Ejemplo n.º 1
0
//+====================================================================================
//
// Method: ShapeChanged
//
// Synopsis: Hit the Layout for the size you should be and ask your adorner for it to give
//           you your position based on this
//
//------------------------------------------------------------------------------------
void CFocusAdorner::ShapeChanged()
{
    Assert(_pView->IsInState(CView::VS_OPEN));
    Assert(_pElement);

    delete _pShape;
    _pShape = NULL;

    _fTopLeftValid = FALSE;

    CDocument* pDoc = _pView->Doc();
    CDocInfo dci(pDoc->_dci);
    CShape* pShape;

    if(_pElement->_etag==ETAG_DIV && DYNCAST(CDivElement, _pElement)->GetAAnofocusrect())
    {
        pShape = NULL;
    }
    else
    {
        _pElement->GetFocusShape(_iDivision, &dci, &pShape);
    }

    if(pShape)
    {
        CRect rc;

        pShape->GetBoundingRect(&rc);

        if(rc.IsEmpty())
        {
            delete pShape;
        }
        else
        {
            _pShape = pShape;
        }
    }
    
    EnsureDispNode();

    if(_pDispNode)
    {
        CRect rc;

        Assert(_pShape);

        _pShape->GetBoundingRect(&rc);
        _pDispNode->SetSize(rc.Size(), TRUE);
    }
}
Ejemplo n.º 2
0
void database_testDatacell()
{
	std::string data("Text");
	DBAbstraction::DataCell dc1(data.c_str());
	DBAbstraction::DataCell dc2("");

	dc2=dc1;
	ASSERT_EQUAL(data,dc2.getString());
	ASSERT_THROWS(dc2.getInt(), dbexception );
	ASSERT_THROWS(dc2.getBool(), dbexception );

	DBAbstraction::DataCell dci(1);
	ASSERT_EQUAL(1,dci.getInt());
	ASSERT_THROWS(dci.getString(), dbexception );

}
Ejemplo n.º 3
0
int Speculation_EnterJailMode(bool longRunningSpec)
{
    AppProcess_t* process = GetMyProcess();
    if (process != GetProcessByProcessorID(ProcessorID()))
    {
        Speculation_Restart(SPEC_GetSpeculationIDSelf_priv(), Kernel_SpecReturnCode_INVALID, &GetMyKThread()->Reg_State);
        return Kernel_SpecReturnCode_INVALID;
    }
    if(longRunningSpec)
    {
        uint64_t SpecPID;
        uint32_t ProcessOvercommit = 64 / GetMyAppState()->Active_Processes;
        if(ProcessOvercommit > 4) ProcessOvercommit = 4;
        vmm_getSpecPID(process->Tcoord, ProcessorThreadID() % ProcessOvercommit, &SpecPID);
        
        if(SpecPID)
        {
            mtspr(SPRN_PID, SpecPID);
            isync();
            
            // A2 does not reliably notify A2 of DCI
#if 0
            volatile uint64_t* pf_sys_p=(volatile uint64_t*)(SPEC_GetL1PBase_priv()+L1P_CFG_PF_SYS-L1P_ESR);
            uint64_t pf_sys=*pf_sys_p;
            *pf_sys_p=pf_sys | L1P_CFG_PF_SYS_pf_invalidate_all;
            *pf_sys_p=pf_sys & ~L1P_CFG_PF_SYS_pf_invalidate_all;
            dci();
#else
            asm volatile ("dci 2");
#endif
            ppc_msync();
        }
        else
        {
            Speculation_Restart(SPEC_GetSpeculationIDSelf_priv(), Kernel_SpecReturnCode_INVALID, &GetMyKThread()->Reg_State);
            return Kernel_SpecReturnCode_INVALID;
        }
    }
Ejemplo n.º 4
0
PClassifier TTreeSplitConstructor_ExhaustiveBinary::operator()(
                             PStringList &descriptions, PDiscDistribution &subsetSizes, float &quality, int &spentAttribute,

                             PExampleGenerator gen, const int &weightID ,
                             PDomainContingency dcont, PDistribution apriorClass,
                             const vector<bool> &candidates,
                             PClassifier
                            )
{ 
  checkProperty(measure);
  measure->checkClassTypeExc(gen->domain->classVar->varType);

