Ejemplo n.º 1
0
void TrashSizeCache::remove( qulonglong value )
{
    KInterProcessLock lock( QLatin1String( "trash" ) );
    lock.lock();
    lock.waitForLockGranted();

    KConfig config( mTrashSizeCachePath );
    KConfigGroup group = config.group( mTrashSizeGroup );

    qulonglong size = currentSize( false );
    size -= value;

    group.writeEntry( mTrashSizeKey, size );
    config.sync();

    lock.unlock();
}
Ejemplo n.º 2
0
int ARPACKm3::reSolve(int numEigen, Epetra_MultiVector &Q, double *lambda, int startingEV) {

  // Computes eigenvalues and the corresponding eigenvectors
  // of the generalized eigenvalue problem
  // 
  //      K X = M X Lambda
  // 
  // using ARPACK (mode 3).
  //
  // The convergence test is provided by ARPACK.
  //
  // Note that if M is not specified, then  K X = X Lambda is solved.
  // (using the mode for generalized eigenvalue problem).
  // 
  // Input variables:
  // 
  // numEigen  (integer) = Number of eigenmodes requested
  // 
  // Q (Epetra_MultiVector) = Initial search space
  //                   The number of columns of Q defines the size of search space (=NCV).
  //                   The rows of X are distributed across processors.
  //                   As a rule of thumb in ARPACK User's guide, NCV >= 2*numEigen.
  //                   At exit, the first numEigen locations contain the eigenvectors requested.
  // 
  // lambda (array of doubles) = Converged eigenvalues
  //                   The length of this array is equal to the number of columns in Q.
  //                   At exit, the first numEigen locations contain the eigenvalues requested.
  // 
  // startingEV (integer) = Number of eigenmodes already stored in Q
  //                   A linear combination of these vectors is made to define the starting
  //                   vector, placed in resid.
  //
  // Return information on status of computation
  // 
  // info >=   0 >> Number of converged eigenpairs at the end of computation
  // 
  // // Failure due to input arguments
  // 
  // info = -  1 >> The stiffness matrix K has not been specified.
  // info = -  2 >> The maps for the matrix K and the matrix M differ.
  // info = -  3 >> The maps for the matrix K and the preconditioner P differ.
  // info = -  4 >> The maps for the vectors and the matrix K differ.
  // info = -  5 >> Q is too small for the number of eigenvalues requested.
  // info = -  6 >> Q is too small for the computation parameters.
  // 
  // info = -  8 >> numEigen must be smaller than the dimension of the matrix.
  //
  // info = - 30 >> MEMORY
  //
  // See ARPACK documentation for the meaning of INFO

  if (numEigen <= startingEV) {
    return numEigen;
  }

  int info = myVerify.inputArguments(numEigen, K, M, 0, Q, minimumSpaceDimension(numEigen));
  if (info < 0)
    return info;

  int myPid = MyComm.MyPID();

  int localSize = Q.MyLength();
  int NCV = Q.NumVectors();
  int knownEV = 0;

  if (NCV > Q.GlobalLength()) {
    if (numEigen >= Q.GlobalLength()) {
      cerr << endl;
      cerr << " !! The number of requested eigenvalues must be smaller than the dimension";
      cerr << " of the matrix !!\n";
      cerr << endl;
      return -8;
    }
    NCV = Q.GlobalLength();
  }

  int localVerbose = verbose*(myPid == 0);

  // Define data for ARPACK
  highMem = (highMem > currentSize()) ? highMem : currentSize();

  int ido = 0;

  int lwI = 22 + NCV;
  int *wI = new (nothrow) int[lwI];
  if (wI == 0) {
    return -30;
  }
  memRequested += sizeof(int)*lwI/(1024.0*1024.0);

  int *iparam = wI;
  int *ipntr = wI + 11;
  int *select = wI + 22;

  int lworkl = NCV*(NCV+8);
  int lwD = lworkl + 4*localSize;
  double *wD = new (nothrow) double[lwD];
  if (wD == 0) {
    delete[] wI;
    return -30;
  }
  memRequested += sizeof(double)*(4*localSize+lworkl)/(1024.0*1024.0);

  double *pointer = wD;

  double *workl = pointer;
  pointer = pointer + lworkl;

  double *resid = pointer;
  pointer = pointer + localSize;

  double *workd = pointer;

  double *v = Q.Values();

  highMem = (highMem > currentSize()) ? highMem : currentSize();

  double sigma = 0.0;

  if (startingEV > 0) {
    // Define the initial starting vector
    memset(resid, 0, localSize*sizeof(double));
    for (int jj = 0; jj < startingEV; ++jj)
      for (int ii = 0; ii < localSize; ++ii)
         resid[ii] += v[ii + jj*localSize];
    info = 1;
  }

  iparam[1-1] = 1;
  iparam[3-1] = maxIterEigenSolve;
  iparam[7-1] = 3;

  // The fourth parameter forces to use the convergence test provided by ARPACK.
  // This requires a customization of ARPACK (provided by R. Lehoucq).

  iparam[4-1] = 0;

  Epetra_Vector v1(View, Q.Map(), workd);
  Epetra_Vector v2(View, Q.Map(), workd + localSize);
  Epetra_Vector v3(View, Q.Map(), workd + 2*localSize);

  double *vTmp = new (nothrow) double[localSize];
  if (vTmp == 0) {
    delete[] wI;
    delete[] wD;
    return -30;
  }
  memRequested += sizeof(double)*localSize/(1024.0*1024.0);

  highMem = (highMem > currentSize()) ? highMem : currentSize();

  if (localVerbose > 0) {
    cout << endl;
    cout << " *|* Problem: ";
    if (M) 
      cout << "K*Q = M*Q D ";
    else
      cout << "K*Q = Q D ";
    cout << endl;
    cout << " *|* Algorithm = ARPACK (mode 3)" << endl;
    cout << " *|* Number of requested eigenvalues = " << numEigen << endl;
    cout.precision(2);
    cout.setf(ios::scientific, ios::floatfield);
    cout << " *|* Tolerance for convergence = " << tolEigenSolve << endl;
    if (startingEV > 0)
      cout << " *|* User-defined starting vector (Combination of " << startingEV << " vectors)\n";
    cout << "\n -- Start iterations -- \n";
  }

#ifdef EPETRA_MPI
  Epetra_MpiComm *MPIComm = dynamic_cast<Epetra_MpiComm *>(const_cast<Epetra_Comm*>(&MyComm));
#endif

  timeOuterLoop -= MyWatch.WallTime();
  while (ido != 99) {

    highMem = (highMem > currentSize()) ? highMem : currentSize();

#ifdef EPETRA_MPI
    if (MPIComm)
      callFortran.PSAUPD(MPIComm->Comm(), &ido, 'G', localSize, which, numEigen, tolEigenSolve,
             resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info, localVerbose);
    else
      callFortran.SAUPD(&ido, 'G', localSize, which, numEigen, tolEigenSolve, resid, NCV, v, 
             localSize, iparam, ipntr, workd, workl, lworkl, &info, localVerbose);
#else
    callFortran.SAUPD(&ido, 'G', localSize, which, numEigen, tolEigenSolve, resid, NCV, v,
             localSize, iparam, ipntr, workd, workl, lworkl, &info, localVerbose);
#endif

    if (ido == -1) {
      // Apply the mass matrix      
      v3.ResetView(workd + ipntr[0] - 1);
      v1.ResetView(vTmp);
      timeMassOp -= MyWatch.WallTime();
      if (M)
        M->Apply(v3, v1);
      else
        memcpy(v1.Values(), v3.Values(), localSize*sizeof(double));
      timeMassOp += MyWatch.WallTime();
      massOp += 1;
      // Solve the stiffness problem
      v2.ResetView(workd + ipntr[1] - 1);
      timeStifOp -= MyWatch.WallTime();
      K->ApplyInverse(v1, v2);
      timeStifOp += MyWatch.WallTime();
      stifOp += 1;
      continue;
    } // if (ido == -1)

    if (ido == 1) {
      // Solve the stiffness problem
      v1.ResetView(workd + ipntr[2] - 1);
      v2.ResetView(workd + ipntr[1] - 1);
      timeStifOp -= MyWatch.WallTime();
      K->ApplyInverse(v1, v2);
      timeStifOp += MyWatch.WallTime();
      stifOp += 1;
      continue;
    } // if (ido == 1)

    if (ido == 2) {
      // Apply the mass matrix      
      v1.ResetView(workd + ipntr[0] - 1);
      v2.ResetView(workd + ipntr[1] - 1);
      timeMassOp -= MyWatch.WallTime();
      if (M)
        M->Apply(v1, v2);
      else
        memcpy(v2.Values(), v1.Values(), localSize*sizeof(double));
      timeMassOp += MyWatch.WallTime();
      massOp += 1;
      continue;
    } // if (ido == 2)

  } // while (ido != 99)
  timeOuterLoop += MyWatch.WallTime();
  highMem = (highMem > currentSize()) ? highMem : currentSize();

  if (info < 0) {
    if (myPid == 0) {
      cerr << endl;
      cerr << " Error with DSAUPD, info = " << info << endl;
      cerr << endl;
    }
  }
  else {

