Ejemplo n.º 1
0
	bool CCGrabber::Initialize(ID3D11Device* device, CCTexture2D *pTexture)
	{
		HRESULT result;
		D3D11_RENDER_TARGET_VIEW_DESC renderTargetViewDesc;

		ID3D11ShaderResourceView* tmpShaderResourceView=pTexture->getTextureResource();
		ID3D11Resource* tmpResource;
		tmpShaderResourceView->GetResource(&tmpResource);

		D3D11_TEXTURE2D_DESC pDesc;
		((ID3D11Texture2D*)tmpResource)->GetDesc(&pDesc);
		// Setup the description of the render target view.
		renderTargetViewDesc.Format = pDesc.Format;//textureDesc.Format;
		renderTargetViewDesc.ViewDimension = D3D11_RTV_DIMENSION_TEXTURE2D;
		renderTargetViewDesc.Texture2D.MipSlice = 0;

		// Create the render target view.
		result = device->CreateRenderTargetView(tmpResource, &renderTargetViewDesc, &m_renderTargetView);

		if(FAILED(result))
		{
			return false;
		}
		CD3D11_TEXTURE2D_DESC depthStencilDesc(
			DXGI_FORMAT_D24_UNORM_S8_UINT,
			pDesc.Width,
			pDesc.Height,
			1,
			1,
			D3D11_BIND_DEPTH_STENCIL
        );
		result = device->CreateTexture2D(
            &depthStencilDesc,
            nullptr,
            &m_depthStencil
            );
		if (FAILED(result)) {
			return false;
        }
		result = device->CreateDepthStencilView(m_depthStencil, 
				&CD3D11_DEPTH_STENCIL_VIEW_DESC(D3D11_DSV_DIMENSION_TEXTURE2D), 
				&m_depthStencilView );
		if(FAILED(result)) {
			return false;
		}
		return true;
	}
Ejemplo n.º 2
0
void Depth2D::InternalConstruct(ID3D11Device* d3dDevice,
                                int width, int height,
                                UINT bindFlags, int arraySize,
                                int sampleCount, int sampleQuality,
                                D3D11_DSV_DIMENSION dsvDimension,
                                D3D11_SRV_DIMENSION srvDimension,
                                bool stencil)
{
    // Initalize
    mShaderResource = 0;

    CD3D11_TEXTURE2D_DESC desc(
        stencil ? DXGI_FORMAT_R32G8X24_TYPELESS : DXGI_FORMAT_R32_TYPELESS,
        width, height, arraySize, 1,
        bindFlags,
        D3D11_USAGE_DEFAULT, 0,
        sampleCount, sampleQuality);

    d3dDevice->CreateTexture2D(&desc, 0, &mTexture);

    if (bindFlags & D3D11_BIND_DEPTH_STENCIL) {
        for (int i = 0; i < arraySize; ++i) {
            CD3D11_DEPTH_STENCIL_VIEW_DESC depthStencilDesc(
                dsvDimension,
                stencil ? DXGI_FORMAT_D32_FLOAT_S8X24_UINT : DXGI_FORMAT_D32_FLOAT,
                0,          // Mips
                i, 1        // Array
            );

            ID3D11DepthStencilView* depthStencilView;
            d3dDevice->CreateDepthStencilView(mTexture, &depthStencilDesc, &depthStencilView);
            mDepthStencilElements.push_back(depthStencilView);
        }
    }

    if (bindFlags & D3D11_BIND_SHADER_RESOURCE) {
        CD3D11_SHADER_RESOURCE_VIEW_DESC shaderResourceDesc(
            srvDimension,
            stencil ? DXGI_FORMAT_R32_FLOAT_X8X24_TYPELESS : DXGI_FORMAT_R32_FLOAT,
            0, 1,           // Mips
            0, arraySize    // Array
        );

        d3dDevice->CreateShaderResourceView(mTexture, &shaderResourceDesc, &mShaderResource);
    }
}
Ejemplo n.º 3
0
        std::shared_ptr<GraphicsPipelineState> Device::createGraphicsPipelineState(const GraphicsPipelineStateParams& params)
        {
            ID3D11VertexShader* vertexShader = nullptr;
            if (SUCCEEDED(m_device->CreateVertexShader(params.m_vsParams.m_shaderBytecode, params.m_vsParams.m_bytecodeLength, nullptr, &vertexShader)))
            {
                ID3D11ShaderReflection* vertexShaderReflector = nullptr;
                if (SUCCEEDED(D3DReflect(params.m_vsParams.m_shaderBytecode, params.m_vsParams.m_bytecodeLength, IID_ID3D11ShaderReflection, (void**)&vertexShaderReflector)))
                {
                    ID3D11PixelShader* pixelShader = nullptr;
                    if (SUCCEEDED(m_device->CreatePixelShader(params.m_psParams.m_shaderBytecode, params.m_psParams.m_bytecodeLength, nullptr, &pixelShader)))
                    {
                        ID3D11ShaderReflection* pixelShaderReflector = nullptr;
                        if (SUCCEEDED(D3DReflect(params.m_psParams.m_shaderBytecode, params.m_psParams.m_bytecodeLength, IID_ID3D11ShaderReflection, (void**)&pixelShaderReflector)))
                        {
                            CD3D11_DEPTH_STENCIL_DESC depthStencilDesc(D3D11_DEFAULT);
                            depthStencilDesc.DepthEnable = params.m_depthStencilParams.m_depthEnable;

                            ID3D11DepthStencilState* depthStencilState = nullptr;
                            if (SUCCEEDED(m_device->CreateDepthStencilState(&depthStencilDesc, &depthStencilState)))
                            {
                                D3D11_INPUT_ELEMENT_DESC layout[] =
                                {
                                    { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
                                    { "NORMAL", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 },
                                    { "TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 24, D3D11_INPUT_PER_VERTEX_DATA, 0 },
                                };
                                ID3D11InputLayout* inputLayout = nullptr;
                                if (SUCCEEDED(m_device->CreateInputLayout(layout, ARRAYSIZE(layout), params.m_vsParams.m_shaderBytecode, params.m_vsParams.m_bytecodeLength, &inputLayout)))
                                {
                                    return std::make_shared<GraphicsPipelineState>(vertexShader, vertexShaderReflector, pixelShader, pixelShaderReflector, depthStencilState, params.m_stencilRef, inputLayout, params.m_primitiveTopologyType);
                                }
                                depthStencilState->Release();
                            }
                            pixelShaderReflector->Release();
                        }
                        pixelShader->Release();
                    }
                    vertexShaderReflector->Release();
                }
                vertexShader->Release();
            }
            return nullptr;
        }
// Load the sample assets.
void D3D12Multithreading::LoadAssets()
{
	// Create the root signature.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[4]; // Perfomance TIP: Order from most frequent to least frequent.
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 2, 1);		// 2 frequently changed diffuse + normal textures - using registers t1 and t2.
		ranges[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0);		// 1 frequently changed constant buffer.
		ranges[2].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);		// 1 infrequently changed shadow texture - starting in register t0.
		ranges[3].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SAMPLER, 2, 0);	// 2 static samplers.

		CD3DX12_ROOT_PARAMETER rootParameters[4];
		rootParameters[0].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_PIXEL);
		rootParameters[1].InitAsDescriptorTable(1, &ranges[1], D3D12_SHADER_VISIBILITY_ALL);
		rootParameters[2].InitAsDescriptorTable(1, &ranges[2], D3D12_SHADER_VISIBILITY_PIXEL);
		rootParameters[3].InitAsDescriptorTable(1, &ranges[3], D3D12_SHADER_VISIBILITY_PIXEL);

		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters), rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));
	}

	// Create the pipeline state, which includes loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;

#ifdef _DEBUG
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = D3DCOMPILE_OPTIMIZATION_LEVEL3;
#endif

		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "VSMain", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"shaders.hlsl").c_str(), nullptr, nullptr, "PSMain", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));

		D3D12_INPUT_LAYOUT_DESC inputLayoutDesc;
		inputLayoutDesc.pInputElementDescs = SampleAssets::StandardVertexDescription;
		inputLayoutDesc.NumElements = _countof(SampleAssets::StandardVertexDescription);

		CD3DX12_DEPTH_STENCIL_DESC depthStencilDesc(D3D12_DEFAULT);
		depthStencilDesc.DepthEnable = true;
		depthStencilDesc.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ALL;
		depthStencilDesc.DepthFunc = D3D12_COMPARISON_FUNC_LESS_EQUAL;
		depthStencilDesc.StencilEnable = FALSE;

		// Describe and create the PSO for rendering the scene.
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = inputLayoutDesc;
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = { reinterpret_cast<UINT8*>(vertexShader->GetBufferPointer()), vertexShader->GetBufferSize() };
		psoDesc.PS = { reinterpret_cast<UINT8*>(pixelShader->GetBufferPointer()), pixelShader->GetBufferSize() };
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = CD3DX12_BLEND_DESC(D3D12_DEFAULT);
		psoDesc.DepthStencilState = depthStencilDesc;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));

