Ejemplo n.º 1
0
// Runs forward propagation of activations on the input line.
// See NetworkCpp for a detailed discussion of the arguments.
void Maxpool::Forward(bool debug, const NetworkIO& input,
                      const TransposedArray* input_transpose,
                      NetworkScratch* scratch, NetworkIO* output) {
  output->ResizeScaled(input, x_scale_, y_scale_, no_);
  maxes_.ResizeNoInit(output->Width(), ni_);
  back_map_ = input.stride_map();

  StrideMap::Index dest_index(output->stride_map());
  do {
    int out_t = dest_index.t();
    StrideMap::Index src_index(input.stride_map(), dest_index.index(FD_BATCH),
                               dest_index.index(FD_HEIGHT) * y_scale_,
                               dest_index.index(FD_WIDTH) * x_scale_);
    // Find the max input out of x_scale_ groups of y_scale_ inputs.
    // Do it independently for each input dimension.
    int* max_line = maxes_[out_t];
    int in_t = src_index.t();
    output->CopyTimeStepFrom(out_t, input, in_t);
    for (int i = 0; i < ni_; ++i) {
      max_line[i] = in_t;
    }
    for (int x = 0; x < x_scale_; ++x) {
      for (int y = 0; y < y_scale_; ++y) {
        StrideMap::Index src_xy(src_index);
        if (src_xy.AddOffset(x, FD_WIDTH) && src_xy.AddOffset(y, FD_HEIGHT)) {
          output->MaxpoolTimeStep(out_t, input, src_xy.t(), max_line);
        }
      }
    }
  } while (dest_index.Increment());
}
Ejemplo n.º 2
0
// Runs forward propagation of activations on the input line.
// See NetworkCpp for a detailed discussion of the arguments.
void Reconfig::Forward(bool debug, const NetworkIO& input,
                       const TransposedArray* input_transpose,
                       NetworkScratch* scratch, NetworkIO* output) {
  output->ResizeScaled(input, x_scale_, y_scale_, no_);
  back_map_ = input.stride_map();
  StrideMap::Index dest_index(output->stride_map());
  do {
    int out_t = dest_index.t();
    StrideMap::Index src_index(input.stride_map(), dest_index.index(FD_BATCH),
                               dest_index.index(FD_HEIGHT) * y_scale_,
                               dest_index.index(FD_WIDTH) * x_scale_);
    // Stack x_scale_ groups of y_scale_ inputs together.
    for (int x = 0; x < x_scale_; ++x) {
      for (int y = 0; y < y_scale_; ++y) {
        StrideMap::Index src_xy(src_index);
        if (src_xy.AddOffset(x, FD_WIDTH) && src_xy.AddOffset(y, FD_HEIGHT)) {
          output->CopyTimeStepGeneral(out_t, (x * y_scale_ + y) * ni_, ni_,
                                      input, src_xy.t(), 0);
        }
      }
    }
  } while (dest_index.Increment());
}
Ejemplo n.º 3
0
// Runs backward propagation of errors on the deltas line.
// See NetworkCpp for a detailed discussion of the arguments.
bool Reconfig::Backward(bool debug, const NetworkIO& fwd_deltas,
                        NetworkScratch* scratch,
                        NetworkIO* back_deltas) {
  back_deltas->ResizeToMap(fwd_deltas.int_mode(), back_map_, ni_);
  StrideMap::Index src_index(fwd_deltas.stride_map());
  do {
    int in_t = src_index.t();
    StrideMap::Index dest_index(back_deltas->stride_map(),