    // Compute the eigenvectors
    timePostProce -= MyWatch.WallTime();
#ifdef EPETRA_MPI
    if (MPIComm)
      callFortran.PSEUPD(MPIComm->Comm(), 1, 'A', select, lambda, v, localSize, sigma, 'G',
            localSize, which, numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, 
            workd, workl, lworkl, &info);
    else
      callFortran.SEUPD(1, 'A', select, lambda, v, localSize, sigma, 'G', localSize, which,
            numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl,
            lworkl, &info);
#else
    callFortran.SEUPD(1, 'A', select, lambda, v, localSize, sigma, 'G', localSize, which,
          numEigen, tolEigenSolve, resid, NCV, v, localSize, iparam, ipntr, workd, workl,
          lworkl, &info);
#endif
    timePostProce += MyWatch.WallTime();
    highMem = (highMem > currentSize()) ? highMem : currentSize();

    // Treat the error
    if (info != 0) {
      if (myPid == 0) {
        cerr << endl;
        cerr << " Error with DSEUPD, info = " << info << endl;
        cerr << endl;
      }
    }

  } // if (info < 0)

  if (info == 0) {
    outerIter = iparam[3-1];
    knownEV = iparam[5-1];
    orthoOp = iparam[11-1];
  }

  delete[] wI;
  delete[] wD;
  delete[] vTmp;

  return (info == 0) ? knownEV : info;

}
Ejemplo n.º 3
0
int BlockDACG::reSolve(int numEigen, Epetra_MultiVector &Q, double *lambda, int startingEV) {

  // Computes the smallest eigenvalues and the corresponding eigenvectors
  // of the generalized eigenvalue problem
  // 
  //      K X = M X Lambda
  // 
  // using a Block Deflation Accelerated Conjugate Gradient algorithm.
  //
  // Note that if M is not specified, then  K X = X Lambda is solved.
  //
  // Ref: P. Arbenz & R. Lehoucq, "A comparison of algorithms for modal analysis in the
  // absence of a sparse direct method", SNL, Technical Report SAND2003-1028J
  // With the notations of this report, the coefficient beta is defined as 
  //                 diag( H^T_{k} G_{k} ) / diag( H^T_{k-1} G_{k-1} )
  // 
  // Input variables:
  // 
  // numEigen  (integer) = Number of eigenmodes requested
  // 
  // Q (Epetra_MultiVector) = Converged eigenvectors
  //                   The number of columns of Q must be equal to numEigen + blockSize.
  //                   The rows of Q are distributed across processors.
  //                   At exit, the first numEigen columns contain the eigenvectors requested.
  // 
  // lambda (array of doubles) = Converged eigenvalues
  //                   At input, it must be of size numEigen + blockSize.
  //                   At exit, the first numEigen locations contain the eigenvalues requested.
  //
  // startingEV (integer) = Number of existing converged eigenmodes
  //
  // Return information on status of computation
  // 
  // info >=   0 >> Number of converged eigenpairs at the end of computation
  // 
  // // Failure due to input arguments
  // 
  // info = -  1 >> The stiffness matrix K has not been specified.
  // info = -  2 >> The maps for the matrix K and the matrix M differ.
  // info = -  3 >> The maps for the matrix K and the preconditioner P differ.
  // info = -  4 >> The maps for the vectors and the matrix K differ.
  // info = -  5 >> Q is too small for the number of eigenvalues requested.
  // info = -  6 >> Q is too small for the computation parameters.
  //
  // info = - 10 >> Failure during the mass orthonormalization
  // 
  // info = - 20 >> Error in LAPACK during the local eigensolve
  //
  // info = - 30 >> MEMORY
  //

  // Check the input parameters
  
  if (numEigen <= startingEV) {
    return startingEV;
  }

  int info = myVerify.inputArguments(numEigen, K, M, Prec, Q, numEigen + blockSize);
  if (info < 0)
    return info;

  int myPid = MyComm.MyPID();

  // Get the weight for approximating the M-inverse norm
  Epetra_Vector *vectWeight = 0;
  if (normWeight) {
    vectWeight = new Epetra_Vector(View, Q.Map(), normWeight);
  }

  int knownEV = startingEV;
  int localVerbose = verbose*(myPid==0);

  // Define local block vectors
  //
  // MX = Working vectors (storing M*X if M is specified, else pointing to X)
  // KX = Working vectors (storing K*X)
  //
  // R = Residuals
  //
  // H = Preconditioned residuals
  //
  // P = Search directions
  // MP = Working vectors (storing M*P if M is specified, else pointing to P)
  // KP = Working vectors (storing K*P)

  int xr = Q.MyLength();
  Epetra_MultiVector X(View, Q, numEigen, blockSize);
  X.Random();

  int tmp;
  tmp = (M == 0) ? 5*blockSize*xr : 7*blockSize*xr;

  double *work1 = new (nothrow) double[tmp]; 
  if (work1 == 0) {
    if (vectWeight)
      delete vectWeight;
    info = -30;
    return info;
  }
  memRequested += sizeof(double)*tmp/(1024.0*1024.0);

  highMem = (highMem > currentSize()) ? highMem : currentSize();

  double *tmpD = work1;

  Epetra_MultiVector KX(View, Q.Map(), tmpD, xr, blockSize);
  tmpD = tmpD + xr*blockSize;

  Epetra_MultiVector MX(View, Q.Map(), (M) ? tmpD : X.Values(), xr, blockSize);
  tmpD = (M) ? tmpD + xr*blockSize : tmpD;

  Epetra_MultiVector R(View, Q.Map(), tmpD, xr, blockSize);
  tmpD = tmpD + xr*blockSize;

  Epetra_MultiVector H(View, Q.Map(), tmpD, xr, blockSize);
  tmpD = tmpD + xr*blockSize;

  Epetra_MultiVector P(View, Q.Map(), tmpD, xr, blockSize);
  tmpD = tmpD + xr*blockSize;

  Epetra_MultiVector KP(View, Q.Map(), tmpD, xr, blockSize);
  tmpD = tmpD + xr*blockSize;

  Epetra_MultiVector MP(View, Q.Map(), (M) ? tmpD : P.Values(), xr, blockSize);

  // Define arrays
  //
  // theta = Store the local eigenvalues (size: 2*blockSize)
  // normR = Store the norm of residuals (size: blockSize)
  //
  // oldHtR = Store the previous H_i^T*R_i    (size: blockSize)
  // currentHtR = Store the current H_i^T*R_i (size: blockSize)
  //
  // MM = Local mass matrix              (size: 2*blockSize x 2*blockSize)
  // KK = Local stiffness matrix         (size: 2*blockSize x 2*blockSize)
  //
  // S = Local eigenvectors              (size: 2*blockSize x 2*blockSize)

  int lwork2;
  lwork2 = 5*blockSize + 12*blockSize*blockSize;
  double *work2 = new (nothrow) double[lwork2];
  if (work2 == 0) {
    if (vectWeight)
      delete vectWeight;
    delete[] work1;
    info = -30;
    return info;
  }

  highMem = (highMem > currentSize()) ? highMem : currentSize();

  tmpD = work2;

  double *theta = tmpD;
  tmpD = tmpD + 2*blockSize;

  double *normR = tmpD;
  tmpD = tmpD + blockSize;

  double *oldHtR = tmpD;
  tmpD = tmpD + blockSize;
  
  double *currentHtR = tmpD;
  tmpD = tmpD + blockSize;
  memset(currentHtR, 0, blockSize*sizeof(double));
  
  double *MM = tmpD;
  tmpD = tmpD + 4*blockSize*blockSize;

  double *KK = tmpD;
  tmpD = tmpD + 4*blockSize*blockSize;

  double *S = tmpD;

  memRequested += sizeof(double)*lwork2/(1024.0*1024.0);

  // Define an array to store the residuals history
  if (localVerbose > 2) {
    resHistory = new (nothrow) double[maxIterEigenSolve*blockSize];
    if (resHistory == 0) {
      if (vectWeight)
        delete vectWeight;
      delete[] work1;
      delete[] work2;
      info = -30;
      return info;
    }
    historyCount = 0;
  }

  // Miscellaneous definitions

  bool reStart = false;
  numRestart = 0;

  int localSize;
  int twoBlocks = 2*blockSize;
  int nFound = blockSize;
  int i, j;

  if (localVerbose > 0) {
    cout << endl;
    cout << " *|* Problem: ";
    if (M) 
      cout << "K*Q = M*Q D ";
    else
      cout << "K*Q = Q D ";
    if (Prec)
      cout << " with preconditioner";
    cout << endl;
    cout << " *|* Algorithm = DACG (block version)" << endl;
    cout << " *|* Size of blocks = " << blockSize << endl;
    cout << " *|* Number of requested eigenvalues = " << numEigen << endl;
    cout.precision(2);
    cout.setf(ios::scientific, ios::floatfield);
    cout << " *|* Tolerance for convergence = " << tolEigenSolve << endl;
    cout << " *|* Norm used for convergence: ";
    if (normWeight)
      cout << "weighted L2-norm with user-provided weights" << endl;
    else
      cout << "L^2-norm" << endl;
    if (startingEV > 0)
      cout << " *|* Input converged eigenvectors = " << startingEV << endl;
    cout << "\n -- Start iterations -- \n";
  }

  timeOuterLoop -= MyWatch.WallTime();
  for (outerIter = 1; outerIter <= maxIterEigenSolve; ++outerIter) {

    highMem = (highMem > currentSize()) ? highMem : currentSize();

    if ((outerIter == 1) || (reStart == true)) {

      reStart = false;
      localSize = blockSize;

      if (nFound > 0) {

        Epetra_MultiVector X2(View, X, blockSize-nFound, nFound);
        Epetra_MultiVector MX2(View, MX, blockSize-nFound, nFound);
        Epetra_MultiVector KX2(View, KX, blockSize-nFound, nFound);

