Ejemplo n.º 1
0
template <typename PointT, typename PointNT> void
pcl::SurfelSmoothing<PointT, PointNT>::smoothCloudIteration (PointCloudInPtr &output_positions,
                                                             NormalCloudPtr &output_normals)
{
  PCL_INFO ("SurfelSmoothing: cloud smoothing iteration starting ...\n");
  tree_->setInputCloud (interm_cloud_);

  output_positions = PointCloudInPtr (new PointCloudIn);
  output_positions->points.resize (interm_cloud_->points.size ());
  output_normals = NormalCloudPtr (new NormalCloud);
  output_normals->points.resize (interm_cloud_->points.size ());

  std::vector<int> nn_indices;
  std::vector<float> nn_distances;

  std::vector<float> diffs (interm_cloud_->points.size ());
  Eigen::Vector4f total_residual = Eigen::Vector4f::Zero ();

  for (size_t i = 0; i < interm_cloud_->points.size (); ++i)
  {
    Eigen::Vector4f smoothed_point  = Eigen::Vector4f::Zero ();
    Eigen::Vector4f smoothed_normal = Eigen::Vector4f::Zero (); 

    // get neighbors
    tree_->radiusSearch (i, scale_, nn_indices, nn_distances);

    float theta_normalization_factor = 0.0;
    Eigen::Vector4f e_residual = Eigen::Vector4f::Zero ();
    for (std::vector<int>::iterator nn_index_it = nn_indices.begin (); nn_index_it != nn_indices.end (); ++nn_index_it)
    {
      float dist = pcl::squaredEuclideanDistance (interm_cloud_->points[i], interm_cloud_->points[*nn_index_it]);
      float theta_i = exp ( (-1) * dist / scale_squared_);
      theta_normalization_factor += theta_i;

      smoothed_normal += theta_i * interm_normals_->points[*nn_index_it].getNormalVector4fMap ();
      e_residual += theta_i * (interm_cloud_->points[i].getVector4fMap () - interm_cloud_->points[*nn_index_it].getVector4fMap ());
    }
    smoothed_normal /= theta_normalization_factor;
    e_residual /= theta_normalization_factor;
    smoothed_point = interm_cloud_->points[i].getVector4fMap () - e_residual.dot (smoothed_normal) * smoothed_normal;
///    smoothed_point = interm_cloud_->points[point_i].getVector3fMap () - e_residual;

    total_residual += e_residual;

    output_positions->points[i].getVector4fMap () = smoothed_point;
    output_normals->points[i].getNormalVector4fMap () = smoothed_normal;

    // Calculate difference
    diffs[i] = smoothed_normal.dot (smoothed_point - interm_cloud_->points[i].getVector4fMap ());
  }

  std::cerr << "Total residual after an iteration: " << total_residual << std::endl;
  PCL_INFO("SurfelSmoothing done iteration\n");
}
Ejemplo n.º 2
0
	bool Segment::operator<(const Segment& other) const
	{
		if (is_empty())
			return true;
		else if (other.is_empty())
			return false;
		std::vector<double> diffs(4);
		diffs[0] = l_ - other.l_;
		diffs[1] = u_ - other.u_;
		diffs[2] = flag2double(other.li_) - flag2double(li_);
		diffs[3] = flag2double(ui_) - flag2double(other.ui_);
		return less_than_helper(diffs);
	}
Ejemplo n.º 3
0
double get_rotational_diffusion_coefficient(
    const algebra::Rotation3Ds &displacements, double dt) {
  Floats diffs(displacements.size() - 1);
  for (unsigned int i = 1; i < displacements.size(); ++i) {
    algebra::Rotation3D orot = displacements[i - 1];
    algebra::Rotation3D crot = displacements[i];
    algebra::Rotation3D diff = crot / orot;
    diffs[i - 1] = algebra::get_axis_and_angle(diff).second;
  }
  double mean = std::accumulate(diffs.begin(), diffs.end(), 0.0) / diffs.size();
  double stdsum = 0;
  for (unsigned int i = 0; i < diffs.size(); ++i) {
    stdsum += algebra::get_squared(diffs[i] - mean);
  }
  double sigma = stdsum / diffs.size();
  return sigma / (6.0 * dt);
}
Ejemplo n.º 4
0
Foam::Tuple2<Foam::label, Foam::scalar> Foam::lduAddressing::band() const
{
    const labelgpuList& owner = lowerAddr();
    const labelgpuList& neighbour = upperAddr();