                                src_index.index(FD_BATCH),
                                src_index.index(FD_HEIGHT) * y_scale_,
                                src_index.index(FD_WIDTH) * x_scale_);
    // Unstack x_scale_ groups of y_scale_ inputs that are together.
    for (int x = 0; x < x_scale_; ++x) {
      for (int y = 0; y < y_scale_; ++y) {
        StrideMap::Index dest_xy(dest_index);
        if (dest_xy.AddOffset(x, FD_WIDTH) && dest_xy.AddOffset(y, FD_HEIGHT)) {
          back_deltas->CopyTimeStepGeneral(dest_xy.t(), 0, ni_, fwd_deltas,
                                           in_t, (x * y_scale_ + y) * ni_);
        }
      }
    }
  } while (src_index.Increment());
  return needs_to_backprop_;
}
Ejemplo n.º 4
0
// Runs backward propagation of errors on the deltas line.
// See NetworkCpp for a detailed discussion of the arguments.
bool LSTM::Backward(bool debug, const NetworkIO& fwd_deltas,
                    NetworkScratch* scratch,
                    NetworkIO* back_deltas) {
  if (debug) DisplayBackward(fwd_deltas);
  back_deltas->ResizeToMap(fwd_deltas.int_mode(), input_map_, ni_);
  // ======Scratch space.======
  // Output errors from deltas with recurrence from sourceerr.
  NetworkScratch::FloatVec outputerr;
  outputerr.Init(ns_, scratch);
  // Recurrent error in the state/source.
  NetworkScratch::FloatVec curr_stateerr, curr_sourceerr;
  curr_stateerr.Init(ns_, scratch);
  curr_sourceerr.Init(na_, scratch);
  ZeroVector<double>(ns_, curr_stateerr);
  ZeroVector<double>(na_, curr_sourceerr);
  // Errors in the gates.
  NetworkScratch::FloatVec gate_errors[WT_COUNT];
  for (int g = 0; g < WT_COUNT; ++g) gate_errors[g].Init(ns_, scratch);
  // Rotating buffers of width buf_width allow storage of the recurrent time-
  // steps used only for true 2-D. Stores one full strip of the major direction.
  int buf_width = Is2D() ? input_map_.Size(FD_WIDTH) : 1;
  GenericVector<NetworkScratch::FloatVec> stateerr, sourceerr;
  if (Is2D()) {
    stateerr.init_to_size(buf_width, NetworkScratch::FloatVec());
    sourceerr.init_to_size(buf_width, NetworkScratch::FloatVec());
    for (int t = 0; t < buf_width; ++t) {
      stateerr[t].Init(ns_, scratch);
      sourceerr[t].Init(na_, scratch);
      ZeroVector<double>(ns_, stateerr[t]);
      ZeroVector<double>(na_, sourceerr[t]);
    }
  }
  // Parallel-generated sourceerr from each of the gates.
  NetworkScratch::FloatVec sourceerr_temps[WT_COUNT];
  for (int w = 0; w < WT_COUNT; ++w)
    sourceerr_temps[w].Init(na_, scratch);
  int width = input_width_;
  // Transposed gate errors stored over all timesteps for sum outer.
  NetworkScratch::GradientStore gate_errors_t[WT_COUNT];
  for (int w = 0; w < WT_COUNT; ++w) {
    gate_errors_t[w].Init(ns_, width, scratch);
  }
  // Used only if softmax_ != NULL.
  NetworkScratch::FloatVec softmax_errors;
  NetworkScratch::GradientStore softmax_errors_t;
  if (softmax_ != NULL) {
    softmax_errors.Init(no_, scratch);
    softmax_errors_t.Init(no_, width, scratch);
  }
  double state_clip = Is2D() ? 9.0 : 4.0;
#if DEBUG_DETAIL > 1
  tprintf("fwd_deltas:%s\n", name_.string());