		// Alter the description and create the PSO for rendering
		// the shadow map.  The shadow map does not use a pixel
		// shader or render targets.
		psoDesc.PS.pShaderBytecode = 0;
		psoDesc.PS.BytecodeLength = 0;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_UNKNOWN;
		psoDesc.NumRenderTargets = 0;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineStateShadowMap)));
	}

	// Create temporary command list for initial GPU setup.
	ComPtr<ID3D12GraphicsCommandList> commandList;
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS(&commandList)));

	// Create render target views (RTVs).
	CD3DX12_CPU_DESCRIPTOR_HANDLE rtvHandle(m_rtvHeap->GetCPUDescriptorHandleForHeapStart());
	for (UINT i = 0; i < FrameCount; i++)
	{
		ThrowIfFailed(m_swapChain->GetBuffer(i, IID_PPV_ARGS(&m_renderTargets[i])));
		m_device->CreateRenderTargetView(m_renderTargets[i].Get(), nullptr, rtvHandle);
		rtvHandle.Offset(1, m_rtvDescriptorSize);
	}

	// Create the depth stencil.
	{
		CD3DX12_RESOURCE_DESC shadowTextureDesc(
			D3D12_RESOURCE_DIMENSION_TEXTURE2D,
			0,
			static_cast<UINT>(m_viewport.Width), 
			static_cast<UINT>(m_viewport.Height), 
			1,
			1,
			DXGI_FORMAT_D32_FLOAT,
			1, 
			0,
			D3D12_TEXTURE_LAYOUT_UNKNOWN,
			D3D12_RESOURCE_FLAG_ALLOW_DEPTH_STENCIL | D3D12_RESOURCE_FLAG_DENY_SHADER_RESOURCE);

		D3D12_CLEAR_VALUE clearValue;	// Performance tip: Tell the runtime at resource creation the desired clear value.
		clearValue.Format = DXGI_FORMAT_D32_FLOAT;
		clearValue.DepthStencil.Depth = 1.0f;
		clearValue.DepthStencil.Stencil = 0;

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&shadowTextureDesc,
			D3D12_RESOURCE_STATE_DEPTH_WRITE,
			&clearValue,
			IID_PPV_ARGS(&m_depthStencil)));

		// Create the depth stencil view.
		m_device->CreateDepthStencilView(m_depthStencil.Get(), nullptr, m_dsvHeap->GetCPUDescriptorHandleForHeapStart());
	}

	// Load scene assets.
	UINT fileSize = 0;
	UINT8* pAssetData;
	ThrowIfFailed(ReadDataFromFile(GetAssetFullPath(SampleAssets::DataFileName).c_str(), &pAssetData, &fileSize));

	// Create the vertex buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::VertexDataSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_vertexBuffer)));

		{
			ThrowIfFailed(m_device->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::VertexDataSize),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&m_vertexBufferUpload)));

			// Copy data to the upload heap and then schedule a copy 
			// from the upload heap to the vertex buffer.
			D3D12_SUBRESOURCE_DATA vertexData = {};
			vertexData.pData = pAssetData + SampleAssets::VertexDataOffset;
			vertexData.RowPitch = SampleAssets::VertexDataSize;
			vertexData.SlicePitch = vertexData.RowPitch;

			PIXBeginEvent(commandList.Get(), 0, L"Copy vertex buffer data to default resource...");

			UpdateSubresources<1>(commandList.Get(), m_vertexBuffer.Get(), m_vertexBufferUpload.Get(), 0, 0, 1, &vertexData);
			commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));

			PIXEndEvent(commandList.Get());
		}

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.SizeInBytes = SampleAssets::VertexDataSize;
		m_vertexBufferView.StrideInBytes = SampleAssets::StandardVertexStride;
	}

	// Create the index buffer.
	{
		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::IndexDataSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_indexBuffer)));

		{
			ThrowIfFailed(m_device->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
				D3D12_HEAP_FLAG_NONE,
				&CD3DX12_RESOURCE_DESC::Buffer(SampleAssets::IndexDataSize),
				D3D12_RESOURCE_STATE_GENERIC_READ,
				nullptr,
				IID_PPV_ARGS(&m_indexBufferUpload)));

			// Copy data to the upload heap and then schedule a copy 
			// from the upload heap to the index buffer.
			D3D12_SUBRESOURCE_DATA indexData = {};
			indexData.pData = pAssetData + SampleAssets::IndexDataOffset;
			indexData.RowPitch = SampleAssets::IndexDataSize;
			indexData.SlicePitch = indexData.RowPitch;

			PIXBeginEvent(commandList.Get(), 0, L"Copy index buffer data to default resource...");

			UpdateSubresources<1>(commandList.Get(), m_indexBuffer.Get(), m_indexBufferUpload.Get(), 0, 0, 1, &indexData);
			commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_indexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_INDEX_BUFFER));

			PIXEndEvent(commandList.Get());
		}

		// Initialize the index buffer view.
		m_indexBufferView.BufferLocation = m_indexBuffer->GetGPUVirtualAddress();
		m_indexBufferView.SizeInBytes = SampleAssets::IndexDataSize;
		m_indexBufferView.Format = SampleAssets::StandardIndexFormat;
	}

	// Create shader resources.
	{
		// Get the CBV SRV descriptor size for the current device.
		const UINT cbvSrvDescriptorSize = m_device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_CBV_SRV_UAV);

		// Get a handle to the start of the descriptor heap.
		CD3DX12_CPU_DESCRIPTOR_HANDLE cbvSrvHandle(m_cbvSrvHeap->GetCPUDescriptorHandleForHeapStart());

		{
			// Describe and create 2 null SRVs. Null descriptors are needed in order 
			// to achieve the effect of an "unbound" resource.
			D3D12_SHADER_RESOURCE_VIEW_DESC nullSrvDesc = {};
			nullSrvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
			nullSrvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
			nullSrvDesc.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
			nullSrvDesc.Texture2D.MipLevels = 1;
			nullSrvDesc.Texture2D.MostDetailedMip = 0;
			nullSrvDesc.Texture2D.ResourceMinLODClamp = 0.0f;

			m_device->CreateShaderResourceView(nullptr, &nullSrvDesc, cbvSrvHandle);
			cbvSrvHandle.Offset(cbvSrvDescriptorSize);

			m_device->CreateShaderResourceView(nullptr, &nullSrvDesc, cbvSrvHandle);
			cbvSrvHandle.Offset(cbvSrvDescriptorSize);
		}

		// Create each texture and SRV descriptor.
		const UINT srvCount = _countof(SampleAssets::Textures);
		PIXBeginEvent(commandList.Get(), 0, L"Copy diffuse and normal texture data to default resources...");
		for (int i = 0; i < srvCount; i++)
		{
			// Describe and create a Texture2D.
			const SampleAssets::TextureResource &tex = SampleAssets::Textures[i];
			CD3DX12_RESOURCE_DESC texDesc(
				D3D12_RESOURCE_DIMENSION_TEXTURE2D,
				0,
				tex.Width, 
				tex.Height, 
				1,
				static_cast<UINT16>(tex.MipLevels),
				tex.Format,
				1, 
				0,
				D3D12_TEXTURE_LAYOUT_UNKNOWN,
				D3D12_RESOURCE_FLAG_NONE);

			ThrowIfFailed(m_device->CreateCommittedResource(
				&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
				D3D12_HEAP_FLAG_NONE,
				&texDesc,
				D3D12_RESOURCE_STATE_COPY_DEST,
				nullptr,
				IID_PPV_ARGS(&m_textures[i])));

			{
				const UINT subresourceCount = texDesc.DepthOrArraySize * texDesc.MipLevels;
				UINT64 uploadBufferSize = GetRequiredIntermediateSize(m_textures[i].Get(), 0, subresourceCount);
				ThrowIfFailed(m_device->CreateCommittedResource(
					&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
					D3D12_HEAP_FLAG_NONE,
					&CD3DX12_RESOURCE_DESC::Buffer(uploadBufferSize),
					D3D12_RESOURCE_STATE_GENERIC_READ,
					nullptr,
					IID_PPV_ARGS(&m_textureUploads[i])));

				// Copy data to the intermediate upload heap and then schedule a copy 
				// from the upload heap to the Texture2D.
				D3D12_SUBRESOURCE_DATA textureData = {};
				textureData.pData = pAssetData + tex.Data->Offset;
				textureData.RowPitch = tex.Data->Pitch;
				textureData.SlicePitch = tex.Data->Size;

				UpdateSubresources(commandList.Get(), m_textures[i].Get(), m_textureUploads[i].Get(), 0, 0, subresourceCount, &textureData);
				commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_textures[i].Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_PIXEL_SHADER_RESOURCE));
			}