    labelgpuList cellBandwidth(size(), 0);
    labelgpuList diffs(neighbour.size(),0);

    thrust::transform
    (
        neighbour.begin(),
        neighbour.end(),
        owner.begin(),
        diffs.begin(),
        subtractOperatorFunctor<label,label,label>()
    );

    thrust::transform
    (
        diffs.begin(),
        diffs.end(),
        thrust::make_permutation_iterator
        (
            cellBandwidth.begin(),
            neighbour.begin()
        ),
        thrust::make_permutation_iterator
        (
            cellBandwidth.begin(),
            neighbour.begin()
        ),
        maxBinaryFunctionFunctor<label,label,label>()
    );

    label bandwidth = max(cellBandwidth);

    // Do not use field algebra because of conversion label to scalar
    scalar profile = 
        thrust::reduce
        (
            cellBandwidth.begin(),
            cellBandwidth.end()
        );

    return Tuple2<label, scalar>(bandwidth, profile);
}
Ejemplo n.º 5
0
template <typename PointT, typename PointNT> void
pcl::SurfelSmoothing<PointT, PointNT>::extractSalientFeaturesBetweenScales (PointCloudInPtr &cloud2,
                                                                            NormalCloudPtr &cloud2_normals,
                                                                            boost::shared_ptr<std::vector<int> > &output_features)
{
  if (interm_cloud_->points.size () != cloud2->points.size () || 
      cloud2->points.size () != cloud2_normals->points.size ())
  {
    PCL_ERROR ("[pcl::SurfelSmoothing::extractSalientFeaturesBetweenScales]: Number of points in the clouds does not match.\n");
    return;
  }

  std::vector<float> diffs (cloud2->points.size ());
  for (size_t i = 0; i < cloud2->points.size (); ++i)
    diffs[i] = cloud2_normals->points[i].getNormalVector4fMap ().dot (cloud2->points[i].getVector4fMap () - 
                                                                      interm_cloud_->points[i].getVector4fMap ());

  std::vector<int> nn_indices;
  std::vector<float> nn_distances;

  output_features->resize (cloud2->points.size ());
  for (size_t point_i = 0; point_i < cloud2->points.size (); ++point_i)
  {
    // Get neighbors
    tree_->radiusSearch (point_i, scale_, nn_indices, nn_distances);

    bool largest = true;
    bool smallest = true;
    for (std::vector<int>::iterator nn_index_it = nn_indices.begin (); nn_index_it != nn_indices.end (); ++nn_index_it)
    {
      if (diffs[point_i] < diffs[*nn_index_it])
        largest = false;
      else 
        smallest = false;
    }

    if (largest == true || smallest == true)
      (*output_features)[point_i] = point_i;
  }
}
Ejemplo n.º 6
0
std::vector<std::vector<double> > interpolate(const std::vector<double> &p1,
                                              const std::vector<double> &p2,
                                              double step_size) {
  std::vector<std::vector<double> > interpolation;
  double dist = getLineDistance(p1, p2);
  if (dist > step_size) {
    double fraction = step_size / dist;
    std::vector<double> diffs(p1.size());
    std::vector<double> point(p1.size());
    for (unsigned int i = 0; i < p1.size(); i++) {
      diffs[i] = getAngleBetween(p1[i], p2[i]);
    }
    for (unsigned int i = 1; fraction * i < 1.0; i++) {
      for (unsigned int j = 0; j < point.size(); j++) {
        point[j] =
            p1[j] +
            fraction * i * getDirectionMultiplier(p1[j], p2[j]) * diffs[j];
      }
      interpolation.push_back(point);
    }
  }
  return interpolation;
}
Ejemplo n.º 7
0
int64 problem101(int64 n) {
  if (n <= 0) {
    return 0;
  }

  vector<vector<int64>> diffs((uint32)n + 1, vector<int64>((uint32)n + 1, -1));
  vector<int64> terms((uint32)n + 1);
  for (int64 x = 1; x <= n; x++) {
    int64 sum = 0;
    for (int64 i = 0; i <= n; i++) {
      if (i % 2 == 0) {
        sum += power(x, i);
      } else {
        sum -= power(x, i);
      }
    }
    diffs[0][x] = sum;
  }

  for (int64 term = 1; term < n; term++) {
    for (int64 x = 1; x <= n - term; x++) {
      diffs[term][x] = diffs[term - 1][x + 1] - diffs[term - 1][x];
    }
  }

