Ejemplo n.º 1
0
void dgSolver::CalculateJointForces(const dgBodyCluster& cluster, dgBodyInfo* const bodyArray, dgJointInfo* const jointArray, dgFloat32 timestep)
{
	m_cluster = &cluster;
	m_bodyArray = bodyArray;
	m_jointArray = jointArray;
	m_timestep = timestep;
	m_invTimestep = (timestep > dgFloat32(0.0f)) ? dgFloat32(1.0f) / timestep : dgFloat32(0.0f);

	m_invStepRK = dgFloat32 (0.25f);
	m_timestepRK = m_timestep * m_invStepRK;
	m_invTimestepRK = m_invTimestep * dgFloat32 (4.0f);

	m_threadCounts = m_world->GetThreadCount();
	m_solverPasses = m_world->GetSolverIterations();

	dgInt32 mask = -dgInt32(DG_SOA_WORD_GROUP_SIZE - 1);
	m_jointCount = ((m_cluster->m_jointCount + DG_SOA_WORD_GROUP_SIZE - 1) & mask) / DG_SOA_WORD_GROUP_SIZE;

	m_bodyProxyArray = dgAlloca(dgBodyProxy, cluster.m_bodyCount);
	m_bodyJacobiansPairs = dgAlloca(dgBodyJacobianPair, cluster.m_jointCount * 2);
	m_soaRowStart = dgAlloca(dgInt32, cluster.m_jointCount / DG_SOA_WORD_GROUP_SIZE + 1);

	InitWeights();
	InitBodyArray();
	InitJacobianMatrix();
	CalculateForces();
}
void dgWorldDynamicUpdate::CalculateReactionForcesParallel (const dgIsland* const island, dgFloat32 timestep) const
{
	dgParallelSolverSyncData syncData;

	dgWorld* const world = (dgWorld*) this;

	syncData.m_bodyLocks = dgAlloca (dgInt32, island->m_bodyCount + 1024);
	syncData.m_jointConflicts = dgAlloca (dgParallelSolverSyncData::dgParallelJointMap, island->m_jointCount + 1024);
	memset (syncData.m_bodyLocks, 0, island->m_bodyCount * sizeof (dgInt32));

	dgInt32 bodyCount = island->m_bodyCount;
	dgInt32 jointsCount = island->m_jointCount;
	dgJointInfo* const constraintArrayPtr = (dgJointInfo*) &world->m_jointsMemory[0];
	dgJointInfo* const constraintArray = &constraintArrayPtr[island->m_jointStart];

	LinearizeJointParallelArray (&syncData, constraintArray, island);
	
	dgJacobian* const internalForces = &world->m_solverMemory.m_internalForces[0];
	internalForces[0].m_linear = dgVector::m_zero;
	internalForces[0].m_angular = dgVector::m_zero;

	const dgInt32 maxPasses = 4;
	syncData.m_timestep = timestep;
	syncData.m_invTimestep = (timestep > dgFloat32 (0.0f)) ? dgFloat32 (1.0f) / timestep : dgFloat32 (0.0f);
	syncData.m_invStepRK = (dgFloat32 (1.0f) / dgFloat32 (maxPasses));
	syncData.m_timestepRK = syncData.m_timestep * syncData.m_invStepRK;
	syncData.m_invTimestepRK = syncData.m_invTimestep * dgFloat32 (maxPasses);
	syncData.m_maxPasses = maxPasses;
	syncData.m_passes = world->m_solverMode;

	syncData.m_bodyCount = bodyCount;
	syncData.m_jointCount = jointsCount;
	syncData.m_atomicIndex = 0;
	syncData.m_island = island;

	InitilizeBodyArrayParallel (&syncData);
	BuildJacobianMatrixParallel (&syncData);
	SolverInitInternalForcesParallel (&syncData);
	CalculateForcesGameModeParallel (&syncData);
	IntegrateIslandParallel(&syncData); 
}
void dgWorldDynamicUpdate::CalculateClusterReactionForces(const dgBodyCluster* const cluster, dgInt32 threadID, dgFloat32 timestep, dgFloat32 maxAccNorm) const
{
	dTimeTrackerEvent(__FUNCTION__);
	dgWorld* const world = (dgWorld*) this;
	const dgInt32 bodyCount = cluster->m_bodyCount;
	//	const dgInt32 jointCount = island->m_jointCount;
	const dgInt32 jointCount = cluster->m_activeJointCount;

