Ejemplo n.º 1
0
void CV_MinMaxHistTest::init_hist(int test_case_idx, int hist_i)
{
    int i, eq = 1;
    CvRNG* rng = ts->get_rng();
    CV_BaseHistTest::init_hist( test_case_idx, hist_i );

    for(;;)
    {
        for( i = 0; i < cdims; i++ )
        {
            min_idx0[i] = cvTsRandInt(rng) % dims[i];
            max_idx0[i] = cvTsRandInt(rng) % dims[i];
            eq &= min_idx0[i] == max_idx0[i];
        }
        if( !eq || total_size == 1 )
            break;
    }        

    min_val0 = (float)(-cvTsRandReal(rng)*10 - FLT_EPSILON);
    max_val0 = (float)(cvTsRandReal(rng)*10 + FLT_EPSILON + gen_hist_max_val);

    if( total_size == 1 )
        min_val0 = max_val0;

    cvSetRealND( hist[0]->bins, min_idx0, min_val0 );
    cvSetRealND( hist[0]->bins, max_idx0, max_val0 );
}
void CV_MHIBaseTest::get_test_array_types_and_sizes( int test_case_idx,
                                                CvSize** sizes, int** types )
{
    CvRNG* rng = ts->get_rng();
    CvArrTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );

    types[INPUT][0] = CV_8UC1;
    types[mhi_i][0] = types[mhi_ref_i][0] = CV_32FC1;
    duration = exp(cvTsRandReal(rng)*max_log_duration);
    timestamp = duration + cvTsRandReal(rng)*30.-10.;
}
void CV_MHIGradientTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types )
{
    CvRNG* rng = ts->get_rng();
    CV_MHIBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );

    types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_8UC1;
    types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_32FC1;
    delta1 = exp(cvTsRandReal(rng)*delta_range_log + 1.);
    delta2 = exp(cvTsRandReal(rng)*delta_range_log + 1.);
    aperture_size = (cvTsRandInt(rng)%3)*2+3;
    //duration = exp(cvTsRandReal(rng)*max_log_duration);
    //timestamp = duration + cvTsRandReal(rng)*30.-10.;
}
Ejemplo n.º 4
0
void CV_BaseHistTest::init_hist( int /*test_case_idx*/, int hist_i )
{
    if( gen_random_hist )
    {
        CvRNG* rng = ts->get_rng();
        CvArr* h = hist[hist_i]->bins;
        
        if( hist_type == CV_HIST_ARRAY )
        {
            cvRandArr( rng, h, CV_RAND_UNI,
                cvScalarAll(0), cvScalarAll(gen_hist_max_val) );
        }
        else
        {
            int i, j, total_size = 1, nz_count;
            int idx[CV_MAX_DIM];
            for( i = 0; i < cdims; i++ )
                total_size *= dims[i];

            nz_count = cvTsRandInt(rng) % MAX( total_size/4, 100 );
            nz_count = MIN( nz_count, total_size );

            // a zero number of non-zero elements should be allowed
            for( i = 0; i < nz_count; i++ )
            {
                for( j = 0; j < cdims; j++ )
                    idx[j] = cvTsRandInt(rng) % dims[j];
                cvSetRealND( h, idx, cvTsRandReal(rng)*gen_hist_max_val );
            }
        }
    }
}
Ejemplo n.º 5
0
void CV_BaseHistTest::get_hist_params( int /*test_case_idx*/ )
{
    CvRNG* rng = ts->get_rng();
    int i, max_dim_size, max_ni_dim_size = 31;
    double hist_size;

    cdims = cvTsRandInt(rng) % max_cdims + 1;
    hist_size = exp(cvTsRandReal(rng)*max_log_size*CV_LOG2);
    max_dim_size = cvRound(pow(hist_size,1./cdims));
    total_size = 1;
    uniform = cvTsRandInt(rng) % 2;
    hist_type = cvTsRandInt(rng) % 2 ? CV_HIST_SPARSE : CV_HIST_ARRAY; 
    
    for( i = 0; i < cdims; i++ )
    {
        dims[i] = cvTsRandInt(rng) % (max_dim_size + 2) + 2;
        if( !uniform )
            dims[i] = MIN(dims[i], max_ni_dim_size);    
        total_size *= dims[i];
    }