  int64 diffResult = 0;
  for (int64 term = 1; term <= n; term++) {
    int64 expectedTerm = diffs[0][term];
    for (int64 i = term - 1; i >= 1; i--) {
      expectedTerm += diffs[term - i][i];
    }
    diffResult += expectedTerm;
  }

  return diffResult;
}
Ejemplo n.º 8
0
Results* join_clusters2_restart
(double *x,//array/matrix of data
 SymNoDiag *W,//lower triangle of weight matrix
 unsigned int Px,//problem size
 double lambda,//starting point in regularization path
 double join_thresh, //tolerance for equality of points
 double opt_thresh, //tolerance for optimality
 double lambda_factor,//increase of lambda after optimality
 double smooth,//smoothing parameter
 int maxit,
 int linesearch_freq,//how often to do a linesearch? if 0, never. if
		     //n>0, do n-1 linesearch steps for every
		     //decreasing step size step. set this to 2 if
		     //unsure.
 int linesearch_points,//how many points to check along the gradient
		       //direction. set to 10 if unsure.
 int check_splits,
 int target_cluster,
 int verbose
 ){
  unsigned int N = W->N;
  //W->print();
  double old_lambda=0;
  std::vector<int> rows,rowsj;
  std::vector<int>::iterator rowit,ri,rj;
  std::list< std::vector<int> > clusters,tocheck;
  std::list< std::vector<int> >::iterator it,cj;
  unsigned int i,k,j;
  int tried_restart;
  for(i=0;i<N;i++){
    rows.assign(1,i);
    clusters.push_back(rows);
  }
  double *old_alpha = new double[N*Px];
  double *alpha = new double[N*Px];
  double *xbar = new double[N*Px];
  double *dir = new double[N*Px];
  for(i=0;i<N*Px;i++){
    alpha[i]=xbar[i]=x[i];
  }
  Matrix amat(alpha,N,Px),xmat(x,N,Px);
  SymNoDiag diffs(N);
  diffs.calc_diffs(clusters,amat,nrm2);
  //store initial trivial solution
  Results *results = new Results(N,Px,opt_thresh);
  if(target_cluster==0)results->add(alpha,0,0);
  double weight,diff,step;
  while(clusters.size()>1){
    double grad=opt_thresh;
    int iteration=1;
    tried_restart=0;
    //if we use the general (slower) algorithm for any weights, then
    //split the clusters to individual points
    if(check_splits){
      clusters.clear();
      //reassign original clusters
      for(i=0;i<N;i++){
	rows.assign(1,i);
	clusters.push_back(rows);
      }
      //recopy original xbar
      for(i=0;i<N*Px;i++){
	xbar[i]=x[i];
      }
    }
    while(grad>=opt_thresh){
      //first calc gradients
      grad = 0;
      for(it=clusters.begin();it!=clusters.end();it++){
	rows = *it;
	i = rows[0];
	for(k=0;k<Px;k++){
	  dir[i+k*N] = xbar[i+k*N] - alpha[i+k*N];
	}
	for(cj=clusters.begin();cj!=clusters.end();cj++){
	  if(it!=cj){
	    rowsj = *cj;
	    j=rowsj[0];
	    weight=0;
	    diff = *diffs(i,j);
	    if(diff!=0){
	      if(smooth!=0){
		diff *= diff; //now squared l2 norm
		diff += smooth; //add smoothing parameter under sqrt
		diff = sqrt(diff);//put sqrt back
	      }
	      for(ri=rows.begin();ri!=rows.end();ri++){
		for(rj=rowsj.begin();rj!=rowsj.end();rj++){
		  weight += W->getval(*ri,*rj);
		}
	      }
	      //weight *= lambda / diff / ((double)(N-1)) / ((double)rows.size());
	      weight *= lambda / diff / ((double)rows.size());
	      for(k=0;k<Px;k++){
		dir[i+k*N] += weight * (alpha[j+k*N]-alpha[i+k*N]);
	      }
	    }
	  }
	}
	grad += nrm2(Array(dir+i,N,Px));
      }
      //store this iteration
      //results->add(alpha,lambda,grad);
      //then take a step
      if(linesearch_freq==0 || (iteration % linesearch_freq)==0 ){
	//Decreasing step size
	//TDH and pierre 18 jan 2011 try sqrt dec step size
	step=1/((double)iteration);
	//step=1/sqrt((double)iteration);
	if(verbose>=2)printf("grad %f step %f it %d\n",grad,step,iteration);
	take_step(clusters,alpha,dir,N,Px,step);
      }else{
	double cost_here,cost_step;
	std::map<double,double> cost_steps;
	std::map<double,double>::iterator step1,step2;
	for(i=0;i<N*Px;i++)old_alpha[i]=alpha[i];//copy alpha
	//compare current cost to cost after stepping in gradient direction
	cost_here=cost_step=calc_cost(clusters,amat,xmat,W,diffs,lambda);
	step = 0;
	cost_steps.insert(std::pair<double,double>(cost_here,0));
	while(cost_step<=cost_here){
	  take_step(clusters,alpha,dir,N,Px,1);
	  step += 1;
	  diffs.calc_diffs(clusters,amat,nrm2);
	  cost_step=calc_cost(clusters,amat,xmat,W,diffs,lambda);
	  if(verbose>=2)
	printf("cost %.10f step %f cost_here %f\n",cost_step,step,cost_here);
	  cost_steps.insert(std::pair<double,double>(cost_step,step));
	}
	for(int cuts=0;cuts<linesearch_points;cuts++){
	  step1=step2=cost_steps.begin();
	  step2++;
	  step = (step1->second + step2->second)/2;
	  for(i=0;i<N*Px;i++){
	    alpha[i]=old_alpha[i];
	  }
	  take_step(clusters,alpha,dir,N,Px,step);
	  diffs.calc_diffs(clusters,amat,nrm2);
	  cost_step=calc_cost(clusters,amat,xmat,W,diffs,lambda);
	  if(verbose>=2)printf("cost %.10f step %f %d\n",cost_step,step,cuts);
	  cost_steps.insert(std::pair<double,double>(cost_step,step));
	}
	cost_steps.clear();
      }
      if(iteration++ > maxit){
	if(tried_restart){
	  printf("max iteration %d exit\n",maxit);
	  delete old_alpha;
	  delete alpha;
	  delete xbar;
	  delete dir;
	  return results;
	}else{
	  if(verbose>=1)printf("max iterations, trying restart from x\n");
	  tried_restart=1;
	  iteration=1;
	  for(i=0;i<N*Px;i++)alpha[i]=x[i];
	}
      }
      //calculate differences
      diffs.calc_diffs(clusters,amat,nrm2);
      //check for joins
      JoinPair tojoin;
      while(dojoin(tojoin=check_clusters_thresh(&clusters,diffs,join_thresh))){
	//if(verbose>=1)
	//  printf("join: %d %d\n",tojoin.first->front(),tojoin.second->front());
	int ni=tojoin.first->size();
	int nj=tojoin.second->size();
	i=tojoin.first->front();
	j=tojoin.second->front();
	tojoin.first->insert(tojoin.first->end(),
			    tojoin.second->begin(),
			    tojoin.second->end());
	for(k=0;k<Px;k++){
	  alpha[i+k*N] = (alpha[i+k*N]*ni + alpha[j+k*N]*nj)/(ni+nj);
	  xbar[i+k*N] = (xbar[i+k*N]*ni + xbar[j+k*N]*nj)/(ni+nj);
	}
	clusters.erase(tojoin.second);
	iteration=1;
	if(clusters.size()>1){
	  diffs.calc_diffs(clusters,amat,nrm2);//inefficient
	}else{
	  grad=0;//so we can escape from the last optimization loop
	}
      }
    }//while(grad>=opt_thresh)
    if(verbose>=1)
    printf("solution iteration %d lambda %f nclusters %d\n",
	   iteration,lambda,(int)clusters.size());
    
