void TrashSizeCache::remove( qulonglong value ) { KInterProcessLock lock( QLatin1String( "trash" ) ); lock.lock(); lock.waitForLockGranted(); KConfig config( mTrashSizeCachePath ); KConfigGroup group = config.group( mTrashSizeGroup ); qulonglong size = currentSize( false ); size -= value; group.writeEntry( mTrashSizeKey, size ); config.sync(); lock.unlock(); }
int ARPACKm3::reSolve(int numEigen, Epetra_MultiVector &Q, double *lambda, int startingEV) { // Computes eigenvalues and the corresponding eigenvectors // of the generalized eigenvalue problem // // K X = M X Lambda // // using ARPACK (mode 3). // // The convergence test is provided by ARPACK. // // Note that if M is not specified, then K X = X Lambda is solved. // (using the mode for generalized eigenvalue problem). // // Input variables: // // numEigen (integer) = Number of eigenmodes requested // // Q (Epetra_MultiVector) = Initial search space // The number of columns of Q defines the size of search space (=NCV). // The rows of X are distributed across processors. // As a rule of thumb in ARPACK User's guide, NCV >= 2*numEigen. // At exit, the first numEigen locations contain the eigenvectors requested. // // lambda (array of doubles) = Converged eigenvalues // The length of this array is equal to the number of columns in Q. // At exit, the first numEigen locations contain the eigenvalues requested. // // startingEV (integer) = Number of eigenmodes already stored in Q // A linear combination of these vectors is made to define the starting // vector, placed in resid. // // Return information on status of computation // // info >= 0 >> Number of converged eigenpairs at the end of computation // // // Failure due to input arguments // // info = - 1 >> The stiffness matrix K has not been specified. // info = - 2 >> The maps for the matrix K and the matrix M differ. // info = - 3 >> The maps for the matrix K and the preconditioner P differ. // info = - 4 >> The maps for the vectors and the matrix K differ. // info = - 5 >> Q is too small for the number of eigenvalues requested. // info = - 6 >> Q is too small for the computation parameters. // // info = - 8 >> numEigen must be smaller than the dimension of the matrix. // // info = - 30 >> MEMORY // // See ARPACK documentation for the meaning of INFO if (numEigen <= startingEV) { return numEigen; } int info = myVerify.inputArguments(numEigen, K, M, 0, Q, minimumSpaceDimension(numEigen)); if (info < 0) return info; int myPid = MyComm.MyPID(); int localSize = Q.MyLength(); int NCV = Q.NumVectors(); int knownEV = 0; if (NCV > Q.GlobalLength()) { if (numEigen >= Q.GlobalLength()) { cerr << endl; cerr << " !! The number of requested eigenvalues must be smaller than the dimension"; cerr << " of the matrix !!\n"; cerr << endl; return -8; } NCV = Q.GlobalLength(); } int localVerbose = verbose*(myPid == 0); // Define data for ARPACK highMem = (highMem > currentSize()) ? highMem : currentSize(); int ido = 0; int lwI = 22 + NCV; int *wI = new (nothrow) int[lwI]; if (wI == 0) { return -30; } memRequested += sizeof(int)*lwI/(1024.0*1024.0); int *iparam = wI; int *ipntr = wI + 11; int *select = wI + 22; int lworkl = NCV*(NCV+8); int lwD = lworkl + 4*localSize; double *wD = new (nothrow) double[lwD]; if (wD == 0) { delete[] wI; return -30; } memRequested += sizeof(double)*(4*localSize+lworkl)/(1024.0*1024.0); double *pointer = wD; double *workl = pointer; pointer = pointer + lworkl; double *resid = pointer; pointer = pointer + localSize; double *workd = pointer; double *v = Q.Values(); highMem = (highMem > currentSize()) ? highMem : currentSize(); double sigma = 0.0; if (startingEV > 0) { // Define the initial starting vector memset(resid, 0, localSize*sizeof(double)); for (int jj = 0; jj < startingEV; ++jj) for (int ii = 0; ii < localSize; ++ii) resid[ii] += v[ii + jj*localSize]; info = 1; } iparam[1-1] = 1; iparam[3-1] = maxIterEigenSolve; iparam[7-1] = 3; // The fourth parameter forces to use the convergence test provided by ARPACK. // This requires a customization of ARPACK (provided by R. Lehoucq). iparam[4-1] = 0; Epetra_Vector v1(View, Q.Map(), workd); Epetra_Vector v2(View, Q.Map(), workd + localSize); Epetra_Vector v3(View, Q.Map(), workd + 2*localSize); double *vTmp = new (nothrow) double[localSize]; if (vTmp == 0) { delete[] wI; delete[] wD; return -30; } memRequested += sizeof(double)*localSize/(1024.0*1024.0); highMem = (highMem > currentSize()) ? highMem : currentSize(); if (localVerbose > 0) { cout << endl; cout << " *|* Problem: "; if (M) cout << "K*Q = M*Q D "; else cout << "K*Q = Q D "; cout << endl; cout << " *|* Algorithm = ARPACK (mode 3)" << endl; cout << " *|* Number of requested eigenvalues = " << numEigen << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); cout << " *|* Tolerance for convergence = " << tolEigenSolve << endl; if (startingEV > 0) cout << " *|* User-defined starting vector (Combination of " << startingEV << " vectors)\n"; cout << "\n -- Start iterations -- \n"; } #ifdef EPETRA_MPI Epetra_MpiComm *MPIComm = dynamic_cast<Epetra_MpiComm *>(const_cast<Epetra_Comm*>(&MyComm)); #endif timeOuterLoop -= MyWatch.WallTime(); while (ido != 99) { highMem = (highMem > currentSize()) ? highMem : currentSize(); #ifdef EPETRA_MPI if (MPIComm) callFortran.PSAUPD(MPIComm->Comm(), &ido, 'G', localSize, which, numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info, localVerbose); else callFortran.SAUPD(&ido, 'G', localSize, which, numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info, localVerbose); #else callFortran.SAUPD(&ido, 'G', localSize, which, numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info, localVerbose); #endif if (ido == -1) { // Apply the mass matrix v3.ResetView(workd + ipntr[0] - 1); v1.ResetView(vTmp); timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(v3, v1); else memcpy(v1.Values(), v3.Values(), localSize*sizeof(double)); timeMassOp += MyWatch.WallTime(); massOp += 1; // Solve the stiffness problem v2.ResetView(workd + ipntr[1] - 1); timeStifOp -= MyWatch.WallTime(); K->ApplyInverse(v1, v2); timeStifOp += MyWatch.WallTime(); stifOp += 1; continue; } // if (ido == -1) if (ido == 1) { // Solve the stiffness problem v1.ResetView(workd + ipntr[2] - 1); v2.ResetView(workd + ipntr[1] - 1); timeStifOp -= MyWatch.WallTime(); K->ApplyInverse(v1, v2); timeStifOp += MyWatch.WallTime(); stifOp += 1; continue; } // if (ido == 1) if (ido == 2) { // Apply the mass matrix v1.ResetView(workd + ipntr[0] - 1); v2.ResetView(workd + ipntr[1] - 1); timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(v1, v2); else memcpy(v2.Values(), v1.Values(), localSize*sizeof(double)); timeMassOp += MyWatch.WallTime(); massOp += 1; continue; } // if (ido == 2) } // while (ido != 99) timeOuterLoop += MyWatch.WallTime(); highMem = (highMem > currentSize()) ? highMem : currentSize(); if (info < 0) { if (myPid == 0) { cerr << endl; cerr << " Error with DSAUPD, info = " << info << endl; cerr << endl; } } else { // Compute the eigenvectors timePostProce -= MyWatch.WallTime(); #ifdef EPETRA_MPI if (MPIComm) callFortran.PSEUPD(MPIComm->Comm(), 1, 'A', select, lambda, v, localSize, sigma, 'G', localSize, which, numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info); else callFortran.SEUPD(1, 'A', select, lambda, v, localSize, sigma, 'G', localSize, which, numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info); #else callFortran.SEUPD(1, 'A', select, lambda, v, localSize, sigma, 'G', localSize, which, numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info); #endif timePostProce += MyWatch.WallTime(); highMem = (highMem > currentSize()) ? highMem : currentSize(); // Treat the error if (info != 0) { if (myPid == 0) { cerr << endl; cerr << " Error with DSEUPD, info = " << info << endl; cerr << endl; } } } // if (info < 0) if (info == 0) { outerIter = iparam[3-1]; knownEV = iparam[5-1]; orthoOp = iparam[11-1]; } delete[] wI; delete[] wD; delete[] vTmp; return (info == 0) ? knownEV : info; }