  PIntList bestMapping;
  int wins, bestAttr;
  PVariable bvar;

  if (measure->needs==TMeasureAttribute::Generator) {
    bool cse = candidates.size()==0;
    bool haveCandidates = false;
    vector<bool> myCandidates;
    myCandidates.reserve(gen->domain->attributes->size());
    vector<bool>::const_iterator ci(candidates.begin()), ce(candidates.end());
    TVarList::const_iterator vi, ve(gen->domain->attributes->end());
    for(vi = gen->domain->attributes->begin(); vi != ve; vi++) {
      bool co = (*vi)->varType == TValue::INTVAR && (!cse || (ci!=ce) && *ci);
      myCandidates.push_back(co);
      haveCandidates = haveCandidates || co;
    }
    if (!haveCandidates)
      return returnNothing(descriptions, subsetSizes, quality, spentAttribute);

    PDistribution thisSubsets;
    float thisQuality;
    wins = 0;
    int thisAttr = 0;

    int N = gen->numberOfExamples();
    TSimpleRandomGenerator rgen(N);

    ci = myCandidates.begin();
    for(vi = gen->domain->attributes->begin(); vi != ve; ci++, vi++, thisAttr++) {
      if (*ci) {
        thisSubsets = NULL;
        PIntList thisMapping =
           /*throughCont ? measure->bestBinarization(thisSubsets, thisQuality, *dci, dcont->classes, apriorClass, minSubset)
                       : */measure->bestBinarization(thisSubsets, thisQuality, *vi, gen, apriorClass, weightID, minSubset);
          if (thisMapping
                && (   (!wins || (thisQuality>quality)) && ((wins=1)==1)
                    || (thisQuality==quality) && rgen.randbool(++wins))) {
            bestAttr = thisAttr;
            quality = thisQuality;
            subsetSizes = thisSubsets;
            bestMapping = thisMapping;
          }
      }
      /*if (thoughCont)
        dci++; */
    }
  
    if (!wins)
      return returnNothing(descriptions, subsetSizes, quality, spentAttribute);

    if (quality<worstAcceptable)
      return returnNothing(descriptions, subsetSizes, spentAttribute);

    if (subsetSizes && subsetSizes->variable)
      bvar = subsetSizes->variable;
    else {
      TEnumVariable *evar = mlnew TEnumVariable("");
      evar->addValue("0");
      evar->addValue("1");
      bvar = evar;
    }
  }
  
  else {
    bool cse = candidates.size()==0;
    if (!cse && noCandidates(candidates))
      return returnNothing(descriptions, subsetSizes, quality, spentAttribute);

    if (!dcont || dcont->classIsOuter) {
      dcont = PDomainContingency(mlnew TDomainContingency(gen, weightID));
//      raiseWarningWho("TreeSplitConstructor_ExhaustiveBinary", "this class is not optimized for 'candidates' list and can be very slow");
    }

    int N = gen ? gen->numberOfExamples() : -1;
    if (N<0)
      N = dcont->classes->cases;
    TSimpleRandomGenerator rgen(N);

    PDistribution classDistribution = dcont->classes;

    vector<bool>::const_iterator ci(candidates.begin()), ce(candidates.end());

    TDiscDistribution *dis0, *dis1;
    TContDistribution *con0, *con1;

    int thisAttr = 0;
    bestAttr = -1;
    wins = 0;
    quality = 0.0;
    float leftExamples, rightExamples;

    TDomainContingency::iterator dci(dcont->begin()), dce(dcont->end());
    for(; (cse || (ci!=ce)) && (dci!=dce); dci++, thisAttr++) {

      // We consider the attribute only if it is a candidate, discrete and has at least two values
      if ((cse || *(ci++)) && ((*dci)->outerVariable->varType==TValue::INTVAR) && ((*dci)->discrete->size()>=2)) {

        const TDistributionVector &distr = *(*dci)->discrete;

        if (distr.size()>16)
          raiseError("'%s' has more than 16 values, cannot exhaustively binarize", gen->domain->attributes->at(thisAttr)->get_name().c_str());