    img_type = cvTsRandInt(rng) % 2 ? CV_32F : CV_8U;
    img_size.width = cvRound( exp(cvRandReal(rng) * img_max_log_size*CV_LOG2) );
    img_size.height = cvRound( exp(cvRandReal(rng) * img_max_log_size*CV_LOG2) );

    low = cvTsMinVal(img_type);
    high = cvTsMaxVal(img_type);

    range_delta = (cvTsRandInt(rng) % 2)*(high-low)*0.05;
}
Ejemplo n.º 6
0
int CV_CalcBackProjectTest::prepare_test_case( int test_case_idx )
{
    int code = CV_BaseHistTest::prepare_test_case( test_case_idx );

    if( code > 0 )
    {
        CvRNG* rng = ts->get_rng();
        int i, j, n, img_len = img_size.width*img_size.height;

        for( i = 0; i < CV_MAX_DIM + 3; i++ )
        {
            if( i < cdims )
            {
                int nch = 1; //cvTsRandInt(rng) % 3 + 1;
                images[i] = cvCreateImage( img_size,
                    img_type == CV_8U ? IPL_DEPTH_8U : IPL_DEPTH_32F, nch );
                channels[i] = cvTsRandInt(rng) % nch;

                cvRandArr( rng, images[i], CV_RAND_UNI,
                    cvScalarAll(low), cvScalarAll(high) );
            }
            else if( i == CV_MAX_DIM && cvTsRandInt(rng) % 2 )
            {
                // create mask
                images[i] = cvCreateImage( img_size, IPL_DEPTH_8U, 1 );
                // make ~25% pixels in the mask non-zero
                cvRandArr( rng, images[i], CV_RAND_UNI,
                    cvScalarAll(-2), cvScalarAll(2) );
            }
            else if( i > CV_MAX_DIM )
            {
                images[i] = cvCreateImage( img_size, images[0]->depth, 1 );
            }
        }

        cvTsCalcHist( images, hist[0], images[CV_MAX_DIM], channels );

        // now modify the images a bit to add some zeros go to the backprojection
        n = cvTsRandInt(rng) % (img_len/20+1);
        for( i = 0; i < cdims; i++ )
        {
            char* data = images[i]->imageData;
            for( j = 0; j < n; j++ )
            {
                int idx = cvTsRandInt(rng) % img_len;
                double val = cvTsRandReal(rng)*(high - low) + low;
                
                if( img_type == CV_8U )
                    ((uchar*)data)[idx] = (uchar)cvRound(val);
                else
                    ((float*)data)[idx] = (float)val;
            }
        }
    }

    return code;
}
Ejemplo n.º 7
0
void CV_CannyTest::get_test_array_types_and_sizes( int test_case_idx,
                                                CvSize** sizes, int** types )
{
    CvRNG* rng = ts->get_rng();
    double thresh_range;

    CvArrTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
    types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_8U;

    aperture_size = cvTsRandInt(rng) % 2 ? 5 : 3;
    thresh_range = aperture_size == 3 ? 300 : 1000;

    threshold1 = cvTsRandReal(rng)*thresh_range;
    threshold2 = cvTsRandReal(rng)*thresh_range*0.3;

    if( cvTsRandInt(rng) % 2 )
        CV_SWAP( threshold1, threshold2, thresh_range );

    use_true_gradient = cvTsRandInt(rng) % 2;
}
Ejemplo n.º 8
0
void CV_ThreshTest::get_test_array_types_and_sizes( int test_case_idx,
                                                CvSize** sizes, int** types )
{
    CvRNG* rng = ts->get_rng();
    int depth = cvTsRandInt(rng) % 2, cn = cvTsRandInt(rng) % 4 + 1;
    CvArrTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
    depth = depth == 0 ? CV_8U : CV_32F;

    types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_MAKETYPE(depth,cn);
    thresh_type = cvTsRandInt(rng) % 5;

    if( depth == CV_8U )
    {
        thresh_val = (float)(cvTsRandReal(rng)*350. - 50.);
        max_val = (float)(cvTsRandReal(rng)*350. - 50.);
        if( cvTsRandInt(rng)%4 == 0 )
            max_val = 255;
    }
    else
    {
        thresh_val = (float)(cvTsRandReal(rng)*1000. - 500.);
        max_val = (float)(cvTsRandReal(rng)*1000. - 500.);
    }
}
void CV_MHIGlobalOrientTest::get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types )
{
    CvRNG* rng = ts->get_rng();
    CV_MHIBaseTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
    CvSize size = sizes[INPUT][0];