    if(target_cluster == 0){
      //for each cluster, there may be several points. we store the
      //alpha value just in the row of the first point. thus here we
      //copy this value to the other rows before copying the optimal
      //alpha to results.
      for(it=clusters.begin();it!=clusters.end();it++){
	rows = *it;
	if(rows.size()>1){
	  for(i=1;i<rows.size();i++){
	    for(k=0;k<Px;k++){
	      alpha[rows[i]+k*N] = alpha[rows[0]+k*N];
	    }
	  }
	}
      }
      results->add(alpha,lambda,grad);
    }
    //haven't yet reached the target number of clusters, multiply
    //lambda by lambda_factor and continue along the path
    if((int)clusters.size()>target_cluster){
      old_lambda=lambda;
      lambda *= lambda_factor;
    }
    //if we have passed the target cluster number then decrease
    //lambda and go look for it!
    if((int)clusters.size()<target_cluster){
      if(verbose>=1){
	printf("missed target %d, going back for it\n",target_cluster);
      }
      lambda = (lambda+old_lambda)/2;
      clusters.clear();
      //reassign original clusters
      for(i=0;i<N;i++){
	rows.assign(1,i);
	clusters.push_back(rows);
      }
      //recopy original xbar
      for(i=0;i<N*Px;i++){
	xbar[i]=x[i];
      }
    }
    //this is the number of clusters that we were looking for,
    //save and quit!
    if((int)clusters.size()==target_cluster){
      for(it=clusters.begin();it!=clusters.end();it++){
	rows = *it;
	if(rows.size()>1){
	  for(i=1;i<rows.size();i++){
	    for(k=0;k<Px;k++){
	      alpha[rows[i]+k*N] = alpha[rows[0]+k*N];
	    }
	  }
	}
      }
      results->add(alpha,lambda,grad);
      if(verbose>=1)printf("got target cluster %d exit\n",target_cluster);
      delete old_alpha;
      delete alpha;
      delete xbar;
      delete dir;
      return results;
    }
  }	
  //TODO: consolidate cleanup... just use data structures that
  //automatically clean themselves up when the function exits.
  delete old_alpha;
  delete alpha;
  delete xbar;
  delete dir;
  return results;
}
Ejemplo n.º 9
0
Archivo: kqwait.c Proyecto: FUDCo/Elko
  int
main(int argc, char **argv) {
    