  fwd_deltas.Print(10);
#endif
  StrideMap::Index dest_index(input_map_);
  dest_index.InitToLast();
  // Used only by NT_LSTM_SUMMARY.
  StrideMap::Index src_index(fwd_deltas.stride_map());
  src_index.InitToLast();
  do {
    int t = dest_index.t();
    bool at_last_x = dest_index.IsLast(FD_WIDTH);
    // up_pos is the 2-D back step, down_pos is the 2-D fwd step, and are only
    // valid if >= 0, which is true if 2d and not on the top/bottom.
    int up_pos = -1;
    int down_pos = -1;
    if (Is2D()) {
      if (dest_index.index(FD_HEIGHT) > 0) {
        StrideMap::Index up_index(dest_index);
        if (up_index.AddOffset(-1, FD_HEIGHT)) up_pos = up_index.t();
      }
      if (!dest_index.IsLast(FD_HEIGHT)) {
        StrideMap::Index down_index(dest_index);
        if (down_index.AddOffset(1, FD_HEIGHT)) down_pos = down_index.t();
      }
    }
    // Index of the 2-D revolving buffers (sourceerr, stateerr).
    int mod_t = Modulo(t, buf_width);      // Current timestep.
    // Zero the state in the major direction only at the end of every row.
    if (at_last_x) {
      ZeroVector<double>(na_, curr_sourceerr);
      ZeroVector<double>(ns_, curr_stateerr);
    }
    // Setup the outputerr.
    if (type_ == NT_LSTM_SUMMARY) {
      if (dest_index.IsLast(FD_WIDTH)) {
        fwd_deltas.ReadTimeStep(src_index.t(), outputerr);
        src_index.Decrement();
      } else {
        ZeroVector<double>(ns_, outputerr);
      }
    } else if (softmax_ == NULL) {
      fwd_deltas.ReadTimeStep(t, outputerr);
    } else {
      softmax_->BackwardTimeStep(fwd_deltas, t, softmax_errors,
                                 softmax_errors_t.get(), outputerr);
    }
    if (!at_last_x)
      AccumulateVector(ns_, curr_sourceerr + ni_ + nf_, outputerr);
    if (down_pos >= 0)
      AccumulateVector(ns_, sourceerr[mod_t] + ni_ + nf_ + ns_, outputerr);
    // Apply the 1-d forget gates.
    if (!at_last_x) {
      const float* next_node_gf1 = node_values_[GF1].f(t + 1);
      for (int i = 0; i < ns_; ++i) {
        curr_stateerr[i] *= next_node_gf1[i];
      }
    }
    if (Is2D() && t + 1 < width) {
      for (int i = 0; i < ns_; ++i) {
        if (which_fg_[t + 1][i] != 1) curr_stateerr[i] = 0.0;
      }
      if (down_pos >= 0) {
        const float* right_node_gfs = node_values_[GFS].f(down_pos);
        const double* right_stateerr = stateerr[mod_t];
        for (int i = 0; i < ns_; ++i) {
          if (which_fg_[down_pos][i] == 2) {
            curr_stateerr[i] += right_stateerr[i] * right_node_gfs[i];
          }
        }
      }
    }
    state_.FuncMultiply3Add<HPrime>(node_values_[GO], t, outputerr,
                                    curr_stateerr);
    // Clip stateerr_ to a sane range.
    ClipVector<double>(ns_, -state_clip, state_clip, curr_stateerr);
#if DEBUG_DETAIL > 1
    if (t + 10 > width) {
      tprintf("t=%d, stateerr=", t);
      for (int i = 0; i < ns_; ++i)
        tprintf(" %g,%g,%g", curr_stateerr[i], outputerr[i],
                curr_sourceerr[ni_ + nf_ + i]);
      tprintf("\n");
    }
#endif
    // Matrix multiply to get the source errors.
    PARALLEL_IF_OPENMP(GFS)