			// Describe and create an SRV.
			D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
			srvDesc.ViewDimension = D3D12_SRV_DIMENSION_TEXTURE2D;
			srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
			srvDesc.Format = tex.Format;
			srvDesc.Texture2D.MipLevels = tex.MipLevels;
			srvDesc.Texture2D.MostDetailedMip = 0;
			srvDesc.Texture2D.ResourceMinLODClamp = 0.0f;
			m_device->CreateShaderResourceView(m_textures[i].Get(), &srvDesc, cbvSrvHandle);

			// Move to the next descriptor slot.
			cbvSrvHandle.Offset(cbvSrvDescriptorSize);
		}
		PIXEndEvent(commandList.Get());
	}

	free(pAssetData);

	// Create the samplers.
	{
		// Get the sampler descriptor size for the current device.
		const UINT samplerDescriptorSize = m_device->GetDescriptorHandleIncrementSize(D3D12_DESCRIPTOR_HEAP_TYPE_SAMPLER);

		// Get a handle to the start of the descriptor heap.
		CD3DX12_CPU_DESCRIPTOR_HANDLE samplerHandle(m_samplerHeap->GetCPUDescriptorHandleForHeapStart());

		// Describe and create the wrapping sampler, which is used for 
		// sampling diffuse/normal maps.
		D3D12_SAMPLER_DESC wrapSamplerDesc = {};
		wrapSamplerDesc.Filter = D3D12_FILTER_MIN_MAG_MIP_LINEAR;
		wrapSamplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		wrapSamplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		wrapSamplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_WRAP;
		wrapSamplerDesc.MinLOD = 0;
		wrapSamplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
		wrapSamplerDesc.MipLODBias = 0.0f;
		wrapSamplerDesc.MaxAnisotropy = 1;
		wrapSamplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;
		wrapSamplerDesc.BorderColor[0] = wrapSamplerDesc.BorderColor[1] = wrapSamplerDesc.BorderColor[2] = wrapSamplerDesc.BorderColor[3] = 0;
		m_device->CreateSampler(&wrapSamplerDesc, samplerHandle);

		// Move the handle to the next slot in the descriptor heap.
		samplerHandle.Offset(samplerDescriptorSize);

		// Describe and create the point clamping sampler, which is 
		// used for the shadow map.
		D3D12_SAMPLER_DESC clampSamplerDesc = {};
		clampSamplerDesc.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
		clampSamplerDesc.AddressU = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
		clampSamplerDesc.AddressV = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
		clampSamplerDesc.AddressW = D3D12_TEXTURE_ADDRESS_MODE_CLAMP;
		clampSamplerDesc.MipLODBias = 0.0f;
		clampSamplerDesc.MaxAnisotropy = 1;
		clampSamplerDesc.ComparisonFunc = D3D12_COMPARISON_FUNC_ALWAYS;
		clampSamplerDesc.BorderColor[0] = clampSamplerDesc.BorderColor[1] = clampSamplerDesc.BorderColor[2] = clampSamplerDesc.BorderColor[3] = 0;
		clampSamplerDesc.MinLOD = 0;
		clampSamplerDesc.MaxLOD = D3D12_FLOAT32_MAX;
		m_device->CreateSampler(&clampSamplerDesc, samplerHandle);
	}

	// Create lights.
	for (int i = 0; i < NumLights; i++)
	{
		// Set up each of the light positions and directions (they all start 
		// in the same place).
		m_lights[i].position = { 0.0f, 15.0f, -30.0f, 1.0f };
		m_lights[i].direction = { 0.0, 0.0f, 1.0f, 0.0f };
		m_lights[i].falloff = { 800.0f, 1.0f, 0.0f, 1.0f };
		m_lights[i].color = { 0.7f, 0.7f, 0.7f, 1.0f };

		XMVECTOR eye = XMLoadFloat4(&m_lights[i].position);
		XMVECTOR at = XMVectorAdd(eye, XMLoadFloat4(&m_lights[i].direction));
		XMVECTOR up = { 0, 1, 0 };

		m_lightCameras[i].Set(eye, at, up);
	}

	// Close the command list and use it to execute the initial GPU setup.
	ThrowIfFailed(commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create frame resources.
	for (int i = 0; i < FrameCount; i++)
	{
		m_frameResources[i] = new FrameResource(m_device.Get(), m_pipelineState.Get(), m_pipelineStateShadowMap.Get(), m_dsvHeap.Get(), m_cbvSrvHeap.Get(), &m_viewport, i);
		m_frameResources[i]->WriteConstantBuffers(&m_viewport, &m_camera, m_lightCameras, m_lights);
	}
	m_currentFrameResourceIndex = 0;
	m_pCurrentFrameResource = m_frameResources[m_currentFrameResourceIndex];

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_fenceValue, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_fence)));
		m_fenceValue++;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);
		if (m_fenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.

		// Signal and increment the fence value.
		const UINT64 fenceToWaitFor = m_fenceValue;
		ThrowIfFailed(m_commandQueue->Signal(m_fence.Get(), fenceToWaitFor));
		m_fenceValue++;

		// Wait until the fence is completed.
		ThrowIfFailed(m_fence->SetEventOnCompletion(fenceToWaitFor, m_fenceEvent));
		WaitForSingleObject(m_fenceEvent, INFINITE);
	}
}
	// TODO create software window
	bool RenderWindowD11_2::Create(const _lParametor& config)
	{
		_lParametor::const_iterator parametor;
		HRESULT hr = S_FALSE;
		auto divace = m_pRSystem->GetD3DDevice();
		auto context = m_pRSystem->GetD3DDeviceContext();

		// Î÷èñòèòü ïðåäûäóùàÿ ðàçìåð îêíà êîíêðåòíîãî êîíòåêñòà.
		ID3D11RenderTargetView* nullViews[] = { nullptr };
		context->OMSetRenderTargets(ARRAYSIZE(nullViews), nullViews, nullptr);
		m_d3dRenderTargetView = nullptr;
		m_d3dDepthStencilView = nullptr;
		context->Flush();

		parametor = config.find("window_name");
		if (parametor != config.end()) {
			mObjectName = parametor->second;
		}

		_32un bit = 0;
		parametor = config.find("display_mode");
		if (parametor != config.end())
		{
			StringConverter::ParseDisplyaMode(parametor->second, m_nWidth, m_nHeight, bit);
		}
		else
		{
			DrawLine("~RenderWindowD11_2: not set display_mode", MT_ERROR);
			return false;
		}

		parametor = config.find("full_screan_mode");
		if (parametor != config.end())
		{
			m_bFullScrean = StringConverter::Parse_bool(parametor->second);
		}
		else
		{
			DrawLine("~RenderWindowD11_2: not set full_screan_mode set in false");
			m_bFullScrean = false;
		}

		parametor = config.find("window_handle");
		if (parametor != config.end())
		{
			m_hWnd = StringConverter::Parse_int(parametor->second);
		}
		else
		{
			DrawLine("~RenderWindowD11_2: not set window_handle", MT_ERROR);
			return false;
		}

		DXGI_SWAP_CHAIN_DESC1 swapChainDesc = { 0 };
		swapChainDesc.Width = m_nWidth;
		swapChainDesc.Height = m_nHeight;
		swapChainDesc.Format = DXGI_FORMAT_B8G8R8A8_UNORM; // Ýòî íàèáîëåå ðàñïðîñòðàíåííûé ôîðìàò swap chain.
		swapChainDesc.Stereo = false;
		swapChainDesc.SampleDesc.Count = 1; // Don't use multi-sampling.
		swapChainDesc.SampleDesc.Quality = 0;
		swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
		swapChainDesc.BufferCount = 2; // Use double-buffering to minimize latency.
		swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL; // All Windows Store apps must use this SwapEffect.
		swapChainDesc.Flags = 0;
		swapChainDesc.Scaling = DXGI_SCALING_NONE;
		swapChainDesc.AlphaMode = DXGI_ALPHA_MODE_IGNORE;

		ComPtr<IDXGIDevice2> dxgiDevice;
		divace->QueryInterface(IID_PPV_ARGS(&dxgiDevice));

		ComPtr<IDXGIAdapter> dxgiAdapter;
		dxgiDevice->GetAdapter(&dxgiAdapter);

		ComPtr<IDXGIFactory2> dxgiFactory;
		dxgiAdapter->GetParent(IID_PPV_ARGS(&dxgiFactory));

		hr = dxgiFactory->CreateSwapChainForHwnd(
			divace,			// pDevice [in]
			(HWND)m_hWnd,						// hWnd [in]
			&swapChainDesc,						// pDesc [in]
			nullptr,							// pFullscreenDesc [in, optional]
			nullptr,							// pRestrictToOutput [in, optional]
			&m_swapChain						// ppSwapChain [out]
			);

		if (FAILED(hr)) {
			DrawLine("~RenderWindowD11_2: " + RenderSystemD11_2::GetErrorHR(hr), MT_ERROR);
			return false;
		}