    if (argc < 1) {
        printf("usage: %s <item> [<item> ...]\n", argv[0]);
        printf("An <item> can be a file path, a directory path, or a pid.\n");
        return 1;
    }
    
    int itemCount = argc - 1;
    
    struct kevent events[itemCount];
    t_watchInfo watchInfos[itemCount];
    int timeoutTime = -1;
    itemCount = 0;
    for (int i = 1; i < argc; i++) {
        char *item = argv[i];

        if (strcmp(item, "-t") == 0) {
            timeoutTime = atoi(argv[++i]);
        } else if (isdigit(item[0])) {
            int pid = atoi(item);
            EV_SET(&events[itemCount], pid, EVFILT_PROC,
                   EV_ADD | EV_ENABLE | EV_CLEAR, NOTE_EXIT, 0, NULL);
            ++itemCount;
            
        } else {
            struct stat sb;
            if (stat(item, &sb) == -1) {
                die("stat");
            }
            if (S_ISDIR(sb.st_mode)) {
                watchInfos[itemCount].dir = parseDir(item);
            } else {
                watchInfos[itemCount].dir = NULL;
            }
            watchInfos[itemCount].path = item;
            
            int fd = open(item, O_RDONLY);
            if (fd == -1) {
                die("open");
                exit(-1);
            }
            EV_SET(&events[itemCount], fd, EVFILT_VNODE,
                   EV_ADD | EV_ENABLE | EV_CLEAR, NOTE_RENAME | NOTE_WRITE, 0,
                   &watchInfos[itemCount]);
            ++itemCount;
        }
    }
    
    struct timespec timeout;
    memset(&timeout, 0, sizeof(struct timespec));
    timeout.tv_sec = timeoutTime;
    int result = kevent(kqueue(), events, itemCount, events, itemCount,
                        timeoutTime >= 0 ? &timeout : NULL);
    if (result > 0) {
        for (int i = 0; i < result; ++i) {
            t_watchInfo *hit = events[i].udata;
            if (hit == NULL) {
                fprintf(stdout, "proc %d\n", (int) events[i].ident);
            } else if (hit->dir != NULL) {
                t_dirContents *dirNow = parseDir(hit->path);
                t_dirContents *dirDiffs = diffs(hit->dir, dirNow);
                if (dirDiffs->count > 0) {
                    fprintf(stdout, "%s %s%s%s\n",
                            ((hit->dir != NULL && dirNow != NULL &&
                                 hit->dir->count > dirNow->count) ||
                             (hit->dir != NULL && dirNow == NULL)) ? "-" : "+",
                            hit->path,
                            (hit->path[strlen(hit->path)-1] == '/') ? "" : "/",
                            dirDiffs->entries[0]);
                }
            } else {
                fprintf(stdout, "%s\n", hit->path);
            }
        }
        return 0;
    } else if (result == 0) {
        fprintf(stdout, "timeout\n");
    } else {
        fprintf(stderr, "result: %d\n", result);
        die("kevent");
    }
    return 1;
}
Ejemplo n.º 10
0
template <typename PointT, typename PointNT> void
pcl::SmoothedSurfacesKeypoint<PointT, PointNT>::detectKeypoints (PointCloudT &output)
{
    // Calculate differences for each cloud
    std::vector<std::vector<float> > diffs (scales_.size ());