    // Cell inputs.
    node_values_[CI].FuncMultiply3<GPrime>(t, node_values_[GI], t,
                                           curr_stateerr, gate_errors[CI]);
    ClipVector(ns_, -kErrClip, kErrClip, gate_errors[CI].get());
    gate_weights_[CI].VectorDotMatrix(gate_errors[CI], sourceerr_temps[CI]);
    gate_errors_t[CI].get()->WriteStrided(t, gate_errors[CI]);

    SECTION_IF_OPENMP
    // Input Gates.
    node_values_[GI].FuncMultiply3<FPrime>(t, node_values_[CI], t,
                                           curr_stateerr, gate_errors[GI]);
    ClipVector(ns_, -kErrClip, kErrClip, gate_errors[GI].get());
    gate_weights_[GI].VectorDotMatrix(gate_errors[GI], sourceerr_temps[GI]);
    gate_errors_t[GI].get()->WriteStrided(t, gate_errors[GI]);

    SECTION_IF_OPENMP
    // 1-D forget Gates.
    if (t > 0) {
      node_values_[GF1].FuncMultiply3<FPrime>(t, state_, t - 1, curr_stateerr,
                                              gate_errors[GF1]);
      ClipVector(ns_, -kErrClip, kErrClip, gate_errors[GF1].get());
      gate_weights_[GF1].VectorDotMatrix(gate_errors[GF1],
                                         sourceerr_temps[GF1]);
    } else {
      memset(gate_errors[GF1], 0, ns_ * sizeof(gate_errors[GF1][0]));
      memset(sourceerr_temps[GF1], 0, na_ * sizeof(*sourceerr_temps[GF1]));
    }
    gate_errors_t[GF1].get()->WriteStrided(t, gate_errors[GF1]);

    // 2-D forget Gates.
    if (up_pos >= 0) {
      node_values_[GFS].FuncMultiply3<FPrime>(t, state_, up_pos, curr_stateerr,
                                              gate_errors[GFS]);
      ClipVector(ns_, -kErrClip, kErrClip, gate_errors[GFS].get());
      gate_weights_[GFS].VectorDotMatrix(gate_errors[GFS],
                                         sourceerr_temps[GFS]);
    } else {
      memset(gate_errors[GFS], 0, ns_ * sizeof(gate_errors[GFS][0]));
      memset(sourceerr_temps[GFS], 0, na_ * sizeof(*sourceerr_temps[GFS]));
    }
    if (Is2D()) gate_errors_t[GFS].get()->WriteStrided(t, gate_errors[GFS]);

    SECTION_IF_OPENMP
    // Output gates.
    state_.Func2Multiply3<HFunc, FPrime>(node_values_[GO], t, outputerr,
                                         gate_errors[GO]);
    ClipVector(ns_, -kErrClip, kErrClip, gate_errors[GO].get());
    gate_weights_[GO].VectorDotMatrix(gate_errors[GO], sourceerr_temps[GO]);
    gate_errors_t[GO].get()->WriteStrided(t, gate_errors[GO]);
    END_PARALLEL_IF_OPENMP