		// Óáåäèòåñü, ÷òî DXGI íå ñòîÿòü â î÷åðåäè áîëüøå, ÷åì îäèí êàäð çà îäèí ðàç. Ýòî è ñîêðàùàåò çàäåðæêè è
		// Ãàðàíòèðóåò, ÷òî ïðèëîæåíèå áóäåò îêàçûâàòü òîëüêî ïîñëå êàæäîãî VSync, ìèíèìèçèðóÿ ïîòðåáëåíèå ýíåðãèè.
		dxgiDevice->SetMaximumFrameLatency(1);

		// Create a render target view of the swap chain back buffer.
		ComPtr<ID3D11Texture2D> backBuffer;
		m_swapChain->GetBuffer(0, IID_PPV_ARGS(&backBuffer));

		divace->CreateRenderTargetView(
			backBuffer.Get(),
			nullptr,
			&m_d3dRenderTargetView
			);

		// Create a depth stencil view for use with 3D rendering if needed.
		CD3D11_TEXTURE2D_DESC depthStencilDesc(
			DXGI_FORMAT_D24_UNORM_S8_UINT,
			m_nWidth,
			m_nHeight,
			1, // This depth stencil view has only one texture.
			1, // Use a single mipmap level.
			D3D11_BIND_DEPTH_STENCIL
			);

		ComPtr<ID3D11Texture2D> depthStencil;
		divace->CreateTexture2D(
			&depthStencilDesc,
			nullptr,
			&depthStencil
			);

		CD3D11_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc(D3D11_DSV_DIMENSION_TEXTURE2D);
		divace->CreateDepthStencilView(
			depthStencil.Get(),
			&depthStencilViewDesc,
			&m_d3dDepthStencilView
			);

		// Set the 3D rendering viewport to target the entire window.
		m_screenViewport = CD3D11_VIEWPORT(
			0.0f,
			0.0f,
			(FLOAT)m_nWidth,
			(FLOAT)m_nHeight
			);

		context->RSSetViewports(1, &m_screenViewport);

		m_bInit = true;

		return true;
	}
// Load the assets.
HRESULT VolumetricAnimation::LoadAssets()
{
	HRESULT	hr;

	// Create a root signature consisting of a descriptor table with a CBV SRV and a sampler.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[3];
		CD3DX12_ROOT_PARAMETER rootParameters[3];

		ranges[0].Init( D3D12_DESCRIPTOR_RANGE_TYPE_CBV, 1, 0 );
		ranges[1].Init( D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0 );
		ranges[2].Init( D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0 );
		rootParameters[RootParameterCBV].InitAsDescriptorTable( 1, &ranges[0], D3D12_SHADER_VISIBILITY_ALL );
		rootParameters[RootParameterSRV].InitAsDescriptorTable( 1, &ranges[1], D3D12_SHADER_VISIBILITY_PIXEL );
		rootParameters[RootParameterUAV].InitAsDescriptorTable( 1, &ranges[2], D3D12_SHADER_VISIBILITY_ALL );

		D3D12_STATIC_SAMPLER_DESC sampler = {};
		sampler.Filter = D3D12_FILTER_MIN_MAG_MIP_POINT;
		sampler.AddressU = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.AddressV = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.AddressW = D3D12_TEXTURE_ADDRESS_MODE_BORDER;
		sampler.MipLODBias = 0;
		sampler.MaxAnisotropy = 0;
		sampler.ComparisonFunc = D3D12_COMPARISON_FUNC_NEVER;
		sampler.BorderColor = D3D12_STATIC_BORDER_COLOR_TRANSPARENT_BLACK;
		sampler.MinLOD = 0.0f;
		sampler.MaxLOD = D3D12_FLOAT32_MAX;
		sampler.ShaderRegister = 0;
		sampler.RegisterSpace = 0;
		sampler.ShaderVisibility = D3D12_SHADER_VISIBILITY_PIXEL;

		// Allow input layout and deny unnecessary access to certain pipeline stages.
		D3D12_ROOT_SIGNATURE_FLAGS rootSignatureFlags =
			D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_HULL_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_DOMAIN_SHADER_ROOT_ACCESS |
			D3D12_ROOT_SIGNATURE_FLAG_DENY_GEOMETRY_SHADER_ROOT_ACCESS;
	
		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init( _countof(rootParameters), rootParameters, 1, &sampler, rootSignatureFlags );

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		V( D3D12SerializeRootSignature( &rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error ) );
		if ( error ) PRINTERROR( reinterpret_cast< const char* >( error->GetBufferPointer() ) );

		VRET( m_device->CreateRootSignature( 0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS( &m_graphicsRootSignature ) ) );
		DXDebugName( m_graphicsRootSignature );

		// Create compute signature. Must change visibility for the SRV.
		rootParameters[RootParameterSRV].ShaderVisibility = D3D12_SHADER_VISIBILITY_ALL;

		CD3DX12_ROOT_SIGNATURE_DESC computeRootSignatureDesc( _countof( rootParameters ), rootParameters, 0, nullptr );
		VRET( D3D12SerializeRootSignature( &computeRootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error ) );

		VRET( m_device->CreateRootSignature( 0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS( &m_computeRootSignature ) ) );
	}

	// Create the pipeline state, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> pixelShader;
		ComPtr<ID3DBlob> computeShader;

		UINT compileFlags = 0;

		VRET( CompileShaderFromFile( GetAssetFullPath( _T( "VolumetricAnimation_shader.hlsl" ) ).c_str(), nullptr, D3D_COMPILE_STANDARD_FILE_INCLUDE, "vsmain", "vs_5_0", compileFlags, 0, &vertexShader ) );
		VRET( CompileShaderFromFile( GetAssetFullPath( _T( "VolumetricAnimation_shader.hlsl" ) ).c_str(), nullptr, D3D_COMPILE_STANDARD_FILE_INCLUDE, "psmain", "ps_5_0", compileFlags, 0, &pixelShader ) );
		VRET( CompileShaderFromFile( GetAssetFullPath( _T( "VolumetricAnimation_shader.hlsl" ) ).c_str(), nullptr, D3D_COMPILE_STANDARD_FILE_INCLUDE, "csmain", "cs_5_0", compileFlags, 0, &computeShader ) );
		// Define the vertex input layout.
		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, D3D12_APPEND_ALIGNED_ELEMENT, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 }
		};

		CD3DX12_DEPTH_STENCIL_DESC depthStencilDesc( D3D12_DEFAULT );
		depthStencilDesc.DepthEnable = true;
		depthStencilDesc.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ALL;
		depthStencilDesc.DepthFunc = D3D12_COMPARISON_FUNC_LESS_EQUAL;
		depthStencilDesc.StencilEnable = FALSE;

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof( inputElementDescs ) };
		psoDesc.pRootSignature = m_graphicsRootSignature.Get();
		psoDesc.VS = { reinterpret_cast< UINT8* >( vertexShader->GetBufferPointer() ), vertexShader->GetBufferSize() };
		psoDesc.PS = { reinterpret_cast< UINT8* >( pixelShader->GetBufferPointer() ), pixelShader->GetBufferSize() };
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC( D3D12_DEFAULT );
		psoDesc.BlendState = CD3DX12_BLEND_DESC( D3D12_DEFAULT );
		psoDesc.DepthStencilState = depthStencilDesc;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_TRIANGLE;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.DSVFormat = DXGI_FORMAT_D32_FLOAT;
		psoDesc.SampleDesc.Count = 1;
		VRET( m_device->CreateGraphicsPipelineState( &psoDesc, IID_PPV_ARGS( &m_pipelineState ) ) );
		DXDebugName( m_pipelineState );

		// Describe and create the compute pipeline state object (PSO).
		D3D12_COMPUTE_PIPELINE_STATE_DESC computePsoDesc = {};
		computePsoDesc.pRootSignature = m_computeRootSignature.Get();
		computePsoDesc.CS = { reinterpret_cast< UINT8* >( computeShader->GetBufferPointer() ), computeShader->GetBufferSize() };

		VRET( m_device->CreateComputePipelineState( &computePsoDesc, IID_PPV_ARGS( &m_computeState ) ) );
		DXDebugName( m_computeState );
	}

	// Create the compute command list.
	VRET( m_device->CreateCommandList( 0, D3D12_COMMAND_LIST_TYPE_COMPUTE, m_computeCmdAllocator.Get(),m_computeState.Get(), IID_PPV_ARGS( &m_computeCmdList ) ) );
	DXDebugName( m_computeCmdList );

	VRET( m_computeCmdList->Close() );

	// Create the graphics command list.
	VRET( m_device->CreateCommandList( 0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_graphicCmdAllocator.Get(), m_pipelineState.Get(), IID_PPV_ARGS( &m_graphicCmdList ) ) );
	DXDebugName( m_graphicCmdList );

	// Note: ComPtr's are CPU objects but this resource needs to stay in scope until
	// the command list that references it has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resource is not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> volumeBufferUploadHeap;