int BlockDACG::reSolve(int numEigen, Epetra_MultiVector &Q, double *lambda, int startingEV) { // Computes the smallest eigenvalues and the corresponding eigenvectors // of the generalized eigenvalue problem // // K X = M X Lambda // // using a Block Deflation Accelerated Conjugate Gradient algorithm. // // Note that if M is not specified, then K X = X Lambda is solved. // // Ref: P. Arbenz & R. Lehoucq, "A comparison of algorithms for modal analysis in the // absence of a sparse direct method", SNL, Technical Report SAND2003-1028J // With the notations of this report, the coefficient beta is defined as // diag( H^T_{k} G_{k} ) / diag( H^T_{k-1} G_{k-1} ) // // Input variables: // // numEigen (integer) = Number of eigenmodes requested // // Q (Epetra_MultiVector) = Converged eigenvectors // The number of columns of Q must be equal to numEigen + blockSize. // The rows of Q are distributed across processors. // At exit, the first numEigen columns contain the eigenvectors requested. // // lambda (array of doubles) = Converged eigenvalues // At input, it must be of size numEigen + blockSize. // At exit, the first numEigen locations contain the eigenvalues requested. // // startingEV (integer) = Number of existing converged eigenmodes // // Return information on status of computation // // info >= 0 >> Number of converged eigenpairs at the end of computation // // // Failure due to input arguments // // info = - 1 >> The stiffness matrix K has not been specified. // info = - 2 >> The maps for the matrix K and the matrix M differ. // info = - 3 >> The maps for the matrix K and the preconditioner P differ. // info = - 4 >> The maps for the vectors and the matrix K differ. // info = - 5 >> Q is too small for the number of eigenvalues requested. // info = - 6 >> Q is too small for the computation parameters. // // info = - 10 >> Failure during the mass orthonormalization // // info = - 20 >> Error in LAPACK during the local eigensolve // // info = - 30 >> MEMORY // // Check the input parameters if (numEigen <= startingEV) { return startingEV; } int info = myVerify.inputArguments(numEigen, K, M, Prec, Q, numEigen + blockSize); if (info < 0) return info; int myPid = MyComm.MyPID(); // Get the weight for approximating the M-inverse norm Epetra_Vector *vectWeight = 0; if (normWeight) { vectWeight = new Epetra_Vector(View, Q.Map(), normWeight); } int knownEV = startingEV; int localVerbose = verbose*(myPid==0); // Define local block vectors // // MX = Working vectors (storing M*X if M is specified, else pointing to X) // KX = Working vectors (storing K*X) // // R = Residuals // // H = Preconditioned residuals // // P = Search directions // MP = Working vectors (storing M*P if M is specified, else pointing to P) // KP = Working vectors (storing K*P) int xr = Q.MyLength(); Epetra_MultiVector X(View, Q, numEigen, blockSize); X.Random(); int tmp; tmp = (M == 0) ? 5*blockSize*xr : 7*blockSize*xr; double *work1 = new (nothrow) double[tmp]; if (work1 == 0) { if (vectWeight) delete vectWeight; info = -30; return info; } memRequested += sizeof(double)*tmp/(1024.0*1024.0); highMem = (highMem > currentSize()) ? highMem : currentSize(); double *tmpD = work1; Epetra_MultiVector KX(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector MX(View, Q.Map(), (M) ? tmpD : X.Values(), xr, blockSize); tmpD = (M) ? tmpD + xr*blockSize : tmpD; Epetra_MultiVector R(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector H(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector P(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector KP(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector MP(View, Q.Map(), (M) ? tmpD : P.Values(), xr, blockSize); // Define arrays // // theta = Store the local eigenvalues (size: 2*blockSize) // normR = Store the norm of residuals (size: blockSize) // // oldHtR = Store the previous H_i^T*R_i (size: blockSize) // currentHtR = Store the current H_i^T*R_i (size: blockSize) // // MM = Local mass matrix (size: 2*blockSize x 2*blockSize) // KK = Local stiffness matrix (size: 2*blockSize x 2*blockSize) // // S = Local eigenvectors (size: 2*blockSize x 2*blockSize) int lwork2; lwork2 = 5*blockSize + 12*blockSize*blockSize; double *work2 = new (nothrow) double[lwork2]; if (work2 == 0) { if (vectWeight) delete vectWeight; delete[] work1; info = -30; return info; } highMem = (highMem > currentSize()) ? highMem : currentSize(); tmpD = work2; double *theta = tmpD; tmpD = tmpD + 2*blockSize; double *normR = tmpD; tmpD = tmpD + blockSize; double *oldHtR = tmpD; tmpD = tmpD + blockSize; double *currentHtR = tmpD; tmpD = tmpD + blockSize; memset(currentHtR, 0, blockSize*sizeof(double)); double *MM = tmpD; tmpD = tmpD + 4*blockSize*blockSize; double *KK = tmpD; tmpD = tmpD + 4*blockSize*blockSize; double *S = tmpD; memRequested += sizeof(double)*lwork2/(1024.0*1024.0); // Define an array to store the residuals history if (localVerbose > 2) { resHistory = new (nothrow) double[maxIterEigenSolve*blockSize]; if (resHistory == 0) { if (vectWeight) delete vectWeight; delete[] work1; delete[] work2; info = -30; return info; } historyCount = 0; } // Miscellaneous definitions bool reStart = false; numRestart = 0; int localSize; int twoBlocks = 2*blockSize; int nFound = blockSize; int i, j; if (localVerbose > 0) { cout << endl; cout << " *|* Problem: "; if (M) cout << "K*Q = M*Q D "; else cout << "K*Q = Q D "; if (Prec) cout << " with preconditioner"; cout << endl; cout << " *|* Algorithm = DACG (block version)" << endl; cout << " *|* Size of blocks = " << blockSize << endl; cout << " *|* Number of requested eigenvalues = " << numEigen << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); cout << " *|* Tolerance for convergence = " << tolEigenSolve << endl; cout << " *|* Norm used for convergence: "; if (normWeight) cout << "weighted L2-norm with user-provided weights" << endl; else cout << "L^2-norm" << endl; if (startingEV > 0) cout << " *|* Input converged eigenvectors = " << startingEV << endl; cout << "\n -- Start iterations -- \n"; } timeOuterLoop -= MyWatch.WallTime(); for (outerIter = 1; outerIter <= maxIterEigenSolve; ++outerIter) { highMem = (highMem > currentSize()) ? highMem : currentSize(); if ((outerIter == 1) || (reStart == true)) { reStart = false; localSize = blockSize; if (nFound > 0) { Epetra_MultiVector