        // Apply the mass matrix to X
        timeMassOp -= MyWatch.WallTime();
        if (M)
          M->Apply(X2, MX2);
        timeMassOp += MyWatch.WallTime();
        massOp += nFound;

        if (knownEV > 0) {
          // Orthonormalize X against the known eigenvectors with Gram-Schmidt
          // Note: Use R as a temporary work space
          Epetra_MultiVector copyQ(View, Q, 0, knownEV);
          timeOrtho -= MyWatch.WallTime();
          info = modalTool.massOrthonormalize(X, MX, M, copyQ, nFound, 0, R.Values());
          timeOrtho += MyWatch.WallTime();
          // Exit the code if the orthogonalization did not succeed
          if (info < 0) {
            info = -10;
            delete[] work1;
            delete[] work2;
            if (vectWeight)
              delete vectWeight;
            return info;
          }
        }

        // Apply the stiffness matrix to X
        timeStifOp -= MyWatch.WallTime();
        K->Apply(X2, KX2);
        timeStifOp += MyWatch.WallTime();
        stifOp += nFound;

      } // if (nFound > 0)

    } // if ((outerIter == 1) || (reStart == true))
    else {

      // Apply the preconditioner on the residuals
      if (Prec != 0) {
        timePrecOp -= MyWatch.WallTime();
        Prec->ApplyInverse(R, H);
        timePrecOp += MyWatch.WallTime();
        precOp += blockSize;
      }
      else {
        memcpy(H.Values(), R.Values(), xr*blockSize*sizeof(double));
      }

      // Compute the product H^T*R
      timeSearchP -= MyWatch.WallTime();      
      memcpy(oldHtR, currentHtR, blockSize*sizeof(double));
      H.Dot(R, currentHtR);
      // Define the new search directions
      if (localSize == blockSize) {
        P.Scale(-1.0, H);
        localSize = twoBlocks;
      } // if (localSize == blockSize)
      else {
        bool hasZeroDot = false;
        for (j = 0; j < blockSize; ++j) {
          if (oldHtR[j] == 0.0) {
            hasZeroDot = true;
            break; 
          }
          callBLAS.SCAL(xr, currentHtR[j]/oldHtR[j], P.Values() + j*xr);
        }
        if (hasZeroDot == true) {
          // Restart the computation when there is a null dot product
          if (localVerbose > 0) {
            cout << endl;
            cout << " !! Null dot product -- Restart the search space !!\n";
            cout << endl;
          }
          if (blockSize == 1) {
            X.Random();
            nFound = blockSize;
          }
          else {
            Epetra_MultiVector Xinit(View, X, j, blockSize-j);
            Xinit.Random();
            nFound = blockSize - j;
          } // if (blockSize == 1)
          reStart = true;
          numRestart += 1;
          info = 0;
          continue;
        }
        callBLAS.AXPY(xr*blockSize, -1.0, H.Values(), P.Values());
      } // if (localSize == blockSize)
      timeSearchP += MyWatch.WallTime();

      // Apply the mass matrix on P
      timeMassOp -= MyWatch.WallTime();
      if (M)
        M->Apply(P, MP);
      timeMassOp += MyWatch.WallTime();
      massOp += blockSize;

      if (knownEV > 0) {
        // Orthogonalize P against the known eigenvectors
        // Note: Use R as a temporary work space
        Epetra_MultiVector copyQ(View, Q, 0, knownEV);
        timeOrtho -= MyWatch.WallTime();
        modalTool.massOrthonormalize(P, MP, M, copyQ, blockSize, 1, R.Values());
        timeOrtho += MyWatch.WallTime();
      }

      // Apply the stiffness matrix to P
      timeStifOp -= MyWatch.WallTime();
      K->Apply(P, KP);
      timeStifOp += MyWatch.WallTime();
      stifOp += blockSize;

    } // if ((outerIter == 1) || (reStart == true))

    // Form "local" mass and stiffness matrices
    // Note: Use S as a temporary workspace
    timeLocalProj -= MyWatch.WallTime();
    modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, KX.Values(), xr,
                    KK, localSize, S);
    modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, MX.Values(), xr,
                    MM, localSize, S);
    if (localSize > blockSize) {
      modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, KP.Values(), xr,
                      KK + blockSize*localSize, localSize, S);
      modalTool.localProjection(blockSize, blockSize, xr, P.Values(), xr, KP.Values(), xr,
                      KK + blockSize*localSize + blockSize, localSize, S);
      modalTool.localProjection(blockSize, blockSize, xr, X.Values(), xr, MP.Values(), xr,
                      MM + blockSize*localSize, localSize, S);
      modalTool.localProjection(blockSize, blockSize, xr, P.Values(), xr, MP.Values(), xr,
                      MM + blockSize*localSize + blockSize, localSize, S);
    } // if (localSize > blockSize)
    timeLocalProj += MyWatch.WallTime();

    // Perform a spectral decomposition
    timeLocalSolve -= MyWatch.WallTime();
    int nevLocal = localSize;
    info = modalTool.directSolver(localSize, KK, localSize, MM, localSize, nevLocal,
                                  S, localSize, theta, localVerbose,
                                  (blockSize == 1) ? 1: 0);
    timeLocalSolve += MyWatch.WallTime();

    if (info < 0) {
      // Stop when spectral decomposition has a critical failure
      break;
    }

    // Check for restarting
    if ((theta[0] < 0.0) || (nevLocal < blockSize)) {
      if (localVerbose > 0) {
        cout << " Iteration " << outerIter;
        cout << "- Failure for spectral decomposition - RESTART with new random search\n";
      }
      if (blockSize == 1) {
        X.Random();
        nFound = blockSize;
      }
      else {
        Epetra_MultiVector Xinit(View, X, 1, blockSize-1);
        Xinit.Random();
        nFound = blockSize - 1;
      } // if (blockSize == 1)
      reStart = true;
      numRestart += 1;
      info = 0;
      continue;
    } // if ((theta[0] < 0.0) || (nevLocal < blockSize))

    if ((localSize == twoBlocks) && (nevLocal == blockSize)) {
      for (j = 0; j < nevLocal; ++j)
        memcpy(S + j*blockSize, S + j*twoBlocks, blockSize*sizeof(double));
      localSize = blockSize;
    }

    // Check the direction of eigenvectors
    // Note: This sign check is important for convergence
    for (j = 0; j < nevLocal; ++j) {
      double coeff = S[j + j*localSize];
      if (coeff < 0.0)
        callBLAS.SCAL(localSize, -1.0, S + j*localSize);
    }

    // Compute the residuals
    timeResidual -= MyWatch.WallTime();
    callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, KX.Values(), xr,
                  S, localSize, 0.0, R.Values(), xr);
    if (localSize == twoBlocks) {
      callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, KP.Values(), xr,
                    S + blockSize, localSize, 1.0, R.Values(), xr);
    }
    for (j = 0; j < blockSize; ++j)
      callBLAS.SCAL(localSize, theta[j], S + j*localSize);
    callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, -1.0, MX.Values(), xr,
                  S, localSize, 1.0, R.Values(), xr);
    if (localSize == twoBlocks) {
      callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, -1.0, MP.Values(), xr,
                  S + blockSize, localSize, 1.0, R.Values(), xr);
    }
    for (j = 0; j < blockSize; ++j)
      callBLAS.SCAL(localSize, 1.0/theta[j], S + j*localSize);
    timeResidual += MyWatch.WallTime();
    
    // Compute the norms of the residuals
    timeNorm -= MyWatch.WallTime();
    if (vectWeight)
      R.NormWeighted(*vectWeight, normR);
    else
      R.Norm2(normR);
    // Scale the norms of residuals with the eigenvalues
    // Count the converged eigenvectors
    nFound = 0;
    for (j = 0; j < blockSize; ++j) {
      normR[j] = (theta[j] == 0.0) ? normR[j] : normR[j]/theta[j];
      if (normR[j] < tolEigenSolve) 
        nFound += 1;
    }
    timeNorm += MyWatch.WallTime();

    // Store the residual history
    if (localVerbose > 2) {
      memcpy(resHistory + historyCount*blockSize, normR, blockSize*sizeof(double));
      historyCount += 1;
    }