	// Create the volumeBuffer.
	{
		UINT volumeBufferSize = m_volumeDepth*m_volumeHeight*m_volumeWidth * 4 * sizeof( UINT8 );

		D3D12_RESOURCE_DESC bufferDesc = CD3DX12_RESOURCE_DESC::Buffer( volumeBufferSize, D3D12_RESOURCE_FLAG_ALLOW_UNORDERED_ACCESS );
		D3D12_RESOURCE_DESC uploadBufferDesc = CD3DX12_RESOURCE_DESC::Buffer( volumeBufferSize );

		VRET( m_device->CreateCommittedResource(&CD3DX12_HEAP_PROPERTIES( D3D12_HEAP_TYPE_DEFAULT ),D3D12_HEAP_FLAG_NONE,
												 &bufferDesc,D3D12_RESOURCE_STATE_COPY_DEST,nullptr,IID_PPV_ARGS( &m_volumeBuffer ) ) );

		const UINT64 uploadBufferSize = GetRequiredIntermediateSize( m_volumeBuffer.Get(), 0, 1 );

		// Create the GPU upload buffer.
		VRET( m_device->CreateCommittedResource(&CD3DX12_HEAP_PROPERTIES( D3D12_HEAP_TYPE_UPLOAD ),D3D12_HEAP_FLAG_NONE,
												 &uploadBufferDesc,D3D12_RESOURCE_STATE_GENERIC_READ,
												 nullptr,IID_PPV_ARGS( &volumeBufferUploadHeap ) ) );

		// Copy data to the intermediate upload heap and then schedule a copy 
		// from the upload heap to the Texture2D.
		UINT8* volumeBuffer = ( UINT8* ) malloc( volumeBufferSize );
		memset( volumeBuffer, 64, volumeBufferSize );
		//float radius = m_volumeHeight / 2.f;
		float a = m_volumeWidth / 2.f;
		float b = m_volumeHeight / 2.f;
		float c = m_volumeDepth / 2.f;
		float radius = sqrt( a*a + b*b + c*c );

		for ( UINT z = 0; z < m_volumeDepth; z++ )
			for ( UINT y = 0; y < m_volumeHeight; y++ )
				for ( UINT x = 0; x < m_volumeWidth; x++ )
				{
					float _x = x - m_volumeWidth / 2.f;
					float _y = y - m_volumeHeight / 2.f;
					float _z = z - m_volumeDepth / 2.f;
					//float currentRaidus =abs(_x)+abs(_y)+abs(_z);
					float currentRaidus = sqrt( _x*_x + _y*_y + _z*_z );
					float scale = currentRaidus *3.f / radius;
					UINT idx = 4 - (UINT)floor( scale );
					UINT interm = ( UINT ) ( 192 * scale +0.5f );
					UINT8 col = interm % 192+1;
					volumeBuffer[( x + y*m_volumeWidth + z*m_volumeHeight*m_volumeWidth ) * 4 + 0] += col * m_constantBufferData.colVal[idx].x;
					volumeBuffer[( x + y*m_volumeWidth + z*m_volumeHeight*m_volumeWidth ) * 4 + 1] += col * m_constantBufferData.colVal[idx].y;
					volumeBuffer[( x + y*m_volumeWidth + z*m_volumeHeight*m_volumeWidth ) * 4 + 2] += col * m_constantBufferData.colVal[idx].z;
					volumeBuffer[( x + y*m_volumeWidth + z*m_volumeHeight*m_volumeWidth ) * 4 + 3] = m_constantBufferData.colVal[idx].w;
				}
		D3D12_SUBRESOURCE_DATA volumeBufferData = {};
		volumeBufferData.pData = &volumeBuffer[0];
		volumeBufferData.RowPitch = volumeBufferSize;
		volumeBufferData.SlicePitch = volumeBufferData.RowPitch;

		UpdateSubresources( m_graphicCmdList.Get(), m_volumeBuffer.Get(), volumeBufferUploadHeap.Get(), 0, 0, 1, &volumeBufferData );
		m_graphicCmdList->ResourceBarrier( 1, &CD3DX12_RESOURCE_BARRIER::Transition( m_volumeBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_UNORDERED_ACCESS ) );

		// Describe and create a SRV for the volumeBuffer.
		D3D12_SHADER_RESOURCE_VIEW_DESC srvDesc = {};
		srvDesc.Shader4ComponentMapping = D3D12_DEFAULT_SHADER_4_COMPONENT_MAPPING;
		srvDesc.Format = DXGI_FORMAT_UNKNOWN;
		srvDesc.ViewDimension = D3D12_SRV_DIMENSION_BUFFER;
		srvDesc.Buffer.FirstElement = 0;
		srvDesc.Buffer.NumElements = m_volumeDepth*m_volumeHeight*m_volumeWidth;
		srvDesc.Buffer.StructureByteStride = 4 * sizeof( UINT8 );
		srvDesc.Buffer.Flags = D3D12_BUFFER_SRV_FLAG_NONE;

		CD3DX12_CPU_DESCRIPTOR_HANDLE srvHandle( m_cbvsrvuavHeap->GetCPUDescriptorHandleForHeapStart(), RootParameterSRV, m_cbvsrvuavDescriptorSize );
		m_device->CreateShaderResourceView( m_volumeBuffer.Get(), &srvDesc, srvHandle );

		// Describe and create a UAV for the volumeBuffer.
		D3D12_UNORDERED_ACCESS_VIEW_DESC uavDesc = {};
		uavDesc.Format = DXGI_FORMAT_UNKNOWN;
		uavDesc.ViewDimension = D3D12_UAV_DIMENSION_BUFFER;
		uavDesc.Buffer.FirstElement = 0;
		uavDesc.Buffer.NumElements = m_volumeWidth*m_volumeHeight*m_volumeDepth;
		uavDesc.Buffer.StructureByteStride = 4 * sizeof( UINT8 );
		uavDesc.Buffer.CounterOffsetInBytes = 0;
		uavDesc.Buffer.Flags = D3D12_BUFFER_UAV_FLAG_NONE;

		CD3DX12_CPU_DESCRIPTOR_HANDLE uavHandle( m_cbvsrvuavHeap->GetCPUDescriptorHandleForHeapStart(), RootParameterUAV, m_cbvsrvuavDescriptorSize );
		m_device->CreateUnorderedAccessView( m_volumeBuffer.Get(), nullptr, &uavDesc, uavHandle );
		free( volumeBuffer );
	}

	// Create the vertex buffer.

	// Note: ComPtr's are CPU objects but this resource needs to stay in scope until
	// the command list that references it has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resource is not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> vertexBufferUpload;
	{
		// Define the geometry for a triangle.
		Vertex cubeVertices[] =
		{
			{ XMFLOAT3( -128.f, -128.f, -128.f ) },
			{ XMFLOAT3( -128.f, -128.f,  128.f ) },
			{ XMFLOAT3( -128.f,  128.f, -128.f ) },
			{ XMFLOAT3( -128.f,  128.f,  128.f ) },
			{ XMFLOAT3( 128.f, -128.f, -128.f )},
			{ XMFLOAT3( 128.f, -128.f,  128.f )},
			{ XMFLOAT3( 128.f,  128.f, -128.f )},
			{ XMFLOAT3( 128.f,  128.f,  128.f )},
		};

		const UINT vertexBufferSize = sizeof( cubeVertices );

		VRET( m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES( D3D12_HEAP_TYPE_UPLOAD ), D3D12_HEAP_FLAG_NONE,
												 &CD3DX12_RESOURCE_DESC::Buffer( vertexBufferSize ), D3D12_RESOURCE_STATE_GENERIC_READ,
												 nullptr, IID_PPV_ARGS( &vertexBufferUpload ) ) );
		VRET( m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES( D3D12_HEAP_TYPE_DEFAULT ), D3D12_HEAP_FLAG_NONE,
												 &CD3DX12_RESOURCE_DESC::Buffer( vertexBufferSize ), D3D12_RESOURCE_STATE_COPY_DEST,
												 nullptr, IID_PPV_ARGS( &m_vertexBuffer ) ) );
		DXDebugName( m_vertexBuffer );
		
		D3D12_SUBRESOURCE_DATA vertexData = {};
		vertexData.pData = reinterpret_cast< UINT8* >( cubeVertices );
		vertexData.RowPitch = vertexBufferSize;
		vertexData.SlicePitch = vertexBufferSize;

		UpdateSubresources<1>( m_graphicCmdList.Get(), m_vertexBuffer.Get(), vertexBufferUpload.Get(), 0, 0, 1, &vertexData );
		m_graphicCmdList->ResourceBarrier( 1, &CD3DX12_RESOURCE_BARRIER::Transition( m_vertexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, 
																				  D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER ));