X2(View, X, blockSize-nFound, nFound); Epetra_MultiVector MX2(View, MX, blockSize-nFound, nFound); Epetra_MultiVector KX2(View, KX, blockSize-nFound, nFound); // Apply the mass matrix to X timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(X2, MX2); timeMassOp += MyWatch.WallTime(); massOp += nFound; if (knownEV > 0) { // Orthonormalize X against the known eigenvectors with Gram-Schmidt // Note: Use R as a temporary work space Epetra_MultiVector copyQ(View, Q, 0, knownEV); timeOrtho -= MyWatch.WallTime(); info = modalTool.massOrthonormalize(X, MX, M, copyQ, nFound, 0, R.Values()); timeOrtho += MyWatch.WallTime(); // Exit the code if the orthogonalization did not succeed if (info < 0) { info = -10; delete[] work1; delete[] work2; if (vectWeight) delete vectWeight; return info; } } // Apply the stiffness matrix to X timeStifOp -= MyWatch.WallTime(); K->Apply(X2, KX2); timeStifOp += MyWatch.WallTime(); stifOp += nFound; } // if (nFound > 0) } // if ((outerIter == 1) || (reStart == true)) else { // Apply the preconditioner on the residuals if (Prec != 0) { timePrecOp -= MyWatch.WallTime(); Prec->ApplyInverse(R, H); timePrecOp += MyWatch.WallTime(); precOp += blockSize; } else { memcpy(H.Values(), R.Values(), xr*blockSize*sizeof(double)); } // Compute the product H^T*R timeSearchP -= MyWatch.WallTime(); memcpy(oldHtR, currentHtR, blockSize*sizeof(double)); H.Dot(R, currentHtR); // Define the new search directions if (localSize == blockSize) { P.Scale(-1.0, H); localSize = twoBlocks; } // if (localSize == blockSize) else { bool hasZeroDot = false; for (j = 0; j < blockSize; ++j) { if (oldHtR[j] == 0.0) { hasZeroDot = true; break; } callBLAS.SCAL(xr, currentHtR[j]/oldHtR[j], P.Values() + j*xr); } if (hasZeroDot == true) { // Restart the computation when there is a null dot product if (localVerbose > 0) { cout << endl; cout << " !! Null dot product -- Restart the search space !!\n"; cout << endl; } if (blockSize == 1) { X.Random(); nFound = blockSize; } else { Epetra_MultiVector Xinit(View, X, j, blockSize-j); Xinit.Random(); nFound = blockSize - j; } // if (blockSize == 1) reStart = true; numRestart += 1; info = 0; continue; } callBLAS.AXPY(xr*blockSize, -1.0, H.Values(), P.Values()); } // if (localSize == blockSize) timeSearchP += MyWatch.WallTime(); // Apply the mass matrix on P timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(P, MP); timeMassOp += MyWatch.WallTime(); massOp += blockSize; if (knownEV > 0) { // Orthogonalize P against the known eigenvectors // Note: Use R as a temporary work space Epetra_MultiVector copyQ(View, Q, 0, knownEV); timeOrtho -= MyWatch.WallTime(); modalTool.massOrthonormalize(P, MP, M, copyQ, blockSize, 1, R.Values()); timeOrtho += MyWatch.WallTime(); } // Apply the stiffness matrix to P timeStifOp -= MyWatch.WallTime(); K->Apply(P, KP); timeStifOp += MyWatch.WallTime(); stifOp += blockSize; } // if ((outerIter == 1) || (reStart == true)) // Form "local" mass and stiffness matrices // Note: Use S as a temporary workspace timeLocalProj -= MyWatch.WallTime(); modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, KX.Values(), xr, KK, localSize, S); modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, MX.Values(), xr, MM, localSize, S); if (localSize > blockSize) { modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, KP.Values(), xr, KK + blockSize*localSize, localSize, S); modalTool.localProjection(blockSize, blockSize, xr, P.Values(), xr, KP.Values(), xr, KK + blockSize*localSize + blockSize, localSize, S); modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, MP.Values(), xr, MM + blockSize*localSize, localSize, S); modalTool.localProjection(blockSize, blockSize, xr, P.Values(), xr, MP.Values(), xr, MM + blockSize*localSize + blockSize, localSize, S); } // if (localSize > blockSize) timeLocalProj += MyWatch.WallTime(); // Perform a spectral decomposition timeLocalSolve -= MyWatch.WallTime(); int nevLocal = localSize; info = modalTool.directSolver(localSize, KK, localSize, MM, localSize, nevLocal, S, localSize, theta, localVerbose, (blockSize == 1) ? 1: 0); timeLocalSolve += MyWatch.WallTime(); if (info < 0) { // Stop when spectral decomposition has a critical failure break; } // Check for restarting if ((theta[0] < 0.0) || (nevLocal < blockSize)) { if (localVerbose > 0) { cout << " Iteration " << outerIter; cout << "- Failure for spectral decomposition - RESTART with new random search\n"; } if (blockSize == 1) { X.Random(); nFound = blockSize; } else { Epetra_MultiVector Xinit(View, X, 1, blockSize-1); Xinit.Random(); nFound = blockSize - 1; } // if (blockSize == 1) reStart = true; numRestart += 1; info = 0; continue; } // if ((theta[0] < 0.0) || (nevLocal < blockSize)) if ((localSize == twoBlocks) && (nevLocal == blockSize)) { for (j = 0; j < nevLocal; ++j) memcpy(S + j*blockSize, S + j*twoBlocks, blockSize*sizeof(double)); localSize = blockSize; } // Check the direction of eigenvectors // Note: This sign check is important for convergence for (j = 0; j < nevLocal; ++j) { double coeff = S[j + j*localSize]; if (coeff < 0.0) callBLAS.SCAL(localSize, -1.0, S + j*localSize); } // Compute the residuals timeResidual -= MyWatch.WallTime(); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, KX.Values(), xr, S, localSize, 0.0, R.Values(), xr); if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, KP.Values(), xr, S + blockSize, localSize, 1.0, R.Values(), xr); } for (j = 0; j < blockSize; ++j) callBLAS.SCAL(localSize, theta[j], S + j*localSize); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, -1.0, MX.Values(), xr, S, localSize, 1.0, R.Values(), xr); if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, -1.0, MP.Values(), xr, S + blockSize, localSize, 1.0, R.Values(), xr); } for (j = 0; j < blockSize; ++j) callBLAS.SCAL(localSize, 1.0/theta[j], S + j*localSize); timeResidual += MyWatch.WallTime(); // Compute the norms of the residuals timeNorm -= MyWatch.WallTime(); if (vectWeight) R.NormWeighted(*vectWeight, normR); else R.Norm2(normR); // Scale the norms of residuals with the eigenvalues // Count the converged eigenvectors nFound = 0; for (j = 0; j < blockSize; ++j) { normR[j] = (theta[j] == 0.0) ? normR[j] : normR[j]/theta[j]; if (normR[j] < tolEigenSolve) nFound += 1; } timeNorm += MyWatch.WallTime(); // Store the residual history if (localVerbose > 2) { memcpy(resHistory + historyCount*blockSize, normR, blockSize*sizeof(double)); historyCount += 1; } // Print information on current iteration if (localVerbose > 0) { cout << " Iteration " << outerIter << " - Number of converged eigenvectors "; cout << knownEV + nFound << endl; } if (localVerbose > 1) { cout << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); for (i=0; i<blockSize; ++i) { cout << " Iteration " << outerIter << " - Scaled Norm of Residual " << i; cout << " = " << normR[i] << endl; } cout << endl; cout.precision(2); for (i=0; i<blockSize; ++i) { cout << " Iteration " << outerIter << " - Ritz eigenvalue " << i; cout.setf((fabs(theta[i]) < 0.01) ? ios::scientific : ios::fixed, ios::floatfield); cout << " = " << theta[i] << endl; } cout << endl; } if (nFound == 0) { // Update the spaces // Note: Use H as