	dgJacobian* const internalForces = &m_solverMemory.m_internalForcesBuffer[cluster->m_bodyStart];
	dgBodyInfo* const bodyArrayPtr = (dgBodyInfo*)&world->m_bodiesMemory[0];
	dgJointInfo* const constraintArrayPtr = (dgJointInfo*)&world->m_jointsMemory[0];

	dgBodyInfo* const bodyArray = &bodyArrayPtr[cluster->m_bodyStart];
	dgJointInfo* const constraintArray = &constraintArrayPtr[cluster->m_jointStart];
	dgJacobianMatrixElement* const matrixRow = &m_solverMemory.m_jacobianBuffer[cluster->m_rowsStart];

	const dgInt32 derivativesEvaluationsRK4 = 4;
	dgFloat32 invTimestep = (timestep > dgFloat32(0.0f)) ? dgFloat32(1.0f) / timestep : dgFloat32(0.0f);
	dgFloat32 invStepRK = (dgFloat32(1.0f) / dgFloat32(derivativesEvaluationsRK4));
	dgFloat32 timestepRK = timestep * invStepRK;
	dgFloat32 invTimestepRK = invTimestep * dgFloat32(derivativesEvaluationsRK4);
	dgAssert(bodyArray[0].m_body == world->m_sentinelBody);

	dgVector speedFreeze2(world->m_freezeSpeed2 * dgFloat32(0.1f));
	dgVector freezeOmega2(world->m_freezeOmega2 * dgFloat32(0.1f));

	dgJointAccelerationDecriptor joindDesc;
	joindDesc.m_timeStep = timestepRK;
	joindDesc.m_invTimeStep = invTimestepRK;
	joindDesc.m_firstPassCoefFlag = dgFloat32(0.0f);

	dgInt32 skeletonCount = 0;
	dgInt32 skeletonMemorySizeInBytes = 0;
	dgInt32 lru = dgAtomicExchangeAndAdd(&dgSkeletonContainer::m_lruMarker, 1);
	dgSkeletonContainer* skeletonArray[DG_MAX_SKELETON_JOINT_COUNT];
	dgInt32 memorySizes[DG_MAX_SKELETON_JOINT_COUNT];
	for (dgInt32 i = 1; i < bodyCount; i++) {
		dgDynamicBody* const body = (dgDynamicBody*)bodyArray[i].m_body;
		dgSkeletonContainer* const container = body->GetSkeleton();
		if (container && (container->m_lru != lru)) {
			container->m_lru = lru;
			memorySizes[skeletonCount] = container->GetMemoryBufferSizeInBytes(constraintArray, matrixRow);
			skeletonMemorySizeInBytes += memorySizes[skeletonCount];
			skeletonArray[skeletonCount] = container;
			skeletonCount++;
			dgAssert(skeletonCount < dgInt32(sizeof(skeletonArray) / sizeof(skeletonArray[0])));
		}
	}

	dgInt8* const skeletonMemory = (dgInt8*)dgAlloca(dgVector, skeletonMemorySizeInBytes / sizeof(dgVector));
	dgAssert((dgInt64(skeletonMemory) & 0x0f) == 0);

	skeletonMemorySizeInBytes = 0;
	for (dgInt32 i = 0; i < skeletonCount; i++) {
		skeletonArray[i]->InitMassMatrix(constraintArray, matrixRow, &skeletonMemory[skeletonMemorySizeInBytes]);
		skeletonMemorySizeInBytes += memorySizes[i];
	}

	const dgInt32 passes = world->m_solverMode;
	for (dgInt32 step = 0; step < derivativesEvaluationsRK4; step++) {

		for (dgInt32 i = 0; i < jointCount; i++) {
			dgJointInfo* const jointInfo = &constraintArray[i];
			dgConstraint* const constraint = jointInfo->m_joint;
			joindDesc.m_rowsCount = jointInfo->m_pairCount;
			joindDesc.m_rowMatrix = &matrixRow[jointInfo->m_pairStart];
			constraint->JointAccelerations(&joindDesc);
		}
		joindDesc.m_firstPassCoefFlag = dgFloat32(1.0f);