		// Initialize the vertex buffer view.
		m_vertexBufferView.BufferLocation = m_vertexBuffer->GetGPUVirtualAddress();
		m_vertexBufferView.StrideInBytes = sizeof( Vertex );
		m_vertexBufferView.SizeInBytes = vertexBufferSize;
	}

	// Create the index buffer

	// Note: ComPtr's are CPU objects but this resource needs to stay in scope until
	// the command list that references it has finished executing on the GPU.
	// We will flush the GPU at the end of this method to ensure the resource is not
	// prematurely destroyed.
	ComPtr<ID3D12Resource> indexBufferUpload;
	{
		uint16_t cubeIndices[] =
		{
			0,2,1, 1,2,3,  4,5,6, 5,7,6,  0,1,5, 0,5,4,  2,6,7, 2,7,3,  0,4,6, 0,6,2,  1,3,7, 1,7,5,
		};

		const UINT indexBufferSize = sizeof( cubeIndices );

		VRET( m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES( D3D12_HEAP_TYPE_UPLOAD ), D3D12_HEAP_FLAG_NONE,
												 &CD3DX12_RESOURCE_DESC::Buffer( indexBufferSize ), D3D12_RESOURCE_STATE_GENERIC_READ,
												 nullptr, IID_PPV_ARGS( &indexBufferUpload ) ) );
		VRET( m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES( D3D12_HEAP_TYPE_DEFAULT ), D3D12_HEAP_FLAG_NONE,
												 &CD3DX12_RESOURCE_DESC::Buffer( indexBufferSize ), D3D12_RESOURCE_STATE_COPY_DEST,
												 nullptr, IID_PPV_ARGS( &m_indexBuffer ) ) );
		DXDebugName( m_indexBuffer );

		D3D12_SUBRESOURCE_DATA indexData = {};
		indexData.pData = reinterpret_cast< UINT8* >( cubeIndices );
		indexData.RowPitch = indexBufferSize;
		indexData.SlicePitch = indexBufferSize;

		UpdateSubresources<1>( m_graphicCmdList.Get(), m_indexBuffer.Get(), indexBufferUpload.Get(), 0, 0, 1, &indexData );
		m_graphicCmdList->ResourceBarrier( 1, &CD3DX12_RESOURCE_BARRIER::Transition( m_indexBuffer.Get(), D3D12_RESOURCE_STATE_COPY_DEST, 
																				  D3D12_RESOURCE_STATE_INDEX_BUFFER ) );

		m_indexBufferView.BufferLocation = m_indexBuffer->GetGPUVirtualAddress();
		m_indexBufferView.SizeInBytes = sizeof( cubeIndices );
		m_indexBufferView.Format = DXGI_FORMAT_R16_UINT;
	}

	// Create the constant buffer
	{
		VRET( m_device->CreateCommittedResource( &CD3DX12_HEAP_PROPERTIES( D3D12_HEAP_TYPE_UPLOAD ), D3D12_HEAP_FLAG_NONE,
												 &CD3DX12_RESOURCE_DESC::Buffer( 1024 * 64 ), D3D12_RESOURCE_STATE_GENERIC_READ,
												 nullptr, IID_PPV_ARGS( &m_constantBuffer ) ) );
		DXDebugName( m_constantBuffer );

		// Describe and create a constant buffer view.
		D3D12_CONSTANT_BUFFER_VIEW_DESC cbvDesc = {};
		cbvDesc.BufferLocation = m_constantBuffer->GetGPUVirtualAddress();
		cbvDesc.SizeInBytes = ( sizeof( ConstantBuffer ) + 255 ) & ~255;	// CB size is required to be 256-byte aligned.
		m_device->CreateConstantBufferView( &cbvDesc, m_cbvsrvuavHeap->GetCPUDescriptorHandleForHeapStart() );

		// Initialize and map the constant buffers. We don't unmap this until the
		// app closes. Keeping things mapped for the lifetime of the resource is okay.
		CD3DX12_RANGE readRange( 0, 0 );		// We do not intend to read from this resource on the CPU.
		VRET( m_constantBuffer->Map( 0, &readRange, reinterpret_cast< void** >( &m_pCbvDataBegin ) ) );
		memcpy( m_pCbvDataBegin, &m_constantBufferData, sizeof( m_constantBufferData ) );
	}

	// Close the command list and execute it to begin the initial GPU setup.
	VRET( m_graphicCmdList->Close() );
	ID3D12CommandList* ppCommandLists[] = { m_graphicCmdList.Get() };
	m_graphicCmdQueue->ExecuteCommandLists( _countof( ppCommandLists ), ppCommandLists );

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		VRET( m_device->CreateFence( 0, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS( &m_fence ) ) );
		DXDebugName( m_fence );
		m_fenceValue = 1;

		// Create an event handle to use for frame synchronization.
		m_fenceEvent = CreateEvent( nullptr, FALSE, FALSE, nullptr );
		if ( m_fenceEvent == nullptr )
		{
			VRET( HRESULT_FROM_WIN32( GetLastError() ) );
		}

		// Wait for the command list to execute; we are reusing the same command 
		// list in our main loop but for now, we just want to wait for setup to 
		// complete before continuing.
		WaitForGraphicsCmd();
	}


	XMVECTORF32 vecEye = { 500.0f, 500.0f, -500.0f };
	XMVECTORF32 vecAt = { 0.0f, 0.0f, 0.0f };
	m_camera.SetViewParams( vecEye, vecAt );
	m_camera.SetEnablePositionMovement( true );
	m_camera.SetButtonMasks( MOUSE_RIGHT_BUTTON, MOUSE_WHEEL, MOUSE_LEFT_BUTTON );

	return S_OK;
}
// Load the sample assets.
void D3D12nBodyGravity::LoadAssets()
{
	// Create the root signatures.
	{
		CD3DX12_DESCRIPTOR_RANGE ranges[2];
		ranges[0].Init(D3D12_DESCRIPTOR_RANGE_TYPE_SRV, 1, 0);
		ranges[1].Init(D3D12_DESCRIPTOR_RANGE_TYPE_UAV, 1, 0);

		CD3DX12_ROOT_PARAMETER rootParameters[RootParametersCount];
		rootParameters[RootParameterCB].InitAsConstantBufferView(0, 0, D3D12_SHADER_VISIBILITY_ALL);
		rootParameters[RootParameterSRV].InitAsDescriptorTable(1, &ranges[0], D3D12_SHADER_VISIBILITY_VERTEX);
		rootParameters[RootParameterUAV].InitAsDescriptorTable(1, &ranges[1], D3D12_SHADER_VISIBILITY_ALL);

		// The rendering pipeline does not need the UAV parameter.
		CD3DX12_ROOT_SIGNATURE_DESC rootSignatureDesc;
		rootSignatureDesc.Init(_countof(rootParameters) - 1, rootParameters, 0, nullptr, D3D12_ROOT_SIGNATURE_FLAG_ALLOW_INPUT_ASSEMBLER_INPUT_LAYOUT);

		ComPtr<ID3DBlob> signature;
		ComPtr<ID3DBlob> error;
		ThrowIfFailed(D3D12SerializeRootSignature(&rootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));
		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_rootSignature)));

		// Create compute signature. Must change visibility for the SRV.
		rootParameters[RootParameterSRV].ShaderVisibility = D3D12_SHADER_VISIBILITY_ALL;

		CD3DX12_ROOT_SIGNATURE_DESC computeRootSignatureDesc(_countof(rootParameters), rootParameters, 0, nullptr);
		ThrowIfFailed(D3D12SerializeRootSignature(&computeRootSignatureDesc, D3D_ROOT_SIGNATURE_VERSION_1, &signature, &error));

		ThrowIfFailed(m_device->CreateRootSignature(0, signature->GetBufferPointer(), signature->GetBufferSize(), IID_PPV_ARGS(&m_computeRootSignature)));
	}

	// Create the pipeline states, which includes compiling and loading shaders.
	{
		ComPtr<ID3DBlob> vertexShader;
		ComPtr<ID3DBlob> geometryShader;
		ComPtr<ID3DBlob> pixelShader;
		ComPtr<ID3DBlob> computeShader;

#ifdef _DEBUG
		// Enable better shader debugging with the graphics debugging tools.
		UINT compileFlags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION;
#else
		UINT compileFlags = 0;
#endif

		// Load and compile shaders.
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"ParticleDraw.hlsl").c_str(), nullptr, nullptr, "VSParticleDraw", "vs_5_0", compileFlags, 0, &vertexShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"ParticleDraw.hlsl").c_str(), nullptr, nullptr, "GSParticleDraw", "gs_5_0", compileFlags, 0, &geometryShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"ParticleDraw.hlsl").c_str(), nullptr, nullptr, "PSParticleDraw", "ps_5_0", compileFlags, 0, &pixelShader, nullptr));
		ThrowIfFailed(D3DCompileFromFile(GetAssetFullPath(L"NBodyGravityCS.hlsl").c_str(), nullptr, nullptr, "CSMain", "cs_5_0", compileFlags, 0, &computeShader, nullptr));