a temporary work space timeLocalUpdate -= MyWatch.WallTime(); memcpy(H.Values(), X.Values(), xr*blockSize*sizeof(double)); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, H.Values(), xr, S, localSize, 0.0, X.Values(), xr); memcpy(H.Values(), KX.Values(), xr*blockSize*sizeof(double)); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, H.Values(), xr, S, localSize, 0.0, KX.Values(), xr); if (M) { memcpy(H.Values(), MX.Values(), xr*blockSize*sizeof(double)); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, H.Values(), xr, S, localSize, 0.0, MX.Values(), xr); } if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, P.Values(), xr, S + blockSize, localSize, 1.0, X.Values(), xr); callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, KP.Values(), xr, S + blockSize, localSize, 1.0, KX.Values(), xr); if (M) { callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, MP.Values(), xr, S + blockSize, localSize, 1.0, MX.Values(), xr); } } // if (localSize == twoBlocks) timeLocalUpdate += MyWatch.WallTime(); // When required, monitor some orthogonalities if (verbose > 2) { if (knownEV == 0) { accuracyCheck(&X, &MX, &R, 0, (localSize>blockSize) ? &P : 0); } else { Epetra_MultiVector copyQ(View, Q, 0, knownEV); accuracyCheck(&X, &MX, &R, ©Q, (localSize>blockSize) ? &P : 0); } } // if (verbose > 2) continue; } // if (nFound == 0) // Order the Ritz eigenvectors by putting the converged vectors at the beginning int firstIndex = blockSize; for (j = 0; j < blockSize; ++j) { if (normR[j] >= tolEigenSolve) { firstIndex = j; break; } } // for (j = 0; j < blockSize; ++j) while (firstIndex < nFound) { for (j = firstIndex; j < blockSize; ++j) { if (normR[j] < tolEigenSolve) { // Swap the j-th and firstIndex-th position callFortran.SWAP(localSize, S + j*localSize, 1, S + firstIndex*localSize, 1); callFortran.SWAP(1, theta + j, 1, theta + firstIndex, 1); callFortran.SWAP(1, normR + j, 1, normR + firstIndex, 1); break; } } // for (j = firstIndex; j < blockSize; ++j) for (j = 0; j < blockSize; ++j) { if (normR[j] >= tolEigenSolve) { firstIndex = j; break; } } // for (j = 0; j < blockSize; ++j) } // while (firstIndex < nFound) // Copy the converged eigenvalues memcpy(lambda + knownEV, theta, nFound*sizeof(double)); // Convergence test if (knownEV + nFound >= numEigen) { callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, X.Values(), xr, S, localSize, 0.0, R.Values(), xr); if (localSize > blockSize) { callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, P.Values(), xr, S + blockSize, localSize, 1.0, R.Values(), xr); } memcpy(Q.Values() + knownEV*xr, R.Values(), nFound*xr*sizeof(double)); knownEV += nFound; if (localVerbose == 1) { cout << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); for (i=0; i<blockSize; ++i) { cout << " Iteration " << outerIter << " - Scaled Norm of Residual " << i; cout << " = " << normR[i] << endl; } cout << endl; } break; } // Store the converged eigenvalues and eigenvectors callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, X.Values(), xr, S, localSize, 0.0, Q.Values() + knownEV*xr, xr); if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, P.Values(), xr, S + blockSize, localSize, 1.0, Q.Values() + knownEV*xr, xr); } knownEV += nFound; // Define the restarting vectors timeRestart -= MyWatch.WallTime(); int leftOver = (nevLocal < blockSize + nFound) ? nevLocal - nFound : blockSize; double *Snew = S + nFound*localSize; memcpy(H.Values(), X.Values(), blockSize*xr*sizeof(double)); callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, H.Values(), xr, Snew, localSize, 0.0, X.Values(), xr); memcpy(H.Values(), KX.Values(), blockSize*xr*sizeof(double)); callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, H.Values(), xr, Snew, localSize, 0.0, KX.Values(), xr); if (M) { memcpy(H.Values(), MX.Values(), blockSize*xr*sizeof(double)); callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, H.Values(), xr, Snew, localSize, 0.0, MX.Values(), xr); } if (localSize == twoBlocks) { callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, P.Values(), xr, Snew+blockSize, localSize, 1.0, X.Values(), xr); callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, KP.Values(), xr, Snew+blockSize, localSize, 1.0, KX.Values(), xr); if (M) { callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, MP.Values(), xr, Snew+blockSize, localSize, 1.0, MX.Values(), xr); } } // if (localSize == twoBlocks) if (nevLocal < blockSize + nFound) { // Put new random vectors at the end of the block Epetra_MultiVector Xtmp(View, X, leftOver, blockSize - leftOver); Xtmp.Random(); } else { nFound = 0; } // if (nevLocal < blockSize + nFound) reStart = true; timeRestart += MyWatch.WallTime(); } // for (outerIter = 1; outerIter <= maxIterEigenSolve; ++outerIter) timeOuterLoop += MyWatch.WallTime(); highMem = (highMem > currentSize()) ? highMem : currentSize(); // Clean memory delete[] work1; delete[] work2; if (vectWeight) delete vectWeight; // Sort the eigenpairs timePostProce -= MyWatch.WallTime(); if ((info == 0) && (knownEV > 0)) { mySort.sortScalars_Vectors(knownEV, lambda, Q.Values(), Q.MyLength()); } timePostProce += MyWatch.WallTime(); return (info == 0) ? knownEV : info; }
int Davidson::reSolve(int numEigen, Epetra_MultiVector &Q, double *lambda, int startingEV) { // Computes the smallest eigenvalues and the corresponding eigenvectors // of the generalized eigenvalue problem // // K X = M X Lambda // // using a generalized Davidson algorithm // // Note that if M is not specified, then K X = X Lambda is solved. // // Input variables: // // numEigen (integer) = Number of eigenmodes requested // // Q (Epetra_MultiVector) = Converged eigenvectors // The number of columns of Q must be at least numEigen + blockSize. // The rows of Q are distributed across processors. // At exit, the first numEigen columns contain the eigenvectors requested. // // lambda (array of doubles) = Converged eigenvalues // At input, it must be of size numEigen + blockSize. // At exit, the first numEigen locations contain the eigenvalues requested. // // startingEV (integer) = Number of existing converged eigenvectors // We assume that the user has check the eigenvectors and // their M-orthonormality. // // Return information on status of computation // // info >= 0 >> Number of converged eigenpairs at the end of computation // // // Failure due to input arguments // // info = - 1 >> The stiffness matrix K has not been specified. // info = - 2 >> The maps for the matrix K and the matrix M differ. // info = - 3 >> The maps for the matrix K and the preconditioner P differ. // info = - 4 >> The maps for the vectors and the matrix K differ. // info = - 5 >> Q is too small for the number of eigenvalues requested. // info = - 6 >> Q is too small for the computation parameters. // // info = - 8 >> The number of blocks is too small for the number of eigenvalues. // // info = - 10 >> Failure during the mass orthonormalization // // info = - 30 >> MEMORY // // Check the input parameters if (numEigen <= startingEV) { return startingEV; } int info = myVerify.inputArguments(numEigen, K, M, Prec, Q, minimumSpaceDimension(numEigen)); if (info < 0) return info; int myPid = MyComm.MyPID(); if (numBlock*blockSize < numEigen) { if (myPid == 0) { cerr << endl; cerr << " !!! The space dimension (# of blocks x size of blocks) must be greater than "; cerr << " the number of eigenvalues !!!