    size.width = MAX( size.width, 8 );
    size.height = MAX( size.height, 8 );
    sizes[INPUT][0] = sizes[INPUT][1] = sizes[INPUT][2] = size;

    types[INPUT][1] = CV_8UC1; // mask
    types[INPUT][2] = CV_32FC1; // orientation

    min_angle = cvTsRandReal(rng)*359.9;
    max_angle = cvTsRandReal(rng)*359.9;
    if( min_angle >= max_angle )
    {
        double t;
        CV_SWAP( min_angle, max_angle, t );
    }
    max_angle += 0.1;
    duration = exp(cvTsRandReal(rng)*max_log_duration);
    timestamp = duration + cvTsRandReal(rng)*30.-10.;
}
Ejemplo n.º 10
0
int CV_NormHistTest::prepare_test_case( int test_case_idx )
{
    int code = CV_BaseHistTest::prepare_test_case( test_case_idx );

    if( code > 0 )
    {
        CvRNG* rng = ts->get_rng();
        factor = cvTsRandReal(rng)*10 + 0.1;
        if( hist_type == CV_HIST_SPARSE &&
            ((CvSparseMat*)hist[0]->bins)->heap->active_count == 0 )
            factor = 0;
    }

    return code;
}
Ejemplo n.º 11
0
int CV_ThreshHistTest::prepare_test_case( int test_case_idx )
{
    int code = CV_BaseHistTest::prepare_test_case( test_case_idx );

    if( code > 0 )
    {
        CvRNG* rng = ts->get_rng();
        threshold = cvTsRandReal(rng)*gen_hist_max_val;

        if( hist_type == CV_HIST_ARRAY )
        {
            orig_nz_count = total_size;
            
            values = cvCreateMat( 1, total_size, CV_32F );
            memcpy( values->data.fl, cvPtr1D( hist[0]->bins, 0 ), total_size*sizeof(float) );
        }
        else
        {
            CvSparseMat* sparse = (CvSparseMat*)hist[0]->bins;
            CvSparseMatIterator iterator;
            CvSparseNode* node;
            int i, k;

            orig_nz_count = sparse->heap->active_count;

            values = cvCreateMat( 1, orig_nz_count+1, CV_32F );
            indices = cvCreateMat( 1, (orig_nz_count+1)*cdims, CV_32S );

            for( node = cvInitSparseMatIterator( sparse, &iterator ), i = 0;
                 node != 0; node = cvGetNextSparseNode( &iterator ), i++ )
            {
                 const int* idx = CV_NODE_IDX(sparse,node);
                     
                 OPENCV_ASSERT( i < orig_nz_count, "CV_ThreshHistTest::prepare_test_case", "Buffer overflow" );

                 values->data.fl[i] = *(float*)CV_NODE_VAL(sparse,node);
                 for( k = 0; k < cdims; k++ )
                     indices->data.i[i*cdims + k] = idx[k];
            }

            OPENCV_ASSERT( i == orig_nz_count, "Unmatched buffer size",
                "CV_ThreshHistTest::prepare_test_case" );
        }
    }

    return code;
}
Ejemplo n.º 12
0
void CV_POSITTest::run( int start_from )
{
    int code = CvTS::OK;

    /* fixed parameters output */
    /*float rot[3][3]={  0.49010f,  0.85057f, 0.19063f,
                      -0.56948f,  0.14671f, 0.80880f,
                       0.65997f, -0.50495f, 0.55629f };

    float trans[3] = { 0.0f, 0.0f, 40.02637f };
    */

    /* Some variables */
    int i, counter;

    CvTermCriteria criteria;
    CvPoint3D32f* obj_points;
    CvPoint2D32f* img_points;
    CvPOSITObject* object;

    float angleX, angleY, angleZ;
    CvRNG* rng = ts->get_rng();
    int progress = 0;

    CvMat* true_rotationX = cvCreateMat( 3, 3, CV_32F );
    CvMat* true_rotationY = cvCreateMat( 3, 3, CV_32F );
    CvMat* true_rotationZ = cvCreateMat( 3, 3, CV_32F );
    CvMat* tmp_matrix = cvCreateMat( 3, 3, CV_32F );
    CvMat* true_rotation = cvCreateMat( 3, 3, CV_32F );
    CvMat* rotation = cvCreateMat( 3, 3, CV_32F );
    CvMat* translation = cvCreateMat( 3, 1, CV_32F );
    CvMat* true_translation = cvCreateMat( 3, 1, CV_32F );

    const float flFocalLength = 760.f;
    const float flEpsilon = 0.1f;