		D3D12_INPUT_ELEMENT_DESC inputElementDescs[] =
		{
			{ "COLOR", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 0, D3D12_INPUT_CLASSIFICATION_PER_VERTEX_DATA, 0 },
		};

		// Describe the blend and depth states.
		CD3DX12_BLEND_DESC blendDesc(D3D12_DEFAULT);
		blendDesc.RenderTarget[0].BlendEnable = TRUE;
		blendDesc.RenderTarget[0].SrcBlend = D3D12_BLEND_SRC_ALPHA;
		blendDesc.RenderTarget[0].DestBlend = D3D12_BLEND_ONE;
		blendDesc.RenderTarget[0].SrcBlendAlpha = D3D12_BLEND_ZERO;
		blendDesc.RenderTarget[0].DestBlendAlpha = D3D12_BLEND_ZERO;

		CD3DX12_DEPTH_STENCIL_DESC depthStencilDesc(D3D12_DEFAULT);
		depthStencilDesc.DepthEnable = FALSE;
		depthStencilDesc.DepthWriteMask = D3D12_DEPTH_WRITE_MASK_ZERO;

		// Describe and create the graphics pipeline state object (PSO).
		D3D12_GRAPHICS_PIPELINE_STATE_DESC psoDesc = {};
		psoDesc.InputLayout = { inputElementDescs, _countof(inputElementDescs) };
		psoDesc.pRootSignature = m_rootSignature.Get();
		psoDesc.VS = { reinterpret_cast<UINT8*>(vertexShader->GetBufferPointer()), vertexShader->GetBufferSize() };
		psoDesc.GS = { reinterpret_cast<UINT8*>(geometryShader->GetBufferPointer()), geometryShader->GetBufferSize() };
		psoDesc.PS = { reinterpret_cast<UINT8*>(pixelShader->GetBufferPointer()), pixelShader->GetBufferSize() };
		psoDesc.RasterizerState = CD3DX12_RASTERIZER_DESC(D3D12_DEFAULT);
		psoDesc.BlendState = blendDesc;
		psoDesc.DepthStencilState = depthStencilDesc;
		psoDesc.SampleMask = UINT_MAX;
		psoDesc.PrimitiveTopologyType = D3D12_PRIMITIVE_TOPOLOGY_TYPE_POINT;
		psoDesc.NumRenderTargets = 1;
		psoDesc.RTVFormats[0] = DXGI_FORMAT_R8G8B8A8_UNORM;
		psoDesc.DSVFormat = DXGI_FORMAT_D24_UNORM_S8_UINT;
		psoDesc.SampleDesc.Count = 1;

		ThrowIfFailed(m_device->CreateGraphicsPipelineState(&psoDesc, IID_PPV_ARGS(&m_pipelineState)));

		// Describe and create the compute pipeline state object (PSO).
		D3D12_COMPUTE_PIPELINE_STATE_DESC computePsoDesc = {};
		computePsoDesc.pRootSignature = m_computeRootSignature.Get();
		computePsoDesc.CS = { reinterpret_cast<UINT8*>(computeShader->GetBufferPointer()), computeShader->GetBufferSize() };

		ThrowIfFailed(m_device->CreateComputePipelineState(&computePsoDesc, IID_PPV_ARGS(&m_computeState)));
	}

	// Create the command list.
	ThrowIfFailed(m_device->CreateCommandList(0, D3D12_COMMAND_LIST_TYPE_DIRECT, m_commandAllocators[m_frameIndex].Get(), m_pipelineState.Get(), IID_PPV_ARGS(&m_commandList)));

	CreateVertexBuffer();
	CreateParticleBuffers();

	ComPtr<ID3D12Resource> constantBufferCSUpload;

	// Create the compute shader's constant buffer.
	{
		const UINT bufferSize = sizeof(ConstantBufferCS);

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_DEFAULT),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(bufferSize),
			D3D12_RESOURCE_STATE_COPY_DEST,
			nullptr,
			IID_PPV_ARGS(&m_constantBufferCS)));

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(bufferSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&constantBufferCSUpload)));

		ConstantBufferCS constantBufferCS = {};
		constantBufferCS.param[0] = ParticleCount;
		constantBufferCS.param[1] = int(ceil(ParticleCount / 128.0f));
		constantBufferCS.paramf[0] = 0.1f;
		constantBufferCS.paramf[1] = 1.0f;

		D3D12_SUBRESOURCE_DATA computeCBData = {};
		computeCBData.pData = reinterpret_cast<UINT8*>(&constantBufferCS);
		computeCBData.RowPitch = bufferSize;
		computeCBData.SlicePitch = computeCBData.RowPitch;

		UpdateSubresources<1>(m_commandList.Get(), m_constantBufferCS.Get(), constantBufferCSUpload.Get(), 0, 0, 1, &computeCBData);
		m_commandList->ResourceBarrier(1, &CD3DX12_RESOURCE_BARRIER::Transition(m_constantBufferCS.Get(), D3D12_RESOURCE_STATE_COPY_DEST, D3D12_RESOURCE_STATE_VERTEX_AND_CONSTANT_BUFFER));
	}

	// Create the geometry shader's constant buffer.
	{
		const UINT constantBufferGSSize = sizeof(ConstantBufferGS) * FrameCount;

		ThrowIfFailed(m_device->CreateCommittedResource(
			&CD3DX12_HEAP_PROPERTIES(D3D12_HEAP_TYPE_UPLOAD),
			D3D12_HEAP_FLAG_NONE,
			&CD3DX12_RESOURCE_DESC::Buffer(constantBufferGSSize),
			D3D12_RESOURCE_STATE_GENERIC_READ,
			nullptr,
			IID_PPV_ARGS(&m_constantBufferGS)
			));

		ThrowIfFailed(m_constantBufferGS->Map(0, nullptr, reinterpret_cast<void**>(&m_pConstantBufferGSData)));
		ZeroMemory(m_pConstantBufferGSData, constantBufferGSSize);
	}

	// Close the command list and execute it to begin the initial GPU setup.
	ThrowIfFailed(m_commandList->Close());
	ID3D12CommandList* ppCommandLists[] = { m_commandList.Get() };
	m_commandQueue->ExecuteCommandLists(_countof(ppCommandLists), ppCommandLists);

	// Create synchronization objects and wait until assets have been uploaded to the GPU.
	{
		ThrowIfFailed(m_device->CreateFence(m_renderContextFenceValue, D3D12_FENCE_FLAG_NONE, IID_PPV_ARGS(&m_renderContextFence)));
		m_renderContextFenceValue++;

		m_renderContextFenceEvent = CreateEventEx(nullptr, FALSE, FALSE, EVENT_ALL_ACCESS);
		if (m_renderContextFenceEvent == nullptr)
		{
			ThrowIfFailed(HRESULT_FROM_WIN32(GetLastError()));
		}

		WaitForRenderContext();
	}
}
Ejemplo n.º 8
0
	//! resizes the screen surface
	void DirectX11Driver::ResizeScreen(const Vector2& vSize)
	{
		if(m_Device.Get())
		{
			ID3D11RenderTargetView* nullViews[] = { NULL };
			m_ImmediateContext->OMSetRenderTargets(ARRAYSIZE(nullViews), nullViews, NULL);
			m_RenderTargetView = NULL;
			m_DepthStencilView = NULL;
			m_SwapChain = NULL;
			m_MVPBuffer = NULL;
			m_TextureTransformBuffer = NULL;
			m_MaterialBuffer = NULL;
			m_TextureSamplerLinear = NULL;
			for(int i=0; i<2; ++i)
			{
				for(int j=0; j<D3D11_BLEND_INV_SRC1_ALPHA+1; ++j)
				{
					for(int k=0; k<D3D11_BLEND_INV_SRC1_ALPHA+1; ++k)
					{
						m_BlendState[i][j][k] = NULL;
					}
				}
			}
			for(int i=0; i<2; ++i)
			{
				for(int j=0; j<2; ++j)
				{
					for(int k=0; k<D3D11_COMPARISON_ALWAYS+1; ++k)
					{
						m_DepthStencilState[i][j][k] = NULL;
					}
				}
			}
			for(int i=0; i<2; ++i)
			{
				for(int j=0; j<D3D11_FILL_SOLID+1; ++j)
				{
					for(int k=0; k<D3D11_CULL_BACK+1; ++k)
					{
						m_RasterizerState[i][j][k] = NULL;
					}
				}
			}
			m_ImmediateContext->Flush();