\n"; cerr << " Number of blocks = " << numBlock << endl; cerr << " Size of blocks = " << blockSize << endl; cerr << " Number of eigenvalues = " << numEigen << endl; cerr << endl; } return -8; } // Get the weight for approximating the M-inverse norm Epetra_Vector *vectWeight = 0; if (normWeight) { vectWeight = new Epetra_Vector(View, Q.Map(), normWeight); } int knownEV = startingEV; int localVerbose = verbose*(myPid==0); // Define local block vectors // // MX = Working vectors (storing M*X if M is specified, else pointing to X) // KX = Working vectors (storing K*X) // // R = Residuals int xr = Q.MyLength(); int dimSearch = blockSize*numBlock; Epetra_MultiVector X(View, Q, 0, dimSearch + blockSize); if (knownEV > 0) { Epetra_MultiVector copyX(View, Q, knownEV, blockSize); copyX.Random(); } else { X.Random(); } int tmp; tmp = (M == 0) ? 2*blockSize*xr : 3*blockSize*xr; double *work1 = new (nothrow) double[tmp]; if (work1 == 0) { if (vectWeight) delete vectWeight; info = -30; return info; } memRequested += sizeof(double)*tmp/(1024.0*1024.0); highMem = (highMem > currentSize()) ? highMem : currentSize(); double *tmpD = work1; Epetra_MultiVector KX(View, Q.Map(), tmpD, xr, blockSize); tmpD = tmpD + xr*blockSize; Epetra_MultiVector MX(View, Q.Map(), (M) ? tmpD : X.Values(), xr, blockSize); tmpD = (M) ? tmpD + xr*blockSize : tmpD; Epetra_MultiVector R(View, Q.Map(), tmpD, xr, blockSize); // Define arrays // // theta = Store the local eigenvalues (size: dimSearch) // normR = Store the norm of residuals (size: blockSize) // // KK = Local stiffness matrix (size: dimSearch x dimSearch) // // S = Local eigenvectors (size: dimSearch x dimSearch) // // tmpKK = Local workspace (size: blockSize x blockSize) int lwork2 = blockSize + dimSearch + 2*dimSearch*dimSearch + blockSize*blockSize; double *work2 = new (nothrow) double[lwork2]; if (work2 == 0) { if (vectWeight) delete vectWeight; delete[] work1; info = -30; return info; } memRequested += sizeof(double)*lwork2/(1024.0*1024.0); highMem = (highMem > currentSize()) ? highMem : currentSize(); tmpD = work2; double *theta = tmpD; tmpD = tmpD + dimSearch; double *normR = tmpD; tmpD = tmpD + blockSize; double *KK = tmpD; tmpD = tmpD + dimSearch*dimSearch; memset(KK, 0, dimSearch*dimSearch*sizeof(double)); double *S = tmpD; tmpD = tmpD + dimSearch*dimSearch; double *tmpKK = tmpD; // Define an array to store the residuals history if (localVerbose > 2) { resHistory = new (nothrow) double[maxIterEigenSolve*blockSize]; spaceSizeHistory = new (nothrow) int[maxIterEigenSolve]; if ((resHistory == 0) || (spaceSizeHistory == 0)) { if (vectWeight) delete vectWeight; delete[] work1; delete[] work2; info = -30; return info; } historyCount = 0; } // Miscellaneous definitions bool reStart = false; numRestart = 0; bool criticalExit = false; int bStart = 0; int offSet = 0; numBlock = (dimSearch/blockSize) - (knownEV/blockSize); int nFound = blockSize; int i, j; if (localVerbose > 0) { cout << endl; cout << " *|* Problem: "; if (M) cout << "K*Q = M*Q D "; else cout << "K*Q = Q D "; if (Prec) cout << " with preconditioner"; cout << endl; cout << " *|* Algorithm = Davidson algorithm (block version)" << endl; cout << " *|* Size of blocks = " << blockSize << endl; cout << " *|* Largest size of search space = " << numBlock*blockSize << endl; cout << " *|* Number of requested eigenvalues = " << numEigen << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); cout << " *|* Tolerance for convergence = " << tolEigenSolve << endl; cout << " *|* Norm used for convergence: "; if (vectWeight) cout << "weighted L2-norm with user-provided weights" << endl; else cout << "L^2-norm" << endl; if (startingEV > 0) cout << " *|* Input converged eigenvectors = " << startingEV << endl; cout << "\n -- Start iterations -- \n"; } int maxBlock = (dimSearch/blockSize) - (knownEV/blockSize); timeOuterLoop -= MyWatch.WallTime(); outerIter = 0; while (outerIter <= maxIterEigenSolve) { highMem = (highMem > currentSize()) ? highMem : currentSize(); int nb; for (nb = bStart; nb < maxBlock; ++nb) { outerIter += 1; if (outerIter > maxIterEigenSolve) break; int localSize = nb*blockSize; Epetra_MultiVector Xcurrent(View, X, localSize + knownEV, blockSize); timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(Xcurrent, MX); timeMassOp += MyWatch.WallTime(); massOp += blockSize; // Orthonormalize X against the known eigenvectors and the previous vectors // Note: Use R as a temporary work space timeOrtho -= MyWatch.WallTime(); if (nb == bStart) { if (nFound > 0) { if (knownEV == 0) { info = modalTool.massOrthonormalize(Xcurrent, MX, M, Q, nFound, 2, R.Values()); } else { Epetra_MultiVector copyQ(View, X, 0, knownEV + localSize); info = modalTool.massOrthonormalize(Xcurrent, MX, M, copyQ, nFound, 0, R.Values()); } } nFound = 0; } else { Epetra_MultiVector copyQ(View, X, 0, knownEV + localSize); info = modalTool.massOrthonormalize(Xcurrent, MX, M, copyQ, blockSize, 0, R.Values()); } timeOrtho += MyWatch.WallTime(); // Exit the code when the number of vectors exceeds the space dimension if (info < 0) { delete[] work1; delete[] work2; if (vectWeight) delete vectWeight; return -10; } timeStifOp -= MyWatch.WallTime(); K->Apply(Xcurrent, KX); timeStifOp += MyWatch.WallTime(); stifOp += blockSize; // Check the orthogonality properties of X if (verbose > 2) { if (knownEV + localSize == 0) accuracyCheck(&Xcurrent, &MX, 0); else { Epetra_MultiVector copyQ(View, X, 0, knownEV + localSize); accuracyCheck(&Xcurrent, &MX, ©Q); } if (localVerbose > 0) cout << endl; } // if (verbose > 2) // Define the local stiffness matrix // Note: S is used as a workspace timeLocalProj -= MyWatch.WallTime(); for (j = 0; j <= nb; ++j) { callBLAS.GEMM('T', 'N', blockSize, blockSize, xr, 1.0, X.Values()+(knownEV+j*blockSize)*xr, xr, KX.Values(), xr, 0.0, tmpKK, blockSize); MyComm.SumAll(tmpKK, S, blockSize*blockSize); int iC; for (iC = 0; iC < blockSize; ++iC) { double *Kpointer = KK + localSize*dimSearch + j*blockSize + iC*dimSearch; memcpy(Kpointer, S + iC*blockSize, blockSize*sizeof(double)); } } timeLocalProj += MyWatch.WallTime(); // Perform a spectral decomposition timeLocalSolve -= MyWatch.WallTime(); int nevLocal = localSize + blockSize; info = modalTool.directSolver(localSize+blockSize, KK, dimSearch, 0, 0, nevLocal, S, dimSearch, theta, localVerbose, 10); timeLocalSolve += MyWatch.WallTime(); if (info != 0) { // Stop as spectral decomposition has a critical failure if (info < 0) { criticalExit = true; break; } // Restart as spectral decomposition failed if (localVerbose > 0) { cout << " Iteration " << outerIter; cout << "- Failure for spectral decomposition - RESTART with new random search\n"; } reStart = true; numRestart += 1; timeRestart -= MyWatch.WallTime(); Epetra_MultiVector Xinit(View, X, knownEV, blockSize); Xinit.Random(); timeRestart += MyWatch.WallTime(); nFound = blockSize; bStart = 0; break; } // if (info != 0) // Update