    // Print information on current iteration
    if (localVerbose > 0) {
      cout << " Iteration " << outerIter << " - Number of converged eigenvectors ";
      cout << knownEV + nFound << endl;
    }

    if (localVerbose > 1) {
      cout << endl;
      cout.precision(2);
      cout.setf(ios::scientific, ios::floatfield);
      for (i=0; i<blockSize; ++i) {
        cout << " Iteration " << outerIter << " - Scaled Norm of Residual " << i;
        cout << " = " << normR[i] << endl;
      }
      cout << endl;
      cout.precision(2);
      for (i=0; i<blockSize; ++i) {
        cout << " Iteration " << outerIter << " - Ritz eigenvalue " << i;
        cout.setf((fabs(theta[i]) < 0.01) ? ios::scientific : ios::fixed, ios::floatfield);
        cout << " = " << theta[i] << endl;
      }
      cout << endl;
    }

    if (nFound == 0) {
      // Update the spaces
      // Note: Use H as a temporary work space
      timeLocalUpdate -= MyWatch.WallTime();
      memcpy(H.Values(), X.Values(), xr*blockSize*sizeof(double));
      callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, H.Values(), xr, S, localSize,
                    0.0, X.Values(), xr);
      memcpy(H.Values(), KX.Values(), xr*blockSize*sizeof(double));
      callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, H.Values(), xr, S, localSize,
                    0.0, KX.Values(), xr);
      if (M) {
        memcpy(H.Values(), MX.Values(), xr*blockSize*sizeof(double));
        callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, H.Values(), xr, S, localSize,
                      0.0, MX.Values(), xr);
      }
      if (localSize == twoBlocks) {
        callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, P.Values(), xr,
                      S + blockSize, localSize, 1.0, X.Values(), xr);
        callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, KP.Values(), xr,
                      S + blockSize, localSize, 1.0, KX.Values(), xr);
        if (M) {
          callBLAS.GEMM('N', 'N', xr, blockSize, blockSize, 1.0, MP.Values(), xr,
                      S + blockSize, localSize, 1.0, MX.Values(), xr);
        }
      } // if (localSize == twoBlocks)
      timeLocalUpdate += MyWatch.WallTime();
      // When required, monitor some orthogonalities
      if (verbose > 2) {
        if (knownEV == 0) {
          accuracyCheck(&X, &MX, &R, 0, (localSize>blockSize) ? &P : 0);
        }
        else {
          Epetra_MultiVector copyQ(View, Q, 0, knownEV);
          accuracyCheck(&X, &MX, &R, &copyQ, (localSize>blockSize) ? &P : 0);
        }
      } // if (verbose > 2)
      continue;
    } // if (nFound == 0)

    // Order the Ritz eigenvectors by putting the converged vectors at the beginning
    int firstIndex = blockSize;
    for (j = 0; j < blockSize; ++j) {
      if (normR[j] >= tolEigenSolve) {
        firstIndex = j;
        break;
      }
    } // for (j = 0; j < blockSize; ++j)
    while (firstIndex < nFound) {
      for (j = firstIndex; j < blockSize; ++j) {
        if (normR[j] < tolEigenSolve) {
          // Swap the j-th and firstIndex-th position
          callFortran.SWAP(localSize, S + j*localSize, 1, S + firstIndex*localSize, 1);
          callFortran.SWAP(1, theta + j, 1, theta + firstIndex, 1);
          callFortran.SWAP(1, normR + j, 1, normR + firstIndex, 1);
          break;
        }
      } // for (j = firstIndex; j < blockSize; ++j)
      for (j = 0; j < blockSize; ++j) {
        if (normR[j] >= tolEigenSolve) {
          firstIndex = j;
          break;
        }
      } // for (j = 0; j < blockSize; ++j)
    } // while (firstIndex < nFound)

    // Copy the converged eigenvalues
    memcpy(lambda + knownEV, theta, nFound*sizeof(double));

    // Convergence test
    if (knownEV + nFound >= numEigen) {
      callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, X.Values(), xr,
                    S, localSize, 0.0, R.Values(), xr);
      if (localSize > blockSize) {
        callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, P.Values(), xr,
                      S + blockSize, localSize, 1.0, R.Values(), xr);
      }
      memcpy(Q.Values() + knownEV*xr, R.Values(), nFound*xr*sizeof(double));
      knownEV += nFound;
      if (localVerbose == 1) {
        cout << endl;
        cout.precision(2);
        cout.setf(ios::scientific, ios::floatfield);
        for (i=0; i<blockSize; ++i) {
          cout << " Iteration " << outerIter << " - Scaled Norm of Residual " << i;
          cout << " = " << normR[i] << endl;
        }
        cout << endl;
      }
      break;
    }

    // Store the converged eigenvalues and eigenvectors
    callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, X.Values(), xr,
                  S, localSize, 0.0, Q.Values() + knownEV*xr, xr);
    if (localSize == twoBlocks) {
      callBLAS.GEMM('N', 'N', xr, nFound, blockSize, 1.0, P.Values(), xr,
                    S + blockSize, localSize, 1.0, Q.Values() + knownEV*xr, xr);
    }
    knownEV += nFound;

    // Define the restarting vectors
    timeRestart -= MyWatch.WallTime();
    int leftOver = (nevLocal < blockSize + nFound) ? nevLocal - nFound : blockSize;
    double *Snew = S + nFound*localSize;
    memcpy(H.Values(), X.Values(), blockSize*xr*sizeof(double));
    callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, H.Values(), xr,
                  Snew, localSize, 0.0, X.Values(), xr);
    memcpy(H.Values(), KX.Values(), blockSize*xr*sizeof(double));
    callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, H.Values(), xr,
                  Snew, localSize, 0.0, KX.Values(), xr);
    if (M) {
      memcpy(H.Values(), MX.Values(), blockSize*xr*sizeof(double));
      callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, H.Values(), xr,
                    Snew, localSize, 0.0, MX.Values(), xr);
    }
    if (localSize == twoBlocks) {
      callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, P.Values(), xr,
                    Snew+blockSize, localSize, 1.0, X.Values(), xr);
      callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, KP.Values(), xr,
                    Snew+blockSize, localSize, 1.0, KX.Values(), xr);
      if (M) {
        callBLAS.GEMM('N', 'N', xr, leftOver, blockSize, 1.0, MP.Values(), xr,
                      Snew+blockSize, localSize, 1.0, MX.Values(), xr);
      }
    } // if (localSize == twoBlocks)
    if (nevLocal < blockSize + nFound) {
      // Put new random vectors at the end of the block
      Epetra_MultiVector Xtmp(View, X, leftOver, blockSize - leftOver);
      Xtmp.Random();
    }
    else {
      nFound = 0;
    } // if (nevLocal < blockSize + nFound)
    reStart = true;
    timeRestart += MyWatch.WallTime();

  } // for (outerIter = 1; outerIter <= maxIterEigenSolve; ++outerIter)
  timeOuterLoop += MyWatch.WallTime();
  highMem = (highMem > currentSize()) ? highMem : currentSize();

  // Clean memory
  delete[] work1;
  delete[] work2;
  if (vectWeight)
    delete vectWeight;

  // Sort the eigenpairs
  timePostProce -= MyWatch.WallTime();
  if ((info == 0) && (knownEV > 0)) {
    mySort.sortScalars_Vectors(knownEV, lambda, Q.Values(), Q.MyLength());
  }
  timePostProce += MyWatch.WallTime();

  return (info == 0) ? knownEV : info;

}
Ejemplo n.º 4
0
int Davidson::reSolve(int numEigen, Epetra_MultiVector &Q, double *lambda, int startingEV) {

  // Computes the smallest eigenvalues and the corresponding eigenvectors
  // of the generalized eigenvalue problem
  // 
  //      K X = M X Lambda
  // 
  // using a generalized Davidson algorithm
  //
  // Note that if M is not specified, then  K X = X Lambda is solved.
  // 
  // Input variables:
  // 
  // numEigen  (integer) = Number of eigenmodes requested
  // 
  // Q (Epetra_MultiVector) = Converged eigenvectors
  //                   The number of columns of Q must be at least numEigen + blockSize.
  //                   The rows of Q are distributed across processors.
  //                   At exit, the first numEigen columns contain the eigenvectors requested.
  // 
  // lambda (array of doubles) = Converged eigenvalues
  //                   At input, it must be of size numEigen + blockSize.
  //                   At exit, the first numEigen locations contain the eigenvalues requested.
  //
  // startingEV (integer) = Number of existing converged eigenvectors
  //                   We assume that the user has check the eigenvectors and 
  //                   their M-orthonormality.
  //
  // Return information on status of computation
  // 
  // info >=   0 >> Number of converged eigenpairs at the end of computation
  // 
  // // Failure due to input arguments
  // 
  // info = -  1 >> The stiffness matrix K has not been specified.
  // info = -  2 >> The maps for the matrix K and the matrix M differ.
  // info = -  3 >> The maps for the matrix K and the preconditioner P differ.
  // info = -  4 >> The maps for the vectors and the matrix K differ.
  // info = -  5 >> Q is too small for the number of eigenvalues requested.
  // info = -  6 >> Q is too small for the computation parameters.
  //
  // info = -  8 >> The number of blocks is too small for the number of eigenvalues.
  // 
  // info = - 10 >> Failure during the mass orthonormalization
  // 
  // info = - 30 >> MEMORY
  //

  // Check the input parameters
  
  if (numEigen <= startingEV) {
    return startingEV;
  }

  int info = myVerify.inputArguments(numEigen, K, M, Prec, Q, minimumSpaceDimension(numEigen));
  if (info < 0)
    return info;

  int myPid = MyComm.MyPID();

  if (numBlock*blockSize < numEigen) {
    if (myPid == 0) {
      cerr << endl;
      cerr << " !!! The space dimension (# of blocks x size of blocks) must be greater than ";
      cerr << " the number of eigenvalues !!!\n";
      cerr << " Number of blocks = " << numBlock << endl;
      cerr << " Size of blocks = " << blockSize << endl;
      cerr << " Number of eigenvalues = " << numEigen << endl;
      cerr << endl;
    }
    return -8;
  }

  // Get the weight for approximating the M-inverse norm
  Epetra_Vector *vectWeight = 0;
  if (normWeight) {
    vectWeight = new Epetra_Vector(View, Q.Map(), normWeight);
  }

  int knownEV = startingEV;
  int localVerbose = verbose*(myPid==0);

  // Define local block vectors
  //
  // MX = Working vectors (storing M*X if M is specified, else pointing to X)
  // KX = Working vectors (storing K*X)
  //
  // R = Residuals

  int xr = Q.MyLength();
  int dimSearch = blockSize*numBlock;