			DXGI_SWAP_CHAIN_DESC1 swapChainDesc = {0};
			swapChainDesc.Width = newSize.Width;
			swapChainDesc.Height = newSize.Height;
			swapChainDesc.Format = DXGI_FORMAT_B8G8R8A8_UNORM;
			swapChainDesc.Stereo = false;
			swapChainDesc.SampleDesc.Count = 1; // Don't use multi-sampling.
			swapChainDesc.SampleDesc.Quality = 0;
			swapChainDesc.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
			swapChainDesc.BufferCount = 1; // On phone, only single buffering is supported.
			swapChainDesc.Scaling = DXGI_SCALING_STRETCH; // On phone, only stretch and aspect-ratio stretch scaling are allowed.
			swapChainDesc.SwapEffect = DXGI_SWAP_EFFECT_DISCARD; // On phone, no swap effects are supported.
			swapChainDesc.Flags = 0;
			
			COMReference<IDXGIDevice1> XGIDevice1;
			IDXGIDevice1* pIDXGIDevice1 = NULL;
			DX_ASSERT(m_Device->QueryInterface(__uuidof(IDXGIDevice1), (void**)&pIDXGIDevice1));
			XGIDevice1 = pIDXGIDevice1;

			COMReference<IDXGIAdapter> XGIAdapter;
			IDXGIAdapter* pIDXGIAdapter = NULL;
			DX_ASSERT(XGIDevice1->GetAdapter(&pIDXGIAdapter));
			XGIAdapter = pIDXGIAdapter;

			COMReference<IDXGIFactory2> XGIFactory2;
			IDXGIFactory2* pFactory = NULL;
			DX_ASSERT(XGIAdapter->GetParent(__uuidof(IDXGIFactory2), (void**)&pFactory));
			XGIFactory2 = pFactory;

			// create swap chain
			IDXGISwapChain1* pSwapChain = NULL;

#if SHOOT_PLATFORM == SHOOT_PLATFORM_WP8
			DX_ASSERT(ShootCreateSwapChainForCoreWindow(XGIFactory2, m_Device, &swapChainDesc, &pSwapChain));
#else
			DXGI_SWAP_CHAIN_FULLSCREEN_DESC fullScreenDesc;
			fullScreenDesc.RefreshRate.Numerator = 60;
			fullScreenDesc.RefreshRate.Denominator = 1;
			fullScreenDesc.Scaling = DXGI_MODE_SCALING_UNSPECIFIED;
			fullScreenDesc.ScanlineOrdering = DXGI_MODE_SCANLINE_ORDER_UNSPECIFIED;
			fullScreenDesc.Windowed = !App::Instance()->IsFullScreen();
			DX_ASSERT(XGIFactory2->CreateSwapChainForHwnd(m_Device, m_hWindow, &swapChainDesc, &fullScreenDesc, NULL, &pSwapChain));			
#endif

			m_SwapChain = pSwapChain;

			// Ensure that DXGI does not queue more than one frame at a time. This both reduces latency and
			// ensures that the application will only render after each VSync, minimizing power consumption.
			DX_ASSERT(XGIDevice1->SetMaximumFrameLatency(1));

			// Create render target & depth stencil views
			COMReference<ID3D11Texture2D> backBuffer;
			ID3D11Texture2D* pBackBuffer = NULL;
			DX_ASSERT(m_SwapChain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&pBackBuffer));
			backBuffer = pBackBuffer;

			ID3D11RenderTargetView* pRenderTargetView = NULL;
			DX_ASSERT(m_Device->CreateRenderTargetView(backBuffer, NULL, &pRenderTargetView));
			m_RenderTargetView = pRenderTargetView;

			COMReference<ID3D11Texture2D> depthStencil;
			ID3D11Texture2D* pDepthStencil = NULL;
			CD3D11_TEXTURE2D_DESC depthStencilDesc(DXGI_FORMAT_D24_UNORM_S8_UINT, newSize.Width, newSize.Height, 1, 1, D3D11_BIND_DEPTH_STENCIL);
			DX_ASSERT(m_Device->CreateTexture2D(&depthStencilDesc, NULL, &pDepthStencil));
			depthStencil = pDepthStencil;

			CD3D11_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc(D3D11_DSV_DIMENSION_TEXTURE2D);
			ID3D11DepthStencilView* pDepthStencilView = NULL;
			DX_ASSERT(m_Device->CreateDepthStencilView(depthStencil, &depthStencilViewDesc, &pDepthStencilView));
			m_DepthStencilView = pDepthStencilView;

			m_ImmediateContext->OMSetRenderTargets(1, &pRenderTargetView, m_DepthStencilView);
			m_RenderTargetView = pRenderTargetView;

			// create the constant buffers			
			D3D11_BUFFER_DESC bd;
			ZeroMemory(&bd, sizeof(bd));
			bd.Usage = D3D11_USAGE_DEFAULT;			
			bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
			bd.CPUAccessFlags = 0;
			bd.ByteWidth = sizeof(Matrix44);
			ID3D11Buffer* pMVP = NULL;
			DX_ASSERT(m_Device->CreateBuffer(&bd, NULL, &pMVP));
			m_MVPBuffer = pMVP;
			bd.ByteWidth = sizeof(Matrix44);
			ID3D11Buffer* pTextureTransformBuffer = NULL;
			DX_ASSERT(m_Device->CreateBuffer(&bd, NULL, &pTextureTransformBuffer));
			m_TextureTransformBuffer = pTextureTransformBuffer;
			bd.ByteWidth = sizeof(Color);
			ID3D11Buffer* pMaterialBuffer = NULL;
			DX_ASSERT(m_Device->CreateBuffer(&bd, NULL, &pMaterialBuffer));
			m_MaterialBuffer = pMaterialBuffer;

			// Create the texture samplers
			D3D11_SAMPLER_DESC sampDesc;
			ZeroMemory( &sampDesc, sizeof(sampDesc) );
			sampDesc.Filter = D3D11_FILTER_MIN_MAG_MIP_LINEAR;
			sampDesc.AddressU = D3D11_TEXTURE_ADDRESS_WRAP;
			sampDesc.AddressV = D3D11_TEXTURE_ADDRESS_WRAP;
			sampDesc.AddressW = D3D11_TEXTURE_ADDRESS_WRAP;
			sampDesc.ComparisonFunc = D3D11_COMPARISON_NEVER;
			sampDesc.MinLOD = 0;
			sampDesc.MaxLOD = D3D11_FLOAT32_MAX;
			ID3D11SamplerState* pSampler = NULL;
			DX_ASSERT(m_Device->CreateSamplerState(&sampDesc, &pSampler));
			m_TextureSamplerLinear = pSampler;

			// Create blend state
			ZeroMemory(&m_BlendDesc, sizeof(D3D11_BLEND_DESC));	
			m_BlendDesc.RenderTarget[0].BlendEnable = false;
			m_BlendDesc.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC_ALPHA;
			m_BlendDesc.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC_ALPHA;
			m_BlendDesc.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
			m_BlendDesc.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ZERO;
			m_BlendDesc.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;
			m_BlendDesc.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
			m_BlendDesc.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL;
			ID3D11BlendState* pBlendState = NULL;
			DX_ASSERT(m_Device->CreateBlendState(&m_BlendDesc, &pBlendState));
			m_BlendState[m_BlendDesc.RenderTarget[0].BlendEnable][m_BlendDesc.RenderTarget[0].SrcBlend][m_BlendDesc.RenderTarget[0].DestBlend] = pBlendState;

			// Create depth stencil state
			ZeroMemory(&m_DSDesc, sizeof(D3D11_DEPTH_STENCIL_DESC));
			m_DSDesc.DepthEnable = true;
			m_DSDesc.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
			m_DSDesc.DepthFunc = D3D11_COMPARISON_LESS;
			m_DSDesc.StencilEnable = false;
			ID3D11DepthStencilState* pDepthStencilState = NULL;
			DX_ASSERT(m_Device->CreateDepthStencilState(&m_DSDesc, &pDepthStencilState));
			m_DepthStencilState[m_DSDesc.DepthEnable][m_DSDesc.DepthWriteMask][m_DSDesc.DepthFunc] = pDepthStencilState;

			// Create the rasterizer state
			ZeroMemory(&m_RSDesc, sizeof(D3D11_RASTERIZER_DESC));
			m_RSDesc.AntialiasedLineEnable = false;
			m_RSDesc.CullMode = D3D11_CULL_BACK;
			m_RSDesc.DepthBias = 0;
			m_RSDesc.DepthBiasClamp = 0.0f;
			m_RSDesc.DepthClipEnable = true;
			m_RSDesc.FillMode = D3D11_FILL_SOLID;
			m_RSDesc.FrontCounterClockwise = false;
			m_RSDesc.MultisampleEnable = false;
			m_RSDesc.ScissorEnable = false;
			m_RSDesc.SlopeScaledDepthBias = 0.0f;
			ID3D11RasterizerState* pRasterizerState = NULL;
			DX_ASSERT(m_Device->CreateRasterizerState(&m_RSDesc, &pRasterizerState));
			m_RasterizerState[m_RSDesc.FrontCounterClockwise][m_RSDesc.FillMode][m_RSDesc.CullMode] = pRasterizerState;

			SetCullMode(CM_CounterClockWise);
		}

		super::ResizeScreen(newSize);
	}