e, tq, tp, w, &c__2, &info);
        chkxer_("CGEBRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 10;
        cgebrd_(&c__2, &c__1, a, &c__2, d__, e, tq, tp, w, &c__1, &info);
        chkxer_("CGEBRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        nt += 4;

        /*        CUNGBR */

        s_copy(srnamc_1.srnamt, "CUNGBR", (ftnlen)32, (ftnlen)6);
        infoc_1.infot = 1;
        cungbr_("/", &c__0, &c__0, &c__0, a, &c__1, tq, w, &c__1, &info);
        chkxer_("CUNGBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 2;
        cungbr_("Q", &c_n1, &c__0, &c__0, a, &c__1, tq, w, &c__1, &info);
        chkxer_("CUNGBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 3;
        cungbr_("Q", &c__0, &c_n1, &c__0, a, &c__1, tq, w, &c__1, &info);
        chkxer_("CUNGBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 3;
        cungbr_("Q", &c__0, &c__1, &c__0, a, &c__1, tq, w, &c__1, &info);
        chkxer_("CUNGBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 3;
        cungbr_("Q", &c__1, &c__0, &c__1, a, &c__1, tq, w, &c__1, &info);
        chkxer_("CUNGBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 3;
        cungbr_("P", &c__1, &c__0, &c__0, a, &c__1, tq, w, &c__1, &info);
        chkxer_("CUNGBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 3;
        cungbr_("P", &c__0, &c__1, &c__1, a, &c__1, tq, w, &c__1, &info);
        chkxer_("CUNGBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 4;
        cungbr_("Q", &c__0, &c__0, &c_n1, a, &c__1, tq, w, &c__1, &info);
        chkxer_("CUNGBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 6;
        cungbr_("Q", &c__2, &c__1, &c__1, a, &c__1, tq, w, &c__1, &info);
        chkxer_("CUNGBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 9;
        cungbr_("Q", &c__2, &c__2, &c__1, a, &c__2, tq, w, &c__1, &info);
        chkxer_("CUNGBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        nt += 10;

        /*        CUNMBR */

        s_copy(srnamc_1.srnamt, "CUNMBR", (ftnlen)32, (ftnlen)6);
        infoc_1.infot = 1;
        cunmbr_("/", "L", "T", &c__0, &c__0, &c__0, a, &c__1, tq, u, &c__1, w,
                &c__1, &info);
        chkxer_("CUNMBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 2;
        cunmbr_("Q", "/", "T", &c__0, &c__0, &c__0, a, &c__1, tq, u, &c__1, w,
                &c__1, &info);
        chkxer_("CUNMBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 3;
        cunmbr_("Q", "L", "/", &c__0, &c__0, &c__0, a, &c__1, tq, u, &c__1, w,
                &c__1, &info);
        chkxer_("CUNMBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 4;
        cunmbr_("Q", "L", "C", &c_n1, &c__0, &c__0, a, &c__1, tq, u, &c__1, w,
                &c__1, &info);
        chkxer_("CUNMBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 5;
        cunmbr_("Q", "L", "C", &c__0, &c_n1, &c__0, a, &c__1, tq, u, &c__1, w,
                &c__1, &info);
        chkxer_("CUNMBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 6;
        cunmbr_("Q", "L", "C", &c__0, &c__0, &c_n1, a, &c__1, tq, u, &c__1, w,
                &c__1, &info);
        chkxer_("CUNMBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 8;
        cunmbr_("Q", "L", "C", &c__2, &c__0, &c__0, a, &c__1, tq, u, &c__2, w,
                &c__1, &info);
        chkxer_("CUNMBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 8;
        cunmbr_("Q", "R", "C", &c__0, &c__2, &c__0, a, &c__1, tq, u, &c__1, w,
                &c__1, &info);
        chkxer_("CUNMBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 8;
        cunmbr_("P", "L", "C", &c__2, &c__0, &c__2, a, &c__1, tq, u, &c__2, w,
                &c__1, &info);
        chkxer_("CUNMBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 8;
        cunmbr_("P", "R", "C", &c__0, &c__2, &c__2, a, &c__1, tq, u, &c__1, w,
                &c__1, &info);
        chkxer_("CUNMBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 11;
        cunmbr_("Q", "R", "C", &c__2, &c__0, &c__0, a, &c__1, tq, u, &c__1, w,
                &c__1, &info);
        chkxer_("CUNMBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 13;
        cunmbr_("Q", "L", "C", &c__0, &c__2, &c__0, a, &c__1, tq, u, &c__1, w,
                &c__0, &info);
        chkxer_("CUNMBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 13;
        cunmbr_("Q", "R", "C", &c__2, &c__0, &c__0, a, &c__1, tq, u, &c__2, w,
                &c__0, &info);
        chkxer_("CUNMBR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        nt += 13;

        /*        CBDSQR */

        s_copy(srnamc_1.srnamt, "CBDSQR", (ftnlen)32, (ftnlen)6);
        infoc_1.infot = 1;
        cbdsqr_("/", &c__0, &c__0, &c__0, &c__0, d__, e, v, &c__1, u, &c__1,
                a, &c__1, rw, &info);
        chkxer_("CBDSQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 2;
        cbdsqr_("U", &c_n1, &c__0, &c__0, &c__0, d__, e, v, &c__1, u, &c__1,
                a, &c__1, rw, &info);
        chkxer_("CBDSQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 3;
        cbdsqr_("U", &c__0, &c_n1, &c__0, &c__0, d__, e, v, &c__1, u, &c__1,
                a, &c__1, rw, &info);
        chkxer_("CBDSQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 4;
        cbdsqr_("U", &c__0, &c__0, &c_n1, &c__0, d__, e, v, &c__1, u, &c__1,
                a, &c__1, rw, &info);
        chkxer_("CBDSQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 5;
        cbdsqr_("U", &c__0, &c__0, &c__0, &c_n1, d__, e, v, &c__1, u, &c__1,
                a, &c__1, rw, &info);
        chkxer_("CBDSQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 9;
        cbdsqr_("U", &c__2, &c__1, &c__0, &c__0, d__, e, v, &c__1, u, &c__1,
                a, &c__1, rw, &info);
        chkxer_("CBDSQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 11;
        cbdsqr_("U", &c__0, &c__0, &c__2, &c__0, d__, e, v, &c__1, u, &c__1,
                a, &c__1, rw, &info);
        chkxer_("CBDSQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        infoc_1.infot = 13;
        cbdsqr_("U", &c__2, &c__0, &c__0, &c__1, d__, e, v, &c__1, u, &c__1,
                a, &c__1, rw, &info);
        chkxer_("CBDSQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
                infoc_1.ok);
        nt += 8;
    }

    /*     Print a summary line. */

    if (infoc_1.ok) {
        io___16.ciunit = infoc_1.nout;
        s_wsfe(&io___16);
        do_fio(&c__1, path, (ftnlen)3);
        do_fio(&c__1, (char *)&nt, (ftnlen)sizeof(integer));
        e_wsfe();
    } else {
        io___17.ciunit = infoc_1.nout;
        s_wsfe(&io___17);
        do_fio(&c__1, path, (ftnlen)3);
        e_wsfe();
    }


    return 0;

    /*     End of CERRBD */

} /* cerrbd_ */