        // If the attribute is binary, we check subsetSizes and assess the quality if they are OK
        if (distr.size()==2) {
          if ((distr.front()->abs<minSubset) || (distr.back()->abs<minSubset))
            continue; // next attribute
          else {
            float thisMeas = measure->call(thisAttr, dcont, apriorClass);
            if (   ((!wins || (thisMeas>quality)) && ((wins=1)==1))
                || ((thisMeas==quality) && rgen.randbool(++wins))) {
              bestAttr = thisAttr;
              quality = thisMeas;
              leftExamples = distr.front()->abs;
              rightExamples = distr.back()->abs;
              bestMapping = mlnew TIntList(2, 0);
              bestMapping->at(1) = 1;
            }
            continue;
          }
        }

        vector<int> valueIndices;
        int ind = 0;
        for(TDistributionVector::const_iterator dvi(distr.begin()), dve(distr.end()); (dvi!=dve); dvi++, ind++)
          if ((*dvi)->abs>0)
            valueIndices.push_back(ind);

        if (valueIndices.size()<2)
          continue;

        PContingency cont = prepareBinaryCheat(classDistribution, *dci, bvar, dis0, dis1, con0, con1);

        // A real job: go through all splits
        int binWins = 0;
        float binQuality = -1.0;
        float binLeftExamples = -1.0, binRightExamples = -1.0;
        // Selection: each element correspons to a value of the original attribute and is 1, if the value goes right
        // The first value always goes left (and has no corresponding bit in selection.
        TBoolCount selection(valueIndices.size()-1), bestSelection(0);

        // First for discrete classes
        if (dis0) {
          do {
            *dis0 = CAST_TO_DISCDISTRIBUTION(distr[valueIndices[0]]);
            *dis1 *= 0;
            vector<int>::const_iterator ii(valueIndices.begin());
            ii++;
            for(TBoolCount::const_iterator bi(selection.begin()), be(selection.end()); bi!=be; bi++, ii++)
               *(*bi ? dis1 : dis0) += distr[*ii];
            cont->outerDistribution->setint(0, dis0->abs);
            cont->outerDistribution->setint(1, dis1->abs);

            if ((dis0->abs < minSubset) || (dis1->abs < minSubset))
              continue; // cannot split like that, to few examples in one of the branches

            float thisMeas = measure->operator()(cont, classDistribution, apriorClass);
            if (   ((!binWins) || (thisMeas>binQuality)) && ((binWins=1) ==1)
                || (thisMeas==binQuality) && rgen.randbool(++binWins)) {
              bestSelection = selection; 
              binQuality = thisMeas;
              binLeftExamples = dis0->abs;
              binRightExamples = dis1->abs;
            }
          } while (selection.next());
        }

        // And then exactly the same for continuous classes
        else {
          do {
            *con0 = CAST_TO_CONTDISTRIBUTION(distr[0]);
            *con1 = TContDistribution();
            vector<int>::const_iterator ii(valueIndices.begin());
            for(TBoolCount::const_iterator bi(selection.begin()), be(selection.end()); bi!=be; bi++, ii++)
               *(*bi ? con1 : con0) += distr[*ii];

            if ((con0->abs<minSubset) || (con1->abs<minSubset))
              continue; // cannot split like that, to few examples in one of the branches

            float thisMeas = measure->operator()(cont, classDistribution, apriorClass);
            if (   ((!binWins) || (thisMeas>binQuality)) && ((binWins=1) ==1)
                || (thisMeas==binQuality) && rgen.randbool(++binWins)) {
              bestSelection = selection; 
              binQuality = thisMeas;
              binLeftExamples = con0->abs;
              binRightExamples = con1->abs;
            }
          } while (selection.next());
        }

        if (       binWins
            && (   (!wins || (binQuality>quality)) && ((wins=1)==1)
                || (binQuality==quality) && rgen.randbool(++wins))) {
          bestAttr = thisAttr;
          quality = binQuality;
          leftExamples = binLeftExamples;
          rightExamples = binRightExamples;
          bestMapping = mlnew TIntList(distr.size(), -1);
          vector<int>::const_iterator ii = valueIndices.begin();
          bestMapping->at(*(ii++)) = 0;
          ITERATE(TBoolCount, bi, bestSelection)
            bestMapping->at(*(ii++)) = *bi ? 1 : 0;
        }
      }
    }
 

    if (!wins)
      return returnNothing(descriptions, subsetSizes, quality, spentAttribute);

    subsetSizes = mlnew TDiscDistribution();
    subsetSizes->addint(0, leftExamples);
    subsetSizes->addint(1, rightExamples);
  }