    /* Initilization */
    criteria.type = CV_TERMCRIT_EPS|CV_TERMCRIT_ITER;
    criteria.epsilon = flEpsilon;
    criteria.max_iter = 10000;

    /* Allocating source arrays; */
    obj_points = (CvPoint3D32f*)cvAlloc( 8 * sizeof(CvPoint3D32f) );
    img_points = (CvPoint2D32f*)cvAlloc( 8 * sizeof(CvPoint2D32f) );

    /* Fill points arrays with values */

    /* cube model with edge size 10 */
    obj_points[0].x = 0;  obj_points[0].y = 0;  obj_points[0].z = 0;
    obj_points[1].x = 10; obj_points[1].y = 0;  obj_points[1].z = 0;
    obj_points[2].x = 10; obj_points[2].y = 10; obj_points[2].z = 0;
    obj_points[3].x = 0;  obj_points[3].y = 10; obj_points[3].z = 0;
    obj_points[4].x = 0;  obj_points[4].y = 0;  obj_points[4].z = 10;
    obj_points[5].x = 10; obj_points[5].y = 0;  obj_points[5].z = 10;
    obj_points[6].x = 10; obj_points[6].y = 10; obj_points[6].z = 10;
    obj_points[7].x = 0;  obj_points[7].y = 10; obj_points[7].z = 10;

    /* Loop for test some random object positions */
    for( counter = start_from; counter < test_case_count; counter++ )
    {
        ts->update_context( this, counter, true );
        progress = update_progress( progress, counter, test_case_count, 0 );
        
        /* set all rotation matrix to zero */
        cvZero( true_rotationX );
        cvZero( true_rotationY );
        cvZero( true_rotationZ );
        
        /* fill random rotation matrix */
        angleX = (float)(cvTsRandReal(rng)*2*CV_PI);
        angleY = (float)(cvTsRandReal(rng)*2*CV_PI);
        angleZ = (float)(cvTsRandReal(rng)*2*CV_PI);

        true_rotationX->data.fl[0 *3+ 0] = 1;
        true_rotationX->data.fl[1 *3+ 1] = (float)cos(angleX);
        true_rotationX->data.fl[2 *3+ 2] = true_rotationX->data.fl[1 *3+ 1];
        true_rotationX->data.fl[1 *3+ 2] = -(float)sin(angleX);
        true_rotationX->data.fl[2 *3+ 1] = -true_rotationX->data.fl[1 *3+ 2];

        true_rotationY->data.fl[1 *3+ 1] = 1;
        true_rotationY->data.fl[0 *3+ 0] = (float)cos(angleY);
        true_rotationY->data.fl[2 *3+ 2] = true_rotationY->data.fl[0 *3+ 0];
        true_rotationY->data.fl[0 *3+ 2] = -(float)sin(angleY);
        true_rotationY->data.fl[2 *3+ 0] = -true_rotationY->data.fl[0 *3+ 2];

        true_rotationZ->data.fl[2 *3+ 2] = 1;
        true_rotationZ->data.fl[0 *3+ 0] = (float)cos(angleZ);
        true_rotationZ->data.fl[1 *3+ 1] = true_rotationZ->data.fl[0 *3+ 0];
        true_rotationZ->data.fl[0 *3+ 1] = -(float)sin(angleZ);
        true_rotationZ->data.fl[1 *3+ 0] = -true_rotationZ->data.fl[0 *3+ 1];

        cvMatMul( true_rotationX, true_rotationY, tmp_matrix);
        cvMatMul( tmp_matrix, true_rotationZ, true_rotation);

        /* fill translation vector */
        true_translation->data.fl[2] = (float)(cvRandReal(rng)*(2*flFocalLength-40) + 40);
        true_translation->data.fl[0] = (float)((cvRandReal(rng)*2-1)*true_translation->data.fl[2]);
        true_translation->data.fl[1] = (float)((cvRandReal(rng)*2-1)*true_translation->data.fl[2]);