  Epetra_MultiVector X(View, Q, 0, dimSearch + blockSize);
  if (knownEV > 0) {
    Epetra_MultiVector copyX(View, Q, knownEV, blockSize);
    copyX.Random();
  }
  else {
    X.Random();
  }

  int tmp;
  tmp = (M == 0) ? 2*blockSize*xr : 3*blockSize*xr;

  double *work1 = new (nothrow) double[tmp]; 
  if (work1 == 0) {
    if (vectWeight)
      delete vectWeight;
    info = -30;
    return info;
  }
  memRequested += sizeof(double)*tmp/(1024.0*1024.0);

  highMem = (highMem > currentSize()) ? highMem : currentSize();

  double *tmpD = work1;

  Epetra_MultiVector KX(View, Q.Map(), tmpD, xr, blockSize);
  tmpD = tmpD + xr*blockSize;

  Epetra_MultiVector MX(View, Q.Map(), (M) ? tmpD : X.Values(), xr, blockSize);
  tmpD = (M) ? tmpD + xr*blockSize : tmpD;

  Epetra_MultiVector R(View, Q.Map(), tmpD, xr, blockSize);

  // Define arrays
  //
  // theta = Store the local eigenvalues (size: dimSearch)
  // normR = Store the norm of residuals (size: blockSize)
  //
  // KK = Local stiffness matrix         (size: dimSearch x dimSearch)
  //
  // S = Local eigenvectors              (size: dimSearch x dimSearch)
  //
  // tmpKK = Local workspace             (size: blockSize x blockSize)

  int lwork2 = blockSize + dimSearch + 2*dimSearch*dimSearch + blockSize*blockSize;
  double *work2 = new (nothrow) double[lwork2];
  if (work2 == 0) {
    if (vectWeight)
      delete vectWeight;
    delete[] work1;
    info = -30;
    return info;
  }

  memRequested += sizeof(double)*lwork2/(1024.0*1024.0);
  highMem = (highMem > currentSize()) ? highMem : currentSize();

  tmpD = work2;

  double *theta = tmpD;
  tmpD = tmpD + dimSearch;

  double *normR = tmpD;
  tmpD = tmpD + blockSize;

  double *KK = tmpD;
  tmpD = tmpD + dimSearch*dimSearch;
  memset(KK, 0, dimSearch*dimSearch*sizeof(double));

  double *S = tmpD;
  tmpD = tmpD + dimSearch*dimSearch;

  double *tmpKK = tmpD;

  // Define an array to store the residuals history
  if (localVerbose > 2) {
    resHistory = new (nothrow) double[maxIterEigenSolve*blockSize];
    spaceSizeHistory = new (nothrow) int[maxIterEigenSolve];
    if ((resHistory == 0) || (spaceSizeHistory == 0)) {
      if (vectWeight)
        delete vectWeight;
      delete[] work1;
      delete[] work2;
      info = -30;
      return info;
    }
    historyCount = 0;
  }

  // Miscellaneous definitions

  bool reStart = false;
  numRestart = 0;

  bool criticalExit = false;

  int bStart = 0;
  int offSet = 0;
  numBlock = (dimSearch/blockSize) - (knownEV/blockSize);

  int nFound = blockSize;
  int i, j;

  if (localVerbose > 0) {
    cout << endl;
    cout << " *|* Problem: ";
    if (M)
      cout << "K*Q = M*Q D ";
    else
      cout << "K*Q = Q D ";
    if (Prec)
      cout << " with preconditioner";
    cout << endl;
    cout << " *|* Algorithm = Davidson algorithm (block version)" << endl;
    cout << " *|* Size of blocks = " << blockSize << endl;
    cout << " *|* Largest size of search space = " << numBlock*blockSize << endl;
    cout << " *|* Number of requested eigenvalues = " << numEigen << endl;
    cout.precision(2);
    cout.setf(ios::scientific, ios::floatfield);
    cout << " *|* Tolerance for convergence = " << tolEigenSolve << endl;
    cout << " *|* Norm used for convergence: ";
    if (vectWeight)
      cout << "weighted L2-norm with user-provided weights" << endl;
    else
      cout << "L^2-norm" << endl;
    if (startingEV > 0)
      cout << " *|* Input converged eigenvectors = " << startingEV << endl;
    cout << "\n -- Start iterations -- \n";
  }

  int maxBlock = (dimSearch/blockSize) - (knownEV/blockSize);

  timeOuterLoop -= MyWatch.WallTime();
  outerIter = 0;
  while (outerIter <= maxIterEigenSolve) {

    highMem = (highMem > currentSize()) ? highMem : currentSize();

    int nb;
    for (nb = bStart; nb < maxBlock; ++nb) {

      outerIter += 1;
      if (outerIter > maxIterEigenSolve)
        break;

      int localSize = nb*blockSize;

      Epetra_MultiVector Xcurrent(View, X, localSize + knownEV, blockSize);

      timeMassOp -= MyWatch.WallTime();
      if (M)
        M->Apply(Xcurrent, MX);
      timeMassOp += MyWatch.WallTime();
      massOp += blockSize;

      // Orthonormalize X against the known eigenvectors and the previous vectors
      // Note: Use R as a temporary work space
      timeOrtho -= MyWatch.WallTime();
      if (nb == bStart) {
        if (nFound > 0) {
          if (knownEV == 0) {
            info = modalTool.massOrthonormalize(Xcurrent, MX, M, Q, nFound, 2, R.Values());
          }
          else {
            Epetra_MultiVector copyQ(View, X, 0, knownEV + localSize);
            info = modalTool.massOrthonormalize(Xcurrent, MX, M, copyQ, nFound, 0, R.Values());
          }
        }
        nFound = 0;
      }
      else {
        Epetra_MultiVector copyQ(View, X, 0, knownEV + localSize);
        info = modalTool.massOrthonormalize(Xcurrent, MX, M, copyQ, blockSize, 0, R.Values());
      }
      timeOrtho += MyWatch.WallTime();

      // Exit the code when the number of vectors exceeds the space dimension
      if (info < 0) {
        delete[] work1;
        delete[] work2;
        if (vectWeight)
          delete vectWeight;
        return -10;
      }

      timeStifOp -= MyWatch.WallTime();
      K->Apply(Xcurrent, KX);
      timeStifOp += MyWatch.WallTime();
      stifOp += blockSize;

      // Check the orthogonality properties of X
      if (verbose > 2) {
        if (knownEV + localSize == 0)
          accuracyCheck(&Xcurrent, &MX, 0);
        else {
          Epetra_MultiVector copyQ(View, X, 0, knownEV + localSize);
          accuracyCheck(&Xcurrent, &MX, &copyQ);
        }
        if (localVerbose > 0)
          cout << endl;
      } // if (verbose > 2)

      // Define the local stiffness matrix
      // Note: S is used as a workspace
      timeLocalProj -= MyWatch.WallTime();
      for (j = 0; j <= nb; ++j) {
        callBLAS.GEMM('T', 'N', blockSize, blockSize, xr,
                      1.0, X.Values()+(knownEV+j*blockSize)*xr, xr, KX.Values(), xr,
                      0.0, tmpKK, blockSize);
        MyComm.SumAll(tmpKK, S, blockSize*blockSize);
        int iC;
        for (iC = 0; iC < blockSize; ++iC) {
          double *Kpointer = KK + localSize*dimSearch + j*blockSize + iC*dimSearch;
          memcpy(Kpointer, S + iC*blockSize, blockSize*sizeof(double));
        }
      }
      timeLocalProj += MyWatch.WallTime();

      // Perform a spectral decomposition
      timeLocalSolve -= MyWatch.WallTime();
      int nevLocal = localSize + blockSize;
      info = modalTool.directSolver(localSize+blockSize, KK, dimSearch, 0, 0,
                                    nevLocal, S, dimSearch, theta, localVerbose, 10);
      timeLocalSolve += MyWatch.WallTime();

      if (info != 0) {
        // Stop as spectral decomposition has a critical failure
        if (info < 0) {
          criticalExit = true;
          break;
        }
        // Restart as spectral decomposition failed
        if (localVerbose > 0) {
          cout << " Iteration " << outerIter;
          cout << "- Failure for spectral decomposition - RESTART with new random search\n";
        }
        reStart = true;
        numRestart += 1;
        timeRestart -= MyWatch.WallTime();
        Epetra_MultiVector Xinit(View, X, knownEV, blockSize);
        Xinit.Random();
        timeRestart += MyWatch.WallTime();
        nFound = blockSize;
        bStart = 0;
        break;
      } // if (info != 0)

      // Update the search space
      // Note: Use KX as a workspace
      timeLocalUpdate -= MyWatch.WallTime();
      callBLAS.GEMM('N', 'N', xr, blockSize, localSize+blockSize, 1.0, X.Values()+knownEV*xr, xr,
                    S, dimSearch, 0.0, KX.Values(), xr);
      timeLocalUpdate += MyWatch.WallTime();

      // Apply the mass matrix for the next block
      timeMassOp -= MyWatch.WallTime();
      if (M)
        M->Apply(KX, MX);
      timeMassOp += MyWatch.WallTime();
      massOp += blockSize;

      // Apply the stiffness matrix for the next block
      timeStifOp -= MyWatch.WallTime();
      K->Apply(KX, R);
      timeStifOp += MyWatch.WallTime();
      stifOp += blockSize;