  PVariable attribute = gen->domain->attributes->at(bestAttr);

  if (attribute->noOfValues() == 2) {
    spentAttribute = bestAttr;
    descriptions = mlnew TStringList(attribute.AS(TEnumVariable)->values.getReference());
    TClassifierFromVarFD *cfv = mlnew TClassifierFromVarFD(attribute, gen->domain, bestAttr, subsetSizes);
    cfv->transformUnknowns = false;
    return cfv;
  }

  string s0, s1;
  int ns0 = 0, ns1 = 0;
  TValue ev;
  attribute->firstValue(ev);
  PITERATE(TIntList, mi, bestMapping) {
    string str;
    attribute->val2str(ev, str);
    if (*mi==1) {
      s1 += string(ns1 ? ", " : "") + str;
      ns1++;
    }
    else if (*mi==0) {
      s0 += string(ns0 ? ", " : "") + str;
      ns0++;
    }

    attribute->nextValue(ev);
  }
Ejemplo n.º 5
0
PClassifier TTreeSplitConstructor_Attribute::operator()(
                             PStringList &descriptions, PDiscDistribution &subsetSizes, float &quality, int &spentAttribute,

                             PExampleGenerator gen, const int &weightID,
                             PDomainContingency dcont, PDistribution apriorClass,
                             const vector<bool> &candidates,
                             PClassifier nodeClassifier
                            )
{ checkProperty(measure);

  measure->checkClassTypeExc(gen->domain->classVar->varType);

  bool cse = candidates.size()==0;
  vector<bool>::const_iterator ci(candidates.begin()), ce(candidates.end());
  if (!cse) {
    if (noCandidates(candidates))
      return returnNothing(descriptions, subsetSizes, quality, spentAttribute);

    ci = candidates.begin();
  }

  int N = gen ? gen->numberOfExamples() : -1;
  if (N<0)
    N = dcont->classes->cases;
  TSimpleRandomGenerator rgen(N);

  int thisAttr = 0, bestAttr = -1, wins = 0;
  quality = 0.0;

  if (measure->needs == TMeasureAttribute::Contingency_Class) {
    vector<bool> myCandidates;
    if (cse) {
      myCandidates.reserve(gen->domain->attributes->size());
      PITERATE(TVarList, vi, gen->domain->attributes)
        myCandidates.push_back((*vi)->varType == TValue::INTVAR);
    }
    else {
      myCandidates.reserve(candidates.size());
      TVarList::const_iterator vi(gen->domain->attributes->begin());
      for(; ci != ce; ci++, vi++)
        myCandidates.push_back(*ci && ((*vi)->varType == TValue::INTVAR));
    }

    if (!dcont || dcont->classIsOuter)
      dcont = PDomainContingency(mlnew TDomainContingency(gen, weightID, myCandidates));

    ci = myCandidates.begin();
    ce = myCandidates.end();
    TDomainContingency::iterator dci(dcont->begin()), dce(dcont->end());
    for(; (ci != ce) && (dci!=dce); dci++, ci++, thisAttr++)
      if (*ci && checkDistribution((const TDiscDistribution &)((*dci)->outerDistribution.getReference()), minSubset)) {
        float thisMeas = measure->call(thisAttr, dcont, apriorClass);

        if (   ((!wins || (thisMeas>quality)) && ((wins=1)==1))
            || ((thisMeas==quality) && rgen.randbool(++wins))) {
          quality = thisMeas;
          subsetSizes = (*dci)->outerDistribution;
          bestAttr = thisAttr;
        }
      }
  }

  else if (measure->needs == TMeasureAttribute::DomainContingency) {
    if (!dcont || dcont->classIsOuter)
      dcont = PDomainContingency(mlnew TDomainContingency(gen, weightID));

    TDomainContingency::iterator dci(dcont->begin()), dce(dcont->end());
    for(; (cse || (ci!=ce)) && (dci!=dce); dci++, thisAttr++)
      if (    (cse || *(ci++))
           && ((*dci)->outerVariable->varType==TValue::INTVAR)
           && checkDistribution((const TDiscDistribution &)((*dci)->outerDistribution.getReference()), minSubset)) {
        float thisMeas = measure->call(thisAttr, dcont, apriorClass);

        if (   ((!wins || (thisMeas>quality)) && ((wins=1)==1))
            || ((thisMeas==quality) && rgen.randbool(++wins))) {
          quality = thisMeas;
          subsetSizes = (*dci)->outerDistribution;
          bestAttr = thisAttr;
        }
      }
  }

  else {
    TDomainDistributions ddist(gen, weightID);