    SumVectors(na_, sourceerr_temps[CI], sourceerr_temps[GI],
               sourceerr_temps[GF1], sourceerr_temps[GO], sourceerr_temps[GFS],
               curr_sourceerr);
    back_deltas->WriteTimeStep(t, curr_sourceerr);
    // Save states for use by the 2nd dimension only if needed.
    if (Is2D()) {
      CopyVector(ns_, curr_stateerr, stateerr[mod_t]);
      CopyVector(na_, curr_sourceerr, sourceerr[mod_t]);
    }
  } while (dest_index.Decrement());
#if DEBUG_DETAIL > 2
  for (int w = 0; w < WT_COUNT; ++w) {
    tprintf("%s gate errors[%d]\n", name_.string(), w);
    gate_errors_t[w].get()->PrintUnTransposed(10);
  }
#endif
  // Transposed source_ used to speed-up SumOuter.
  NetworkScratch::GradientStore source_t, state_t;
  source_t.Init(na_, width, scratch);
  source_.Transpose(source_t.get());
  state_t.Init(ns_, width, scratch);
  state_.Transpose(state_t.get());
#ifdef _OPENMP
#pragma omp parallel for num_threads(GFS) if (!Is2D())
#endif
  for (int w = 0; w < WT_COUNT; ++w) {
    if (w == GFS && !Is2D()) continue;
    gate_weights_[w].SumOuterTransposed(*gate_errors_t[w], *source_t, false);
  }
  if (softmax_ != NULL) {
    softmax_->FinishBackward(*softmax_errors_t);
  }
  return needs_to_backprop_;
}
Ejemplo n.º 5
0
// Runs forward propagation of activations on the input line.
// See NetworkCpp for a detailed discussion of the arguments.
void LSTM::Forward(bool debug, const NetworkIO& input,
                   const TransposedArray* input_transpose,
                   NetworkScratch* scratch, NetworkIO* output) {
  input_map_ = input.stride_map();
  input_width_ = input.Width();
  if (softmax_ != NULL)
    output->ResizeFloat(input, no_);
  else if (type_ == NT_LSTM_SUMMARY)
    output->ResizeXTo1(input, no_);
  else
    output->Resize(input, no_);
  ResizeForward(input);
  // Temporary storage of forward computation for each gate.
  NetworkScratch::FloatVec temp_lines[WT_COUNT];
  for (int i = 0; i < WT_COUNT; ++i) temp_lines[i].Init(ns_, scratch);
  // Single timestep buffers for the current/recurrent output and state.
  NetworkScratch::FloatVec curr_state, curr_output;
  curr_state.Init(ns_, scratch);
  ZeroVector<double>(ns_, curr_state);
  curr_output.Init(ns_, scratch);
  ZeroVector<double>(ns_, curr_output);
  // Rotating buffers of width buf_width allow storage of the state and output
  // for the other dimension, used only when working in true 2D mode. The width
  // is enough to hold an entire strip of the major direction.
  int buf_width = Is2D() ? input_map_.Size(FD_WIDTH) : 1;
  GenericVector<NetworkScratch::FloatVec> states, outputs;
  if (Is2D()) {
    states.init_to_size(buf_width, NetworkScratch::FloatVec());
    outputs.init_to_size(buf_width, NetworkScratch::FloatVec());
    for (int i = 0; i < buf_width; ++i) {
      states[i].Init(ns_, scratch);
      ZeroVector<double>(ns_, states[i]);
      outputs[i].Init(ns_, scratch);
      ZeroVector<double>(ns_, outputs[i]);
    }
  }
  // Used only if a softmax LSTM.
  NetworkScratch::FloatVec softmax_output;
  NetworkScratch::IO int_output;
  if (softmax_ != NULL) {
    softmax_output.Init(no_, scratch);
    ZeroVector<double>(no_, softmax_output);
    int rounded_softmax_inputs = gate_weights_[CI].RoundInputs(ns_);
    if (input.int_mode())
      int_output.Resize2d(true, 1, rounded_softmax_inputs, scratch);
    softmax_->SetupForward(input, NULL);
  }
  NetworkScratch::FloatVec curr_input;
  curr_input.Init(na_, scratch);
  StrideMap::Index src_index(input_map_);
  // Used only by NT_LSTM_SUMMARY.
  StrideMap::Index dest_index(output->stride_map());
  do {
    int t = src_index.t();
    // True if there is a valid old state for the 2nd dimension.
    bool valid_2d = Is2D();
    if (valid_2d) {
      StrideMap::Index dim_index(src_index);
      if (!dim_index.AddOffset(-1, FD_HEIGHT)) valid_2d = false;
    }
    // Index of the 2-D revolving buffers (outputs, states).
    int mod_t = Modulo(t, buf_width);      // Current timestep.
    // Setup the padded input in source.
    source_.CopyTimeStepGeneral(t, 0, ni_, input, t, 0);
    if (softmax_ != NULL) {
      source_.WriteTimeStepPart(t, ni_, nf_, softmax_output);
    }
    source_.WriteTimeStepPart(t, ni_ + nf_, ns_, curr_output);
    if (Is2D())
      source_.WriteTimeStepPart(t, ni_ + nf_ + ns_, ns_, outputs[mod_t]);
    if (!source_.int_mode()) source_.ReadTimeStep(t, curr_input);
    // Matrix multiply the inputs with the source.
    PARALLEL_IF_OPENMP(GFS)
    // It looks inefficient to create the threads on each t iteration, but the
    // alternative of putting the parallel outside the t loop, a single around
    // the t-loop and then tasks in place of the sections is a *lot* slower.
    // Cell inputs.
    if (source_.int_mode())
      gate_weights_[CI].MatrixDotVector(source_.i(t), temp_lines[CI]);
    else
      gate_weights_[CI].MatrixDotVector(curr_input, temp_lines[CI]);
    FuncInplace<GFunc>(ns_, temp_lines[CI]);

    SECTION_IF_OPENMP
    // Input Gates.
    if (source_.int_mode())
      gate_weights_[GI].MatrixDotVector(source_.i(t), temp_lines[GI]);
    else
      gate_weights_[GI].MatrixDotVector(curr_input, temp_lines[GI]);
    FuncInplace<FFunc>(ns_, temp_lines[GI]);

    SECTION_IF_OPENMP
    // 1-D forget gates.
    if (source_.int_mode())
      gate_weights_[GF1].MatrixDotVector(source_.i(t), temp_lines[GF1]);
    else
      gate_weights_[GF1].MatrixDotVector(curr_input, temp_lines[GF1]);
    FuncInplace<FFunc>(ns_, temp_lines[GF1]);