      // Form the residuals
      timeResidual -= MyWatch.WallTime();
      if (M) {
        for (j = 0; j < blockSize; ++j) {
          callBLAS.AXPY(xr, -theta[j], MX.Values() + j*xr, R.Values() + j*xr);
        }
      }
      else {
        // Note KX contains the updated block
        for (j = 0; j < blockSize; ++j) {
          callBLAS.AXPY(xr, -theta[j], KX.Values() + j*xr, R.Values() + j*xr);
        }
      }
      timeResidual += MyWatch.WallTime();
      residual += blockSize;

      // Compute the norm of residuals
      timeNorm -= MyWatch.WallTime();
      if (vectWeight) {
        R.NormWeighted(*vectWeight, normR);
      }
      else {
        R.Norm2(normR);
      }
      // Scale the norms of residuals with the eigenvalues
      // Count the number of converged eigenvectors
      nFound = 0;
      for (j = 0; j < blockSize; ++j) {
        normR[j] = (theta[j] == 0.0) ? normR[j] : normR[j]/theta[j];
        if (normR[j] < tolEigenSolve)
          nFound += 1;
      } // for (j = 0; j < blockSize; ++j)
      timeNorm += MyWatch.WallTime();

      // Store the residual history
      if (localVerbose > 2) {
        memcpy(resHistory + historyCount*blockSize, normR, blockSize*sizeof(double));
        spaceSizeHistory[historyCount] = localSize + blockSize;
        historyCount += 1;
      }
      maxSpaceSize = (maxSpaceSize > localSize+blockSize) ? maxSpaceSize : localSize+blockSize;
      sumSpaceSize += localSize + blockSize;

      // Print information on current iteration
      if (localVerbose > 0) {
        cout << " Iteration " << outerIter << " - Number of converged eigenvectors ";
        cout << knownEV + nFound << endl;
      } // if (localVerbose > 0)

      if (localVerbose > 1) {
        cout << endl;
        cout.precision(2);
        cout.setf(ios::scientific, ios::floatfield);
        for (i=0; i<blockSize; ++i) {
          cout << " Iteration " << outerIter << " - Scaled Norm of Residual " << i;
          cout << " = " << normR[i] << endl;
        }
        cout << endl;
        cout.precision(2);
        for (i=0; i<nevLocal; ++i) {
          cout << " Iteration " << outerIter << " - Ritz eigenvalue " << i;
          cout.setf((fabs(theta[i]) < 0.01) ? ios::scientific : ios::fixed, ios::floatfield);  
          cout << " = " << theta[i] << endl;
        }
        cout << endl;
      }

      // Exit the loop to treat the converged eigenvectors
      if (nFound > 0) {
        nb += 1;
        offSet = 0;
        break;
      }

      // Apply the preconditioner on the residuals
      // Note: Use KX as a workspace
      if (maxBlock == 1) {
        if (Prec) {
          timePrecOp -= MyWatch.WallTime();
          Prec->ApplyInverse(R, Xcurrent);
          timePrecOp += MyWatch.WallTime();
          precOp += blockSize;
        }
        else {
          memcpy(Xcurrent.Values(), R.Values(), blockSize*xr*sizeof(double));
        }
        timeRestart -= MyWatch.WallTime();
        Xcurrent.Update(1.0, KX, -1.0);
        timeRestart += MyWatch.WallTime();
        break;
      } // if (maxBlock == 1)

      if (nb == maxBlock - 1) {
        nb += 1;
        break;
      }

      Epetra_MultiVector Xnext(View, X, knownEV+localSize+blockSize, blockSize);
      if (Prec) {
        timePrecOp -= MyWatch.WallTime();
        Prec->ApplyInverse(R, Xnext);
        timePrecOp += MyWatch.WallTime();
        precOp += blockSize;
      }
      else {
        memcpy(Xnext.Values(), R.Values(), blockSize*xr*sizeof(double));
      }

    } // for (nb = bStart; nb < maxBlock; ++nb)

    if (outerIter > maxIterEigenSolve)
      break;

    if (reStart == true) {
      reStart = false;
      continue;
    }

    if (criticalExit == true)
      break;

    // Store the final converged eigenvectors
    if (knownEV + nFound >= numEigen) {
      for (j = 0; j < blockSize; ++j) {
        if (normR[j] < tolEigenSolve) {
          memcpy(X.Values() + knownEV*xr, KX.Values() + j*xr, xr*sizeof(double));
          lambda[knownEV] = theta[j];
          knownEV += 1;
        }
      }
      if (localVerbose == 1) {
        cout << endl;
        cout.precision(2);
        cout.setf(ios::scientific, ios::floatfield);
        for (i=0; i<blockSize; ++i) {
          cout << " Iteration " << outerIter << " - Scaled Norm of Residual " << i;
          cout << " = " << normR[i] << endl;
        }
        cout << endl;
      }  
      break;
    } // if (knownEV + nFound >= numEigen)

    // Treat the particular case of 1 block
    if (maxBlock == 1) {
      if (nFound > 0) {
        double *Xpointer = X.Values() + (knownEV+nFound)*xr;
        nFound = 0;
        for (j = 0; j < blockSize; ++j) {
          if (normR[j] < tolEigenSolve) {
            memcpy(X.Values() + knownEV*xr, KX.Values() + j*xr, xr*sizeof(double));
            lambda[knownEV] = theta[j];
            knownEV += 1;
            nFound += 1;
          }
          else {
            memcpy(Xpointer + (j-nFound)*xr, KX.Values() + j*xr, xr*sizeof(double));
          }
        }
        Epetra_MultiVector Xnext(View, X, knownEV + blockSize - nFound, nFound);
        Xnext.Random();
      }
      else {
        nFound = blockSize;
      }
      continue;
    }

    // Define the restarting block when maxBlock > 1
    if (nFound > 0) {
      int firstIndex = blockSize;
      for (j = 0; j < blockSize; ++j) {
        if (normR[j] >= tolEigenSolve) {
          firstIndex = j;
          break;
        }
      } // for (j = 0; j < blockSize; ++j)
      while (firstIndex < nFound) {
        for (j = firstIndex; j < blockSize; ++j) {
          if (normR[j] < tolEigenSolve) {
            // Swap the j-th and firstIndex-th position
            callFortran.SWAP(nb*blockSize, S + j*dimSearch, 1, S + firstIndex*dimSearch, 1);
            callFortran.SWAP(1, theta + j, 1, theta + firstIndex, 1);
            callFortran.SWAP(1, normR + j, 1, normR + firstIndex, 1);
            break;
          }
        } // for (j = firstIndex; j < blockSize; ++j)
        for (j = 0; j < blockSize; ++j) {
          if (normR[j] >= tolEigenSolve) {
            firstIndex = j;
            break;
          }
        } // for (j = 0; j < blockSize; ++j)
      } // while (firstIndex < nFound)

      // Copy the converged eigenvalues
      memcpy(lambda + knownEV, theta, nFound*sizeof(double));

    } // if (nFound > 0)

    // Define the restarting size
    bStart = ((nb - offSet) > 2) ? (nb - offSet)/2 : 0;

    // Define the restarting space and local stiffness
    timeRestart -= MyWatch.WallTime();
    memset(KK, 0, nb*blockSize*dimSearch*sizeof(double));
    for (j = 0; j < bStart*blockSize; ++j) {
      KK[j + j*dimSearch] = theta[j + nFound];
    }
    // Form the restarting space
    int oldCol = nb*blockSize;
    int newCol = nFound + (bStart+1)*blockSize;
    newCol = (newCol > oldCol) ? oldCol : newCol;
    callFortran.GEQRF(oldCol, newCol, S, dimSearch, theta, R.Values(), xr*blockSize, &info);
    callFortran.ORMQR('R', 'N', xr, oldCol, newCol, S, dimSearch, theta,
                      X.Values()+knownEV*xr, xr, R.Values(), blockSize*xr, &info);
    timeRestart += MyWatch.WallTime();

    if (nFound == 0)
      offSet += 1;

    knownEV += nFound;
    maxBlock = (dimSearch/blockSize) - (knownEV/blockSize);

    // Put random vectors if the Rayleigh Ritz vectors are not enough
    newCol = nFound + (bStart+1)*blockSize;
    if (newCol > oldCol) {
      Epetra_MultiVector Xnext(View, X, knownEV+blockSize-nFound, nFound);
      Xnext.Random();
      continue;
    }

    nFound = 0;

  } // while (outerIter <= maxIterEigenSolve)
  timeOuterLoop += MyWatch.WallTime();
  highMem = (highMem > currentSize()) ? highMem : currentSize();

  // Clean memory
  delete[] work1;
  delete[] work2;
  if (vectWeight)
    delete vectWeight;

  // Sort the eigenpairs
  timePostProce -= MyWatch.WallTime();
  if ((info == 0) && (knownEV > 0)) {
    mySort.sortScalars_Vectors(knownEV, lambda, Q.Values(), Q.MyLength());
  }
  timePostProce += MyWatch.WallTime();

  return (info == 0) ? knownEV : info;

}
Ejemplo n.º 5
0
int ModifiedARPACKm3::reSolve(int numEigen, Epetra_MultiVector &Q, double *lambda, 
                              int startingEV, const Epetra_MultiVector *orthoVec) {