the search space // Note: Use KX as a workspace timeLocalUpdate -= MyWatch.WallTime(); callBLAS.GEMM('N', 'N', xr, blockSize, localSize+blockSize, 1.0, X.Values()+knownEV*xr, xr, S, dimSearch, 0.0, KX.Values(), xr); timeLocalUpdate += MyWatch.WallTime(); // Apply the mass matrix for the next block timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(KX, MX); timeMassOp += MyWatch.WallTime(); massOp += blockSize; // Apply the stiffness matrix for the next block timeStifOp -= MyWatch.WallTime(); K->Apply(KX, R); timeStifOp += MyWatch.WallTime(); stifOp += blockSize; // Form the residuals timeResidual -= MyWatch.WallTime(); if (M) { for (j = 0; j < blockSize; ++j) { callBLAS.AXPY(xr, -theta[j], MX.Values() + j*xr, R.Values() + j*xr); } } else { // Note KX contains the updated block for (j = 0; j < blockSize; ++j) { callBLAS.AXPY(xr, -theta[j], KX.Values() + j*xr, R.Values() + j*xr); } } timeResidual += MyWatch.WallTime(); residual += blockSize; // Compute the norm of residuals timeNorm -= MyWatch.WallTime(); if (vectWeight) { R.NormWeighted(*vectWeight, normR); } else { R.Norm2(normR); } // Scale the norms of residuals with the eigenvalues // Count the number of converged eigenvectors nFound = 0; for (j = 0; j < blockSize; ++j) { normR[j] = (theta[j] == 0.0) ? normR[j] : normR[j]/theta[j]; if (normR[j] < tolEigenSolve) nFound += 1; } // for (j = 0; j < blockSize; ++j) timeNorm += MyWatch.WallTime(); // Store the residual history if (localVerbose > 2) { memcpy(resHistory + historyCount*blockSize, normR, blockSize*sizeof(double)); spaceSizeHistory[historyCount] = localSize + blockSize; historyCount += 1; } maxSpaceSize = (maxSpaceSize > localSize+blockSize) ? maxSpaceSize : localSize+blockSize; sumSpaceSize += localSize + blockSize; // Print information on current iteration if (localVerbose > 0) { cout << " Iteration " << outerIter << " - Number of converged eigenvectors "; cout << knownEV + nFound << endl; } // if (localVerbose > 0) if (localVerbose > 1) { cout << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); for (i=0; i<blockSize; ++i) { cout << " Iteration " << outerIter << " - Scaled Norm of Residual " << i; cout << " = " << normR[i] << endl; } cout << endl; cout.precision(2); for (i=0; i<nevLocal; ++i) { cout << " Iteration " << outerIter << " - Ritz eigenvalue " << i; cout.setf((fabs(theta[i]) < 0.01) ? ios::scientific : ios::fixed, ios::floatfield); cout << " = " << theta[i] << endl; } cout << endl; } // Exit the loop to treat the converged eigenvectors if (nFound > 0) { nb += 1; offSet = 0; break; } // Apply the preconditioner on the residuals // Note: Use KX as a workspace if (maxBlock == 1) { if (Prec) { timePrecOp -= MyWatch.WallTime(); Prec->ApplyInverse(R, Xcurrent); timePrecOp += MyWatch.WallTime(); precOp += blockSize; } else { memcpy(Xcurrent.Values(), R.Values(), blockSize*xr*sizeof(double)); } timeRestart -= MyWatch.WallTime(); Xcurrent.Update(1.0, KX, -1.0); timeRestart += MyWatch.WallTime(); break; } // if (maxBlock == 1) if (nb == maxBlock - 1) { nb += 1; break; } Epetra_MultiVector Xnext(View, X, knownEV+localSize+blockSize, blockSize); if (Prec) { timePrecOp -= MyWatch.WallTime(); Prec->ApplyInverse(R, Xnext); timePrecOp += MyWatch.WallTime(); precOp += blockSize; } else { memcpy(Xnext.Values(), R.Values(), blockSize*xr*sizeof(double)); } } // for (nb = bStart; nb < maxBlock; ++nb) if (outerIter > maxIterEigenSolve) break; if (reStart == true) { reStart = false; continue; } if (criticalExit == true) break; // Store the final converged eigenvectors if (knownEV + nFound >= numEigen) { for (j = 0; j < blockSize; ++j) { if (normR[j] < tolEigenSolve) { memcpy(X.Values() + knownEV*xr, KX.Values() + j*xr, xr*sizeof(double)); lambda[knownEV] = theta[j]; knownEV += 1; } } if (localVerbose == 1) { cout << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); for (i=0; i<blockSize; ++i) { cout << " Iteration " << outerIter << " - Scaled Norm of Residual " << i; cout << " = " << normR[i] << endl; } cout << endl; } break; } // if (knownEV + nFound >= numEigen) // Treat the particular case of 1 block if (maxBlock == 1) { if (nFound > 0) { double *Xpointer = X.Values() + (knownEV+nFound)*xr; nFound = 0; for (j = 0; j < blockSize; ++j) { if (normR[j] < tolEigenSolve) { memcpy(X.Values() + knownEV*xr, KX.Values() + j*xr, xr*sizeof(double)); lambda[knownEV] = theta[j]; knownEV += 1; nFound += 1; } else { memcpy(Xpointer + (j-nFound)*xr, KX.Values() + j*xr, xr*sizeof(double)); } } Epetra_MultiVector Xnext(View, X, knownEV + blockSize - nFound, nFound); Xnext.Random(); } else { nFound = blockSize; } continue; } // Define the restarting block when maxBlock > 1 if (nFound > 0) { int firstIndex = blockSize; for (j = 0; j < blockSize; ++j) { if (normR[j] >= tolEigenSolve) { firstIndex = j; break; } } // for (j = 0; j < blockSize; ++j) while (firstIndex < nFound) { for (j = firstIndex; j < blockSize; ++j) { if (normR[j] < tolEigenSolve) { // Swap the j-th and firstIndex-th position callFortran.SWAP(nb*blockSize, S + j*dimSearch, 1, S + firstIndex*dimSearch, 1); callFortran.SWAP(1, theta + j, 1, theta + firstIndex, 1); callFortran.SWAP(1, normR + j, 1, normR + firstIndex, 1); break; } } // for (j = firstIndex; j < blockSize; ++j) for (j = 0; j < blockSize; ++j) { if (normR[j] >= tolEigenSolve) { firstIndex = j; break; } } // for (j = 0; j < blockSize; ++j) } // while (firstIndex < nFound) // Copy the converged eigenvalues memcpy(lambda + knownEV, theta, nFound*sizeof(double)); } // if (nFound > 0) // Define the restarting size bStart = ((nb - offSet) > 2) ? (nb - offSet)/2 : 0; // Define the restarting space and local stiffness timeRestart -= MyWatch.WallTime(); memset(KK, 0, nb*blockSize*dimSearch*sizeof(double)); for (j = 0; j < bStart*blockSize; ++j) { KK[j + j*dimSearch] = theta[j + nFound]; } // Form the restarting space int oldCol = nb*blockSize; int newCol = nFound + (bStart+1)*blockSize; newCol = (newCol > oldCol) ? oldCol : newCol; callFortran.GEQRF(oldCol, newCol, S, dimSearch, theta, R.Values(), xr*blockSize, &info); callFortran.ORMQR('R', 'N', xr, oldCol, newCol, S, dimSearch, theta, X.Values()+knownEV*xr, xr, R.Values(), blockSize*xr, &info); timeRestart += MyWatch.WallTime(); if (nFound == 0) offSet += 1; knownEV += nFound; maxBlock = (dimSearch/blockSize) - (knownEV/blockSize); // Put random vectors if the Rayleigh Ritz vectors are not enough newCol = nFound + (bStart+1)*blockSize; if (newCol > oldCol) { Epetra_MultiVector Xnext(View, X, knownEV+blockSize-nFound, nFound); Xnext.Random(); continue; } nFound = 0; } // while (outerIter <= maxIterEigenSolve) timeOuterLoop += MyWatch.WallTime(); highMem = (highMem > currentSize()) ? highMem : currentSize(); // Clean memory delete[] work1; delete[] work2; if (vectWeight) delete vectWeight; // Sort the eigenpairs timePostProce -= MyWatch.WallTime(); if ((info == 0) && (knownEV > 0)) { mySort.sortScalars_Vectors(knownEV, lambda, Q.Values(), Q.MyLength()); } timePostProce += MyWatch.WallTime(); return (info == 0) ? knownEV : info; }