    // 2-D forget gates.
    if (Is2D()) {
      if (source_.int_mode())
        gate_weights_[GFS].MatrixDotVector(source_.i(t), temp_lines[GFS]);
      else
        gate_weights_[GFS].MatrixDotVector(curr_input, temp_lines[GFS]);
      FuncInplace<FFunc>(ns_, temp_lines[GFS]);
    }

    SECTION_IF_OPENMP
    // Output gates.
    if (source_.int_mode())
      gate_weights_[GO].MatrixDotVector(source_.i(t), temp_lines[GO]);
    else
      gate_weights_[GO].MatrixDotVector(curr_input, temp_lines[GO]);
    FuncInplace<FFunc>(ns_, temp_lines[GO]);
    END_PARALLEL_IF_OPENMP

    // Apply forget gate to state.
    MultiplyVectorsInPlace(ns_, temp_lines[GF1], curr_state);
    if (Is2D()) {
      // Max-pool the forget gates (in 2-d) instead of blindly adding.
      inT8* which_fg_col = which_fg_[t];
      memset(which_fg_col, 1, ns_ * sizeof(which_fg_col[0]));
      if (valid_2d) {
        const double* stepped_state = states[mod_t];
        for (int i = 0; i < ns_; ++i) {
          if (temp_lines[GF1][i] < temp_lines[GFS][i]) {
            curr_state[i] = temp_lines[GFS][i] * stepped_state[i];
            which_fg_col[i] = 2;
          }
        }
      }
    }
    MultiplyAccumulate(ns_, temp_lines[CI], temp_lines[GI], curr_state);
    // Clip curr_state to a sane range.
    ClipVector<double>(ns_, -kStateClip, kStateClip, curr_state);
    if (IsTraining()) {
      // Save the gate node values.
      node_values_[CI].WriteTimeStep(t, temp_lines[CI]);
      node_values_[GI].WriteTimeStep(t, temp_lines[GI]);
      node_values_[GF1].WriteTimeStep(t, temp_lines[GF1]);
      node_values_[GO].WriteTimeStep(t, temp_lines[GO]);
      if (Is2D()) node_values_[GFS].WriteTimeStep(t, temp_lines[GFS]);
    }
    FuncMultiply<HFunc>(curr_state, temp_lines[GO], ns_, curr_output);
    if (IsTraining()) state_.WriteTimeStep(t, curr_state);
    if (softmax_ != NULL) {
      if (input.int_mode()) {
        int_output->WriteTimeStepPart(0, 0, ns_, curr_output);
        softmax_->ForwardTimeStep(NULL, int_output->i(0), t, softmax_output);
      } else {
        softmax_->ForwardTimeStep(curr_output, NULL, t, softmax_output);
      }
      output->WriteTimeStep(t, softmax_output);
      if (type_ == NT_LSTM_SOFTMAX_ENCODED) {
        CodeInBinary(no_, nf_, softmax_output);
      }
    } else if (type_ == NT_LSTM_SUMMARY) {
      // Output only at the end of a row.
      if (src_index.IsLast(FD_WIDTH)) {
        output->WriteTimeStep(dest_index.t(), curr_output);
        dest_index.Increment();
      }
    } else {
      output->WriteTimeStep(t, curr_output);
    }
    // Save states for use by the 2nd dimension only if needed.
    if (Is2D()) {
      CopyVector(ns_, curr_state, states[mod_t]);
      CopyVector(ns_, curr_output, outputs[mod_t]);
    }
    // Always zero the states at the end of every row, but only for the major
    // direction. The 2-D state remains intact.
    if (src_index.IsLast(FD_WIDTH)) {
      ZeroVector<double>(ns_, curr_state);
      ZeroVector<double>(ns_, curr_output);
    }
  } while (src_index.Increment());
#if DEBUG_DETAIL > 0
  tprintf("Source:%s\n", name_.string());
  source_.Print(10);
  tprintf("State:%s\n", name_.string());
  state_.Print(10);
  tprintf("Output:%s\n", name_.string());
  output->Print(10);
#endif
  if (debug) DisplayForward(*output);
}