  // Computes the smallest eigenvalues and the corresponding eigenvectors
  // of the generalized eigenvalue problem
  // 
  //      K X = M X Lambda
  // 
  // using ModifiedARPACK (mode 3).
  //
  // The convergence test is performed outisde of ARPACK
  //
  //                      || Kx - Mx lambda || < tol*lambda
  //
  // The norm ||.|| can be specified by the user through the array normWeight.
  // By default, the L2 Euclidean norm is used.
  //
  // Note that if M is not specified, then  K X = X Lambda is solved.
  // (using the mode for generalized eigenvalue problem).
  // 
  // Input variables:
  // 
  // numEigen  (integer) = Number of eigenmodes requested
  // 
  // Q (Epetra_MultiVector) = Initial search space
  //                   The number of columns of Q defines the size of search space (=NCV).
  //                   The rows of X are distributed across processors.
  //                   As a rule of thumb in ARPACK User's guide, NCV >= 2*numEigen.
  //                   At exit, the first numEigen locations contain the eigenvectors requested.
  // 
  // lambda (array of doubles) = Converged eigenvalues
  //                   The length of this array is equal to the number of columns in Q.
  //                   At exit, the first numEigen locations contain the eigenvalues requested.
  // 
  // startingEV (integer) = Number of eigenmodes already stored in Q
  //                   A linear combination of these vectors is made to define the starting
  //                   vector, placed in resid.
  //
  // orthoVec (Pointer to Epetra_MultiVector) = Space to be orthogonal to
  //                   The computation is performed in the orthogonal of the space spanned
  //                   by the columns vectors in orthoVec.
  //
  // Return information on status of computation
  // 
  // info >=   0 >> Number of converged eigenpairs at the end of computation
  // 
  // // Failure due to input arguments
  // 
  // info = -  1 >> The stiffness matrix K has not been specified.
  // info = -  2 >> The maps for the matrix K and the matrix M differ.
  // info = -  3 >> The maps for the matrix K and the preconditioner P differ.
  // info = -  4 >> The maps for the vectors and the matrix K differ.
  // info = -  5 >> Q is too small for the number of eigenvalues requested.
  // info = -  6 >> Q is too small for the computation parameters.
  // 
  // info = -  8 >> numEigen must be smaller than the dimension of the matrix.
  //
  // info = - 30 >> MEMORY
  //
  // See ARPACK documentation for the meaning of INFO

  if (numEigen <= startingEV) {
    return numEigen;
  }

  int info = myVerify.inputArguments(numEigen, K, M, 0, Q, minimumSpaceDimension(numEigen));
  if (info < 0)
    return info;

  int myPid = MyComm.MyPID();

  int localSize = Q.MyLength();
  int NCV = Q.NumVectors();
  int knownEV = 0;

  if (NCV > Q.GlobalLength()) {
    if (numEigen >= Q.GlobalLength()) {
      cerr << endl;
      cerr << " !! The number of requested eigenvalues must be smaller than the dimension";
      cerr << " of the matrix !!\n";
      cerr << endl;
      return -8;
    }
    NCV = Q.GlobalLength();
  }

  // Get the weight for approximating the M-inverse norm
  Epetra_Vector *vectWeight = 0;
  if (normWeight) {
    vectWeight = new Epetra_Vector(View, Q.Map(), normWeight);
  }

  int localVerbose = verbose*(myPid == 0);

  // Define data for ARPACK
  //
  // UH (10/17/03) Note that workl is also used 
  //               * to store the eigenvectors of the tridiagonal matrix
  //               * as a workspace for DSTEQR
  //               * as a workspace for recovering the global eigenvectors

  highMem = (highMem > currentSize()) ? highMem : currentSize();

  int ido = 0;

  int lwI = 22;
  int *wI = new (nothrow) int[lwI];
  if (wI == 0) {
    if (vectWeight)
      delete vectWeight;
    return -30;
  }
  memRequested += sizeof(int)*lwI/(1024.0*1024.0);

  int *iparam = wI;
  int *ipntr = wI + 11;

  int lworkl = NCV*(NCV+8);
  int lwD = lworkl + 4*localSize;
  double *wD = new (nothrow) double[lwD];
  if (wD == 0) {
    if (vectWeight)
      delete vectWeight;
    delete[] wI;
    return -30;
  }
  memRequested += sizeof(double)*(4*localSize+lworkl)/(1024.0*1024.0);

  double *pointer = wD;

  double *workl = pointer;
  pointer = pointer + lworkl;

  double *resid = pointer;
  pointer = pointer + localSize;

  double *workd = pointer;

  double *v = Q.Values();

  highMem = (highMem > currentSize()) ? highMem : currentSize();

  if (startingEV > 0) {
    // Define the initial starting vector
    memset(resid, 0, localSize*sizeof(double));
    for (int jj = 0; jj < startingEV; ++jj)
      for (int ii = 0; ii < localSize; ++ii)
         resid[ii] += v[ii + jj*localSize];
    info = 1;
  }

  iparam[1-1] = 1;
  iparam[3-1] = maxIterEigenSolve;
  iparam[7-1] = 3;

  // The fourth parameter forces to use the convergence test provided by ARPACK.
  // This requires a customization of ARPACK (provided by R. Lehoucq).

  iparam[4-1] = 1;

  Epetra_Vector v1(View, Q.Map(), workd);
  Epetra_Vector v2(View, Q.Map(), workd + localSize);
  Epetra_Vector v3(View, Q.Map(), workd + 2*localSize);

  // Define further storage for the new residual check
  // Use a block of vectors to compute the residuals more quickly.
  // Note that workd could be used if memory becomes an issue.
  int loopZ = (NCV > 10) ? 10 : NCV;

  int lwD2 = localSize + 2*NCV-1 + NCV;
  lwD2 += (M) ? 3*loopZ*localSize : 2*loopZ*localSize;
  double *wD2 = new (nothrow) double[lwD2];
  if (wD2 == 0) {
    if (vectWeight)
      delete vectWeight;
    delete[] wI;
    delete[] wD;
    return -30;
  }
  memRequested += sizeof(double)*lwD2/(1024.0*1024.0);

  pointer = wD2;
  
  // vTmp is used when ido = -1
  double *vTmp = pointer;
  pointer = pointer + localSize;

  // dd and ee stores the tridiagonal matrix.
  // Note that DSTEQR destroys the contents of the input arrays.
  double *dd = pointer;
  pointer = pointer + NCV;

  double *ee = pointer;
  pointer = pointer + NCV-1;

  double *vz = pointer;
  pointer = pointer + loopZ*localSize;
  Epetra_MultiVector approxEV(View, Q.Map(), vz, localSize, loopZ);

  double *kvz = pointer;
  pointer = pointer + loopZ*localSize;
  Epetra_MultiVector KapproxEV(View, Q.Map(), kvz, localSize, loopZ);

  double *mvz = (M) ? pointer : vz;
  pointer = (M) ? pointer + loopZ*localSize : pointer;
  Epetra_MultiVector MapproxEV(View, Q.Map(), mvz, localSize, loopZ);

  double *normR = pointer;

  // zz contains the eigenvectors of the tridiagonal matrix.
  // workt is a workspace for DSTEQR.
  // Note that zz and workt will use parts of workl.
  double *zz, *workt;

  highMem = (highMem > currentSize()) ? highMem : currentSize();

  // Define an array to store the residuals history
  if (localVerbose > 2) {
    resHistory = new (nothrow) double[maxIterEigenSolve*NCV];
    if (resHistory == 0) {
      if (vectWeight)
        delete vectWeight;
      delete[] wI;
      delete[] wD;
      delete[] wD2;
      return -30;
    }
    historyCount = 0;
  }

  highMem = (highMem > currentSize()) ? highMem : currentSize();

  if (localVerbose > 0) {
    cout << endl;
    cout << " *|* Problem: ";
    if (M) 
      cout << "K*Q = M*Q D ";
    else
      cout << "K*Q = Q D ";
    cout << endl;
    cout << " *|* Algorithm = ARPACK (Mode 3, modified such that user checks convergence)" << endl;
    cout << " *|* Number of requested eigenvalues = " << numEigen << endl;
    cout.precision(2);
    cout.setf(ios::scientific, ios::floatfield);
    cout << " *|* Tolerance for convergence = " << tolEigenSolve << endl;
    if (startingEV > 0)
      cout << " *|* User-defined starting vector (Combination of " << startingEV << " vectors)\n";
    cout << " *|* Norm used for convergence: ";
    if (normWeight)
      cout << "weighted L2-norm with user-provided weights" << endl;
    else
      cout << "L^2-norm" << endl;
    if (orthoVec)
      cout << " *|* Size of orthogonal subspace = " << orthoVec->NumVectors() << endl;
    cout << "\n -- Start iterations -- \n";
  }

#ifdef EPETRA_MPI
  Epetra_MpiComm *MPIComm = dynamic_cast<Epetra_MpiComm *>(const_cast<Epetra_Comm*>(&MyComm));
#endif

  timeOuterLoop -= MyWatch.WallTime();
  while (ido != 99) {

    highMem = (highMem > currentSize()) ? highMem : currentSize();