int ModifiedARPACKm3::reSolve(int numEigen, Epetra_MultiVector &Q, double *lambda, int startingEV, const Epetra_MultiVector *orthoVec) { // Computes the smallest eigenvalues and the corresponding eigenvectors // of the generalized eigenvalue problem // // K X = M X Lambda // // using ModifiedARPACK (mode 3). // // The convergence test is performed outisde of ARPACK // // || Kx - Mx lambda || < tol*lambda // // The norm ||.|| can be specified by the user through the array normWeight. // By default, the L2 Euclidean norm is used. // // Note that if M is not specified, then K X = X Lambda is solved. // (using the mode for generalized eigenvalue problem). // // Input variables: // // numEigen (integer) = Number of eigenmodes requested // // Q (Epetra_MultiVector) = Initial search space // The number of columns of Q defines the size of search space (=NCV). // The rows of X are distributed across processors. // As a rule of thumb in ARPACK User's guide, NCV >= 2*numEigen. // At exit, the first numEigen locations contain the eigenvectors requested. // // lambda (array of doubles) = Converged eigenvalues // The length of this array is equal to the number of columns in Q. // At exit, the first numEigen locations contain the eigenvalues requested. // // startingEV (integer) = Number of eigenmodes already stored in Q // A linear combination of these vectors is made to define the starting // vector, placed in resid. // // orthoVec (Pointer to Epetra_MultiVector) = Space to be orthogonal to // The computation is performed in the orthogonal of the space spanned // by the columns vectors in orthoVec. // // Return information on status of computation // // info >= 0 >> Number of converged eigenpairs at the end of computation // // // Failure due to input arguments // // info = - 1 >> The stiffness matrix K has not been specified. // info = - 2 >> The maps for the matrix K and the matrix M differ. // info = - 3 >> The maps for the matrix K and the preconditioner P differ. // info = - 4 >> The maps for the vectors and the matrix K differ. // info = - 5 >> Q is too small for the number of eigenvalues requested. // info = - 6 >> Q is too small for the computation parameters. // // info = - 8 >> numEigen must be smaller than the dimension of the matrix. // // info = - 30 >> MEMORY // // See ARPACK documentation for the meaning of INFO if (numEigen <= startingEV) { return numEigen; } int info = myVerify.inputArguments(numEigen, K, M, 0, Q, minimumSpaceDimension(numEigen)); if (info < 0) return info; int myPid = MyComm.MyPID(); int localSize = Q.MyLength(); int NCV = Q.NumVectors(); int knownEV = 0; if (NCV > Q.GlobalLength()) { if (numEigen >= Q.GlobalLength()) { cerr << endl; cerr << " !! The number of requested eigenvalues must be smaller than the dimension"; cerr << " of the matrix !!\n"; cerr << endl; return -8; } NCV = Q.GlobalLength(); } // Get the weight for approximating the M-inverse norm Epetra_Vector *vectWeight = 0; if (normWeight) { vectWeight = new Epetra_Vector(View, Q.Map(), normWeight); } int localVerbose = verbose*(myPid == 0); // Define data for ARPACK // // UH (10/17/03) Note that workl is also used // * to store the eigenvectors of the tridiagonal matrix // * as a workspace for DSTEQR // * as a workspace for recovering the global eigenvectors highMem = (highMem > currentSize()) ? highMem : currentSize(); int ido = 0; int lwI = 22; int *wI = new (nothrow) int[lwI]; if (wI == 0) { if (vectWeight) delete vectWeight; return -30; } memRequested += sizeof(int)*lwI/(1024.0*1024.0); int *iparam = wI; int *ipntr = wI + 11; int lworkl = NCV*(NCV+8); int lwD = lworkl + 4*localSize; double *wD = new (nothrow) double[lwD]; if (wD == 0) { if (vectWeight) delete vectWeight; delete[] wI; return -30; } memRequested += sizeof(double)*(4*localSize+lworkl)/(1024.0*1024.0); double *pointer = wD; double *workl = pointer; pointer = pointer + lworkl; double *resid = pointer; pointer = pointer + localSize; double *workd = pointer; double *v = Q.Values(); highMem = (highMem > currentSize()) ? highMem : currentSize(); if (startingEV > 0) { // Define the initial starting vector memset(resid, 0, localSize*sizeof(double)); for (int jj = 0; jj < startingEV; ++jj) for (int ii = 0; ii < localSize; ++ii) resid[ii] += v[ii + jj*localSize]; info = 1; } iparam[1-1] = 1; iparam[3-1] = maxIterEigenSolve; iparam[7-1] = 3; // The fourth parameter forces to use the convergence test provided by ARPACK. // This requires a customization of ARPACK (provided by R. Lehoucq). iparam[4-1] = 1; Epetra_Vector v1(View, Q.Map(), workd); Epetra_Vector v2(View, Q.Map(), workd + localSize); Epetra_Vector v3(View, Q.Map(), workd + 2*localSize); // Define further storage for the new residual check // Use a block of vectors to compute the residuals more quickly. // Note that workd could be used if memory becomes an issue. int loopZ = (NCV > 10) ? 10 : NCV; int lwD2 = localSize + 2*NCV-1 + NCV; lwD2 += (M) ? 3*loopZ*localSize : 2*loopZ*localSize; double *wD2 = new (nothrow) double[lwD2]; if (wD2 == 0) { if (vectWeight) delete vectWeight; delete[] wI; delete[] wD; return -30; } memRequested += sizeof(double)*lwD2/(1024.0*1024.0); pointer = wD2; // vTmp is used when ido = -1 double *vTmp = pointer; pointer = pointer + localSize; // dd and ee stores the tridiagonal matrix. // Note that DSTEQR destroys the contents of the input arrays. double *dd = pointer; pointer = pointer + NCV; double *ee = pointer; pointer = pointer + NCV-1; double *vz = pointer; pointer = pointer + loopZ*localSize; Epetra_MultiVector approxEV(View, Q.Map(), vz, localSize, loopZ); double *kvz = pointer; pointer = pointer + loopZ*localSize; Epetra_MultiVector KapproxEV(View, Q.Map(), kvz, localSize, loopZ); double *mvz = (M) ? pointer : vz; pointer = (M) ? pointer + loopZ*localSize : pointer; Epetra_MultiVector MapproxEV(View, Q.Map(), mvz, localSize, loopZ); double *normR = pointer; // zz contains the eigenvectors of the tridiagonal matrix. // workt is a workspace for DSTEQR. // Note that zz and workt will use parts of workl. double *zz, *workt; highMem = (highMem > currentSize()) ? highMem : currentSize(); // Define an array to store the residuals history if (localVerbose > 2) { resHistory = new (nothrow) double[maxIterEigenSolve*NCV]; if (resHistory == 0) { if (vectWeight) delete vectWeight; delete[] wI; delete[] wD; delete[] wD2; return -30; } historyCount = 0; } highMem = (highMem > currentSize()) ? highMem : currentSize(); if (localVerbose > 0) { cout << endl; cout << " *|* Problem: "; if (M) cout << "K*Q = M*Q D "; else cout << "K*Q = Q D "; cout << endl; cout << " *|* Algorithm = ARPACK (Mode 3, modified such that user checks convergence)" << endl; cout << " *|* Number of requested eigenvalues = " << numEigen << endl; cout.precision(2); cout.setf(ios::scientific, ios::floatfield); cout << " *|* Tolerance for convergence = " << tolEigenSolve << endl; if (startingEV > 0) cout << " *|* User-defined starting vector (Combination of " << startingEV << " vectors)\n"; cout << " *|* Norm used for convergence: "; if (normWeight) cout << "weighted L2-norm with user-provided weights" << endl; else cout << "L^2-norm" << endl; if (orthoVec) cout << " *|* Size of orthogonal subspace = " << orthoVec->NumVectors() << endl; cout << "\n -- Start iterations -- \n"; } #ifdef EPETRA_MPI Epetra_MpiComm *MPIComm = dynamic_cast<Epetra_MpiComm *>(const_cast<Epetra_Comm*>(&MyComm)); #endif timeOuterLoop -= MyWatch.WallTime(); while (ido != 99) { highMem = (highMem > currentSize()) ? highMem : currentSize(); #ifdef EPETRA_MPI if (MPIComm) callFortran.PSAUPD(MPIComm->Comm(), &ido, 'G', localSize, "LM", numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info, 0); else callFortran.SAUPD(&ido, 'G', localSize, "LM", numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info, 0); #else callFortran.SAUPD(&ido, 'G', localSize, "LM", numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info, 0); #endif if (ido == -1) { // Apply the mass matrix v3.ResetView(workd + ipntr[0] - 1); v1.ResetView(vTmp); timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(v3, v1); else memcpy(v1.Values(), v3.Values(), localSize*sizeof(double)); timeMassOp += MyWatch.WallTime(); massOp += 1; if ((orthoVec) && (verbose > 3)) { // Check the orthogonality double maxDot = myVerify.errorOrthogonality(orthoVec, &v1, 0); if (myPid == 0) { cout << " Maximum Euclidean dot product against orthogonal space (Before Solve) = "; cout << maxDot << endl; } } // Solve the stiffness problem v2.ResetView(workd + ipntr[1] - 1); timeStifOp -= MyWatch.WallTime(); K->ApplyInverse(v1, v2); timeStifOp += MyWatch.WallTime(); stifOp += 1; // Project the solution vector if needed // Note: Use mvz as workspace if (orthoVec) { Epetra_Vector Mv2(View, v2.Map(), mvz); if (M) M->Apply(v2, Mv2); else memcpy(Mv2.Values(), v2.Values(), localSize*sizeof(double)); modalTool.massOrthonormalize(v2, Mv2, M, *orthoVec, 1, 1); } if ((orthoVec) && (verbose > 3)) { // Check the orthogonality double maxDot = myVerify.errorOrthogonality(orthoVec, &v2, M); if (myPid == 0) { cout << " Maximum M-dot product against orthogonal space (After Solve) = "; cout << maxDot << endl; } } continue; } // if (ido == -1) if (ido == 1) { // Solve the stiffness problem v1.ResetView(workd + ipntr[2] - 1); v2.ResetView(workd + ipntr[1] - 1); if ((orthoVec) && (verbose > 3)) { // Check the orthogonality double maxDot = myVerify.errorOrthogonality(orthoVec, &v1, 0); if (myPid == 0) { cout << " Maximum Euclidean dot product against orthogonal space (Before Solve) = "; cout << maxDot << endl; } } timeStifOp -= MyWatch.WallTime(); K->ApplyInverse(v1, v2); timeStifOp += MyWatch.WallTime(); stifOp += 1; // Project the solution vector if needed // Note: Use mvz as workspace if (orthoVec) { Epetra_Vector Mv2(View, v2.Map(), mvz); if (M) M->Apply(v2, Mv2); else memcpy(Mv2.Values(), v2.Values(), localSize*sizeof(double)); modalTool.massOrthonormalize(v2, Mv2, M, *orthoVec, 1, 1); } if ((orthoVec) && (verbose > 3)) { // Check the orthogonality double maxDot = myVerify.errorOrthogonality(orthoVec, &v2, M); if (myPid == 0) { cout << " Maximum M-dot product against orthogonal space (After Solve) = "; cout << maxDot << endl; } } continue; } // if (ido == 1) if (ido == 2) { // Apply the mass matrix v1.ResetView(workd + ipntr[0] - 1); v2.ResetView(workd + ipntr[1] - 1); timeMassOp -= MyWatch.WallTime(); if (M) M->Apply(v1, v2); else memcpy(v2.Values(), v1.Values(), localSize*sizeof(double)); timeMassOp += MyWatch.WallTime(); massOp += 1; continue; } // if (ido == 2) if (ido == 4) { timeResidual -= MyWatch.WallTime(); // Copy the main diagonal of T memcpy(dd, workl + NCV + ipntr[4] - 1, NCV*sizeof(double)); // Copy the lower diagonal of T memcpy(ee, workl + ipntr[4], (NCV-1)*sizeof(double)); // Compute the eigenpairs of the tridiagonal matrix zz = workl + 4*NCV; workt = workl + 4*NCV + NCV*NCV; callFortran.STEQR('I', NCV, dd, ee, zz, NCV, workt, &info); if (info != 0) { if (localVerbose > 0) { cerr << endl; cerr << " Error with DSTEQR, info = " << info << endl; cerr << endl; } break; } // dd contains the eigenvalues in ascending order // Check the residual of the proposed eigenvectors of (K, M) int ii, jz; iparam[4] = 0; for (jz = 0; jz < NCV; jz += loopZ) { int colZ = (jz + loopZ < NCV) ? loopZ : NCV - jz; callBLAS.GEMM('N', 'N', localSize, colZ, NCV, 1.0, v, localSize, zz + jz*NCV, NCV, 0.0, vz, localSize); // Form the residuals if (M) M->Apply(approxEV, MapproxEV); K->Apply(approxEV, KapproxEV); for (ii = 0; ii < colZ; ++ii) { callBLAS.AXPY(localSize, -1.0/dd[ii+jz], MapproxEV.Values() + ii*localSize, KapproxEV.Values() + ii*localSize); } // Compute the norms of the residuals if (vectWeight) { KapproxEV.NormWeighted(*vectWeight, normR + jz); } else { KapproxEV.Norm2(normR + jz); } // Scale the norms of residuals with the eigenvalues for (ii = 0; ii < colZ; ++ii) { normR[ii+jz] = normR[ii+jz]*dd[ii+jz]; } // Put the number of converged pairs in iparam[5-1] for (ii=0; ii<colZ; ++ii) { if (normR[ii+jz] < tolEigenSolve) iparam[4] += 1; } } timeResidual += MyWatch.WallTime(); numResidual += NCV; outerIter += 1; if (localVerbose > 0) { cout << " Iteration " << outerIter; cout << " - Number of converged eigenvalues " << iparam[4] << endl; } if (localVerbose > 2) { memcpy(resHistory + historyCount, normR, NCV*sizeof(double)); historyCount += NCV; } if (localVerbose > 1) { cout.precision(2); cout.setf(ios::scientific, ios::floatfield); for (ii=0; ii < NCV; ++ii) { cout << " Iteration " << outerIter; cout << " - Scaled Norm of Residual " << ii << " = " << normR[ii] << endl; } cout << endl; cout.precision(2); for (ii = 0; ii < NCV; ++ii) { cout << " Iteration " << outerIter << " - Ritz eigenvalue " << ii; cout.setf((fabs(dd[ii]) > 100) ? ios::scientific : ios::fixed, ios::floatfield); cout << " = " << 1.0/dd[ii] << endl; } cout << endl; } } // if (ido == 4) } // while (ido != 99) timeOuterLoop += MyWatch.WallTime(); highMem = (highMem > currentSize()) ? highMem : currentSize(); if (info < 0) { if (myPid == 0) { cerr << endl; cerr << " Error with DSAUPD, info = " << info << endl; cerr << endl; } } else { // Get the eigenvalues timePostProce -= MyWatch.WallTime(); int ii, jj; double *pointer = workl + 4*NCV + NCV*NCV; for (ii=0; ii < localSize; ii += 3) { int nRow = (ii + 3 < localSize) ? 3 : localSize - ii; for (jj=0; jj<NCV; ++jj) memcpy(pointer + jj*nRow, v + ii + jj*localSize, nRow*sizeof(double)); callBLAS.GEMM('N', 'N', nRow, NCV, NCV, 1.0, pointer, nRow, zz, NCV, 0.0, Q.Values() + ii, localSize); } // Put the converged eigenpairs at the beginning knownEV = 0; for (ii=0; ii < NCV; ++ii) { if (normR[ii] < tolEigenSolve) { lambda[knownEV] = 1.0/dd[ii]; memcpy(Q.Values()+knownEV*localSize, Q.Values()+ii*localSize, localSize*sizeof(double)); knownEV += 1; if (knownEV == Q.NumVectors()) break; } } // Sort the eigenpairs if (knownEV > 0) { mySort.sortScalars_Vectors(knownEV, lambda, Q.Values(), localSize); } timePostProce += MyWatch.WallTime(); } // if (info < 0) if (info == 0) { orthoOp = iparam[11-1]; } delete[] wI; delete[] wD; delete[] wD2; if (vectWeight) delete vectWeight; return (info == 0) ? knownEV : info; }
QRect MonitorSettings::geometry() { return QRect(QPoint(xPos, yPos), currentSize()); }
qulonglong TrashSizeCache::size() const { return currentSize( true ); }
void TrashSizeCache::initialize() { // we call just currentSize here, as it does the initialization for us currentSize( true ); }