		dgFloat32 accNorm(maxAccNorm * dgFloat32(2.0f));
		for (dgInt32 i = 0; (i < passes) && (accNorm > maxAccNorm); i++) {
			accNorm = dgFloat32(0.0f);
			for (dgInt32 j = 0; j < jointCount; j++) {
				dgJointInfo* const jointInfo = &constraintArray[j];
				dgFloat32 accel = CalculateJointForceGaussSeidel(jointInfo, bodyArray, internalForces, matrixRow, maxAccNorm);
				accNorm = (accel > accNorm) ? accel : accNorm;
			}
		}
		for (dgInt32 j = 0; j < skeletonCount; j++) {
			skeletonArray[j]->CalculateJointForce(constraintArray, bodyArray, internalForces, matrixRow);
		}

		if (timestepRK != dgFloat32(0.0f)) {
			dgVector timestep4(timestepRK);
			for (dgInt32 i = 1; i < bodyCount; i++) {
				dgDynamicBody* const body = (dgDynamicBody*)bodyArray[i].m_body;
				dgAssert(body->m_index == i);
				if (body->IsRTTIType(dgBody::m_dynamicBodyRTTI)) {
					const dgJacobian& forceAndTorque = internalForces[i];
					dgVector force(body->m_externalForce + forceAndTorque.m_linear);
					dgVector torque(body->m_externalTorque + forceAndTorque.m_angular);

					dgVector velocStep((force.Scale4(body->m_invMass.m_w)) * timestep4);
					dgVector omegaStep((body->m_invWorldInertiaMatrix.RotateVector(torque)) * timestep4);
					body->m_veloc += velocStep;
					body->m_omega += omegaStep;

					dgAssert(body->m_veloc.m_w == dgFloat32(0.0f));
					dgAssert(body->m_omega.m_w == dgFloat32(0.0f));
				}
			}
		} else {
			for (dgInt32 i = 1; i < bodyCount; i++) {
				dgDynamicBody* const body = (dgDynamicBody*)bodyArray[i].m_body;
				const dgVector& linearMomentum = internalForces[i].m_linear;
				const dgVector& angularMomentum = internalForces[i].m_angular;

				body->m_veloc += linearMomentum.Scale4(body->m_invMass.m_w);
				body->m_omega += body->m_invWorldInertiaMatrix.RotateVector(angularMomentum);
			}
		}
	}

	dgInt32 hasJointFeeback = 0;
	if (timestepRK != dgFloat32(0.0f)) {
		for (dgInt32 i = 0; i < jointCount; i++) {
			dgJointInfo* const jointInfo = &constraintArray[i];
			dgConstraint* const constraint = jointInfo->m_joint;

			const dgInt32 first = jointInfo->m_pairStart;
			const dgInt32 count = jointInfo->m_pairCount;

			for (dgInt32 j = 0; j < count; j++) {
				dgJacobianMatrixElement* const row = &matrixRow[j + first];
				dgFloat32 val = row->m_force;
				dgAssert(dgCheckFloat(val));
				row->m_jointFeebackForce->m_force = val;
				row->m_jointFeebackForce->m_impact = row->m_maxImpact * timestepRK;
			}
			hasJointFeeback |= (constraint->m_updaFeedbackCallback ? 1 : 0);
		}

		const dgVector invTime(invTimestep);
		const dgVector maxAccNorm2(maxAccNorm * maxAccNorm);
		for (dgInt32 i = 1; i < bodyCount; i++) {
			dgBody* const body = bodyArray[i].m_body;
			CalculateNetAcceleration(body, invTime, maxAccNorm2);
		}
		if (hasJointFeeback) {
			for (dgInt32 i = 0; i < jointCount; i++) {
				if (constraintArray[i].m_joint->m_updaFeedbackCallback) {
					constraintArray[i].m_joint->m_updaFeedbackCallback(*constraintArray[i].m_joint, timestep, threadID);
				}
			}
		}
	} else {
		for (dgInt32 i = 1; i < bodyCount; i++) {
			dgBody* const body = bodyArray[i].m_body;
			dgAssert(body->IsRTTIType(dgBody::m_dynamicBodyRTTI) || body->IsRTTIType(dgBody::m_kinematicBodyRTTI));
			body->m_accel = dgVector::m_zero;
			body->m_alpha = dgVector::m_zero;
		}
	}
}