#ifdef EPETRA_MPI
    if (MPIComm)
      callFortran.PSAUPD(MPIComm->Comm(), &ido, 'G', localSize, "LM", numEigen, tolEigenSolve,
             resid, NCV, v, localSize, iparam, ipntr, workd, workl, lworkl, &info, 0);
    else
      callFortran.SAUPD(&ido, 'G', localSize, "LM", numEigen, tolEigenSolve, resid, NCV, v, 
             localSize, iparam, ipntr, workd, workl, lworkl, &info, 0);
#else
    callFortran.SAUPD(&ido, 'G', localSize, "LM", numEigen, tolEigenSolve, resid, NCV, v,
             localSize, iparam, ipntr, workd, workl, lworkl, &info, 0);
#endif

    if (ido == -1) {
      // Apply the mass matrix      
      v3.ResetView(workd + ipntr[0] - 1);
      v1.ResetView(vTmp);
      timeMassOp -= MyWatch.WallTime();
      if (M)
        M->Apply(v3, v1);
      else
        memcpy(v1.Values(), v3.Values(), localSize*sizeof(double));
      timeMassOp += MyWatch.WallTime();
      massOp += 1;
      if ((orthoVec) && (verbose > 3)) {
        // Check the orthogonality
        double maxDot = myVerify.errorOrthogonality(orthoVec, &v1, 0);
        if (myPid == 0) {
          cout << " Maximum Euclidean dot product against orthogonal space (Before Solve) = ";
          cout << maxDot << endl;
        }
      }
      // Solve the stiffness problem
      v2.ResetView(workd + ipntr[1] - 1);
      timeStifOp -= MyWatch.WallTime();
      K->ApplyInverse(v1, v2);
      timeStifOp += MyWatch.WallTime();
      stifOp += 1;
      // Project the solution vector if needed
      // Note: Use mvz as workspace
      if (orthoVec) {
        Epetra_Vector Mv2(View, v2.Map(), mvz);
        if (M)
          M->Apply(v2, Mv2);
        else
          memcpy(Mv2.Values(), v2.Values(), localSize*sizeof(double));
        modalTool.massOrthonormalize(v2, Mv2, M, *orthoVec, 1, 1);
      }
      if ((orthoVec) && (verbose > 3)) {
        // Check the orthogonality
        double maxDot = myVerify.errorOrthogonality(orthoVec, &v2, M);
        if (myPid == 0) {
          cout << " Maximum M-dot product against orthogonal space (After Solve) = ";
          cout << maxDot << endl;
        }
      }
      continue;
    } // if (ido == -1)

    if (ido == 1) {
      // Solve the stiffness problem
      v1.ResetView(workd + ipntr[2] - 1);
      v2.ResetView(workd + ipntr[1] - 1);
      if ((orthoVec) && (verbose > 3)) {
        // Check the orthogonality
        double maxDot = myVerify.errorOrthogonality(orthoVec, &v1, 0);
        if (myPid == 0) {
          cout << " Maximum Euclidean dot product against orthogonal space (Before Solve) = ";
          cout << maxDot << endl;
        }
      }
      timeStifOp -= MyWatch.WallTime();
      K->ApplyInverse(v1, v2);
      timeStifOp += MyWatch.WallTime();
      stifOp += 1;
      // Project the solution vector if needed
      // Note: Use mvz as workspace
      if (orthoVec) {
        Epetra_Vector Mv2(View, v2.Map(), mvz);
        if (M)
          M->Apply(v2, Mv2);
        else
          memcpy(Mv2.Values(), v2.Values(), localSize*sizeof(double));
        modalTool.massOrthonormalize(v2, Mv2, M, *orthoVec, 1, 1);
      }
      if ((orthoVec) && (verbose > 3)) {
        // Check the orthogonality
        double maxDot = myVerify.errorOrthogonality(orthoVec, &v2, M);
        if (myPid == 0) {
          cout << " Maximum M-dot product against orthogonal space (After Solve) = ";
          cout << maxDot << endl;
        }
      }
      continue;
    } // if (ido == 1)

    if (ido == 2) {
      // Apply the mass matrix      
      v1.ResetView(workd + ipntr[0] - 1);
      v2.ResetView(workd + ipntr[1] - 1);
      timeMassOp -= MyWatch.WallTime();
      if (M)
        M->Apply(v1, v2);
      else
        memcpy(v2.Values(), v1.Values(), localSize*sizeof(double));
      timeMassOp += MyWatch.WallTime();
      massOp += 1;
      continue;
    } // if (ido == 2)

    if (ido == 4) {
      timeResidual -= MyWatch.WallTime();
      // Copy the main diagonal of T
      memcpy(dd, workl + NCV + ipntr[4] - 1, NCV*sizeof(double));
      // Copy the lower diagonal of T
      memcpy(ee, workl + ipntr[4], (NCV-1)*sizeof(double));
      // Compute the eigenpairs of the tridiagonal matrix
      zz = workl + 4*NCV;
      workt = workl + 4*NCV + NCV*NCV;
      callFortran.STEQR('I', NCV, dd, ee, zz, NCV, workt, &info);
      if (info != 0) {
        if (localVerbose > 0) {
          cerr << endl;
          cerr << " Error with DSTEQR, info = " << info << endl;
          cerr << endl;
        }
        break;
      }
      // dd contains the eigenvalues in ascending order 
      // Check the residual of the proposed eigenvectors of (K, M)
      int ii, jz;
      iparam[4] = 0;
      for (jz = 0; jz < NCV; jz += loopZ) {
        int colZ = (jz + loopZ < NCV) ? loopZ : NCV - jz;
        callBLAS.GEMM('N', 'N', localSize, colZ, NCV, 1.0, v, localSize,
                      zz + jz*NCV, NCV, 0.0, vz, localSize);
        // Form the residuals
        if (M)
          M->Apply(approxEV, MapproxEV); 
        K->Apply(approxEV, KapproxEV); 
        for (ii = 0; ii < colZ; ++ii) {
          callBLAS.AXPY(localSize, -1.0/dd[ii+jz], MapproxEV.Values() + ii*localSize, 
                        KapproxEV.Values() + ii*localSize);
        }
        // Compute the norms of the residuals
        if (vectWeight) {
          KapproxEV.NormWeighted(*vectWeight, normR + jz);
        }
        else {
          KapproxEV.Norm2(normR + jz);
        }
        // Scale the norms of residuals with the eigenvalues
        for (ii = 0; ii < colZ; ++ii) {
          normR[ii+jz] = normR[ii+jz]*dd[ii+jz];
        }
        // Put the number of converged pairs in iparam[5-1]
        for (ii=0; ii<colZ; ++ii) {
          if (normR[ii+jz] < tolEigenSolve)
            iparam[4] += 1;
        }
      }
      timeResidual += MyWatch.WallTime();
      numResidual += NCV;
      outerIter += 1;
      if (localVerbose > 0) {
        cout << " Iteration " << outerIter;
        cout << " - Number of converged eigenvalues " << iparam[4] << endl;
      }
      if (localVerbose > 2) {
        memcpy(resHistory + historyCount, normR, NCV*sizeof(double));
        historyCount += NCV;
      }
      if (localVerbose > 1) {
        cout.precision(2);
        cout.setf(ios::scientific, ios::floatfield);
        for (ii=0; ii < NCV; ++ii) {
          cout << " Iteration " << outerIter;
          cout << " - Scaled Norm of Residual " << ii << " = " << normR[ii] << endl;
        }
        cout << endl;
        cout.precision(2);
        for (ii = 0; ii < NCV; ++ii) {
          cout << " Iteration " << outerIter << " - Ritz eigenvalue " << ii;
          cout.setf((fabs(dd[ii]) > 100) ? ios::scientific : ios::fixed, ios::floatfield);
          cout << " = " << 1.0/dd[ii] << endl;
        }
        cout << endl;
      }
    } // if (ido == 4)

  } // while (ido != 99)
  timeOuterLoop += MyWatch.WallTime();
  highMem = (highMem > currentSize()) ? highMem : currentSize();

  if (info < 0) {
    if (myPid == 0) {
      cerr << endl;
      cerr << " Error with DSAUPD, info = " << info << endl;
      cerr << endl;
    }
  }
  else {
    // Get the eigenvalues
    timePostProce -= MyWatch.WallTime();
    int ii, jj;
    double *pointer = workl + 4*NCV + NCV*NCV;
    for (ii=0; ii < localSize; ii += 3) {
      int nRow = (ii + 3 < localSize) ? 3 : localSize - ii;
      for (jj=0; jj<NCV; ++jj)
        memcpy(pointer + jj*nRow, v + ii + jj*localSize, nRow*sizeof(double));
      callBLAS.GEMM('N', 'N', nRow, NCV, NCV, 1.0, pointer, nRow, zz, NCV,
                    0.0, Q.Values() + ii, localSize);
    }
    // Put the converged eigenpairs at the beginning
    knownEV = 0;
    for (ii=0; ii < NCV; ++ii) {
      if (normR[ii] < tolEigenSolve) {
        lambda[knownEV] = 1.0/dd[ii];
        memcpy(Q.Values()+knownEV*localSize, Q.Values()+ii*localSize, localSize*sizeof(double));
        knownEV += 1;
        if (knownEV == Q.NumVectors())
          break;
      }
    }   
    // Sort the eigenpairs
    if (knownEV > 0) {
      mySort.sortScalars_Vectors(knownEV, lambda, Q.Values(), localSize);
    }
    timePostProce += MyWatch.WallTime();
  } // if (info < 0)

  if (info == 0) {
    orthoOp = iparam[11-1];
  }

  delete[] wI;
  delete[] wD;
  delete[] wD2;
  if (vectWeight)
    delete vectWeight;

  return (info == 0) ? knownEV : info;

}
Ejemplo n.º 6
0
QRect MonitorSettings::geometry()
{
    return QRect(QPoint(xPos, yPos), currentSize());
}
Ejemplo n.º 7
0
qulonglong TrashSizeCache::size() const
{
    return currentSize( true );
}
Ejemplo n.º 8
0
void TrashSizeCache::initialize()
{
    // we call just currentSize here, as it does the initialization for us
    currentSize( true );
}