    TDomainDistributions::iterator ddi(ddist.begin()), dde(ddist.end()-1);
    for(; (cse || (ci!=ce)) && (ddi!=dde); ddi++, thisAttr++)
      if (cse || *(ci++)) {
        TDiscDistribution *discdist = (*ddi).AS(TDiscDistribution);
        if (discdist && checkDistribution(*discdist, minSubset)) {
          float thisMeas = measure->call(thisAttr, gen, apriorClass, weightID);

          if (   ((!wins || (thisMeas>quality)) && ((wins=1)==1))
              || ((thisMeas==quality) && rgen.randbool(++wins))) {
            quality = thisMeas;
            subsetSizes = PDiscDistribution(*ddi); // not discdist - this would be double wrapping!
            bestAttr = thisAttr;
          }
        }
      }
    
  }

  if (!wins)
    return returnNothing(descriptions, subsetSizes, quality, spentAttribute);

  if (quality<worstAcceptable)
    return returnNothing(descriptions, subsetSizes, spentAttribute);

  PVariable attribute = gen->domain->attributes->at(bestAttr);
  TEnumVariable *evar = attribute.AS(TEnumVariable);
  if (evar)
    descriptions = mlnew TStringList(evar->values.getReference());
  else
    descriptions = mlnew TStringList(subsetSizes->size(), "");

  spentAttribute = bestAttr;

  TClassifierFromVarFD *cfv = mlnew TClassifierFromVarFD(attribute, gen->domain, bestAttr, subsetSizes);
  cfv->transformUnknowns = false;
  return cfv;
}
void GraphicsImageCanvas::OnPaint (wxPaintEvent& event)
{
	wxAlphaPixelData data (*image);
	if (!data) {
		wxLogError (wxT ("Failed to gain access to raw bitmap data"));
		event.Skip();
		return;
	}

	wxAlphaPixelData::Iterator p (data);

	p.Offset (data, 0, 0); // no offset

	// Finding the maximum
	int max = 0;
	for (int ii = 0; ii < length; ii++) {
		if (max < imageData[ii]) {
			max = imageData[ii];
		}
	}

	for (int y = 0; y < height; ++y) {
		wxAlphaPixelData::Iterator rowStart = p;

		//for (int x = 0; x < width; ++x, ++p) {
		for (int x = (width - 1); x >= 0; --x, ++p) {
			p.Red() = ( (this->imageData[ (y * width) + x]) /max) * 255;
			p.Green() = ( (this->imageData[ (y * width) + x]) /max) * 255;
			p.Blue() = ( (this->imageData[ (y * width) + x]) /max) * 255;
		}
		p = rowStart;
		p.OffsetY (data, 1);
	}

	wxBufferedPaintDC dci (this);

	// Find the image scale factor and center the image.
	double scaleW = ( (double) image->GetWidth() / (double) (GetClientSize()).GetWidth());
	double scaleH = ( (double) image->GetHeight() / (double) (GetClientSize()).GetHeight());
	double scaleImage = 1;

	if (scaleW > scaleH) {
		scaleImage = scaleW;
	} else {
		scaleImage = scaleH;
	}

	// The commented out code worked in xp but not osx
	//SetSize(width/scaleImage, height/scaleImage);
	//dci.DrawBitmap (*this->image, 0, 0, true);
	//dci.SetUserScale (scaleImage, scaleImage);
	//if (NULL != fullscreen){
	//	CentreOnParent();
	//}

	wxImage displayImage = image->ConvertToImage();

	displayImage = displayImage.Scale (displayImage.GetWidth() /scaleImage, displayImage.GetHeight() /scaleImage);

	int cw = (GetClientSize()).GetWidth();
	int ch = (GetClientSize()).GetHeight();
	int pw = ( (cw - displayImage.GetWidth()) /2);
	int ph = ( (ch - displayImage.GetHeight()) /2);
	displayImage = displayImage.Size (wxSize (cw, ch), wxPoint (pw, ph), 0, 0, 0);

	wxBitmap tmpBitmap = wxBitmap (displayImage);
	dci.DrawBitmap (tmpBitmap, 0, 0, true);
}