        /* calculate perspective projection */
        for ( i = 0; i < 8; i++ )
        {
            float vec[3];
            CvMat Vec = cvMat( 3, 1, CV_MAT32F, vec );
            CvMat Obj_point = cvMat( 3, 1, CV_MAT32F, &obj_points[i].x );

            cvMatMul( true_rotation, &Obj_point, &Vec );

            vec[0] += true_translation->data.fl[0];
            vec[1] += true_translation->data.fl[1];
            vec[2] += true_translation->data.fl[2];

            img_points[i].x = flFocalLength * vec[0] / vec[2];
            img_points[i].y = flFocalLength * vec[1] / vec[2];
        }

        /*img_points[0].x = 0 ; img_points[0].y =   0;
        img_points[1].x = 80; img_points[1].y = -93;
        img_points[2].x = 245;img_points[2].y =  -77;
        img_points[3].x = 185;img_points[3].y =  32;
        img_points[4].x = 32; img_points[4].y = 135;
        img_points[5].x = 99; img_points[5].y = 35;
        img_points[6].x = 247; img_points[6].y = 62;
        img_points[7].x = 195; img_points[7].y = 179;
        */

        object = cvCreatePOSITObject( obj_points, 8 );
        cvPOSIT( object, img_points, flFocalLength, criteria,
                 rotation->data.fl, translation->data.fl );
        cvReleasePOSITObject( &object );

        code = cvTsCmpEps2( ts, rotation, true_rotation, flEpsilon, false, "rotation matrix" );
        if( code < 0 )
            goto _exit_;

        code = cvTsCmpEps2( ts, translation, true_translation, flEpsilon, false, "translation vector" );
        if( code < 0 )
            goto _exit_;
    }

_exit_:

    cvFree( &obj_points );
    cvFree( &img_points );

    cvReleaseMat( &true_rotationX );
    cvReleaseMat( &true_rotationY );
    cvReleaseMat( &true_rotationZ );
    cvReleaseMat( &tmp_matrix );
    cvReleaseMat( &true_rotation );
    cvReleaseMat( &rotation );
    cvReleaseMat( &translation );
    cvReleaseMat( &true_translation );

    if( code < 0 )
        ts->set_failed_test_info( code );
}
Ejemplo n.º 13
0
int CV_CalcBackProjectPatchTest::prepare_test_case( int test_case_idx )
{
    int code = CV_BaseHistTest::prepare_test_case( test_case_idx );

    if( code > 0 )
    {
        CvRNG* rng = ts->get_rng();
        int i, j, n, img_len = img_size.width*img_size.height;

        patch_size.width = cvTsRandInt(rng) % img_size.width + 1;
        patch_size.height = cvTsRandInt(rng) % img_size.height + 1;
        patch_size.width = MIN( patch_size.width, 30 );
        patch_size.height = MIN( patch_size.height, 30 );

        factor = 1.;
        method = cvTsRandInt(rng) % CV_CompareHistTest::MAX_METHOD;

        for( i = 0; i < CV_MAX_DIM + 2; i++ )
        {
            if( i < cdims )
            {
                int nch = 1; //cvTsRandInt(rng) % 3 + 1;
                images[i] = cvCreateImage( img_size,
                    img_type == CV_8U ? IPL_DEPTH_8U : IPL_DEPTH_32F, nch );
                channels[i] = cvTsRandInt(rng) % nch;

                cvRandArr( rng, images[i], CV_RAND_UNI,
                    cvScalarAll(low), cvScalarAll(high) );
            }
            else if( i >= CV_MAX_DIM )
            {
                images[i] = cvCreateImage(
                    cvSize(img_size.width - patch_size.width + 1,
                           img_size.height - patch_size.height + 1),
                    IPL_DEPTH_32F, 1 );
            }
        }

        cvTsCalcHist( images, hist[0], 0, channels );
        cvNormalizeHist( hist[0], factor );

        // now modify the images a bit
        n = cvTsRandInt(rng) % (img_len/10+1);
        for( i = 0; i < cdims; i++ )
        {
            char* data = images[i]->imageData;
            for( j = 0; j < n; j++ )
            {
                int idx = cvTsRandInt(rng) % img_len;
                double val = cvTsRandReal(rng)*(high - low) + low;
                
                if( img_type == CV_8U )
                    ((uchar*)data)[idx] = (uchar)cvRound(val);
                else
                    ((float*)data)[idx] = (float)val;
            }
        }
    }

    return code;
}