    // The cloud with the smallest scale has no differences
    std::vector<float> aux_diffs (input_->points.size (), 0.0f);
    diffs[scales_[0].second] = aux_diffs;

    cloud_trees_[scales_[0].second]->setInputCloud (clouds_[scales_[0].second]);
    for (size_t scale_i = 1; scale_i < clouds_.size (); ++scale_i)
    {
        size_t cloud_i = scales_[scale_i].second,
               cloud_i_minus_one = scales_[scale_i - 1].second;
        diffs[cloud_i].resize (input_->points.size ());
        PCL_INFO ("cloud_i %u cloud_i_minus_one %u\n", cloud_i, cloud_i_minus_one);
        for (size_t point_i = 0; point_i < input_->points.size (); ++point_i)
            diffs[cloud_i][point_i] = cloud_normals_[cloud_i]->points[point_i].getNormalVector3fMap ().dot (
                                          clouds_[cloud_i]->points[point_i].getVector3fMap () - clouds_[cloud_i_minus_one]->points[point_i].getVector3fMap ());

        // Setup kdtree for this cloud
        cloud_trees_[cloud_i]->setInputCloud (clouds_[cloud_i]);
    }


    // Find minima and maxima in differences inside the input cloud
    typename pcl::search::Search<PointT>::Ptr input_tree = cloud_trees_.back ();
    for (int point_i = 0; point_i < static_cast<int> (input_->points.size ()); ++point_i)
    {
        std::vector<int> nn_indices;
        std::vector<float> nn_distances;
        input_tree->radiusSearch (point_i, input_scale_ * neighborhood_constant_, nn_indices, nn_distances);

        bool is_min = true, is_max = true;
        for (std::vector<int>::iterator nn_it = nn_indices.begin (); nn_it != nn_indices.end (); ++nn_it)
            if (*nn_it != point_i)
            {
                if (diffs[input_index_][point_i] < diffs[input_index_][*nn_it])
                    is_max = false;
                else if (diffs[input_index_][point_i] > diffs[input_index_][*nn_it])
                    is_min = false;
            }

        // If the point is a local minimum/maximum, check if it is the same over all the scales
        if (is_min || is_max)
        {
            bool passed_min = true, passed_max = true;
            for (size_t scale_i = 0; scale_i < scales_.size (); ++scale_i)
            {
                size_t cloud_i = scales_[scale_i].second;
                // skip input cloud
                if (cloud_i == clouds_.size () - 1)
                    continue;

                nn_indices.clear ();
                nn_distances.clear ();
                cloud_trees_[cloud_i]->radiusSearch (point_i, scales_[scale_i].first * neighborhood_constant_, nn_indices, nn_distances);

                bool is_min_other_scale = true, is_max_other_scale = true;
                for (std::vector<int>::iterator nn_it = nn_indices.begin (); nn_it != nn_indices.end (); ++nn_it)
                    if (*nn_it != point_i)
                    {
                        if (diffs[input_index_][point_i] < diffs[cloud_i][*nn_it])
                            is_max_other_scale = false;
                        else if (diffs[input_index_][point_i] > diffs[cloud_i][*nn_it])
                            is_min_other_scale = false;
                    }

                if (is_min == true && is_min_other_scale == false)
                    passed_min = false;
                if (is_max == true && is_max_other_scale == false)
                    passed_max = false;

                if (!passed_min && !passed_max)
                    break;
            }

            // check if point was minimum/maximum over all the scales
            if (passed_min || passed_max)
                output.points.push_back (input_->points[point_i]);
        }
    }

    output.header = input_->header;
    output.width = static_cast<uint32_t> (output.points.size ());
    output.height = 1;

    // debug stuff
//  for (size_t scale_i = 0; scale_i < scales_.size (); ++scale_i)
//  {
//    PointCloud<PointXYZI>::Ptr debug_cloud (new PointCloud<PointXYZI> ());
//    debug_cloud->points.resize (input_->points.size ());
//    debug_cloud->width = input_->width;
//    debug_cloud->height = input_->height;
//    for (size_t point_i = 0; point_i < input_->points.size (); ++point_i)
//    {
//      debug_cloud->points[point_i].intensity = diffs[scales_[scale_i].second][point_i];
//      debug_cloud->points[point_i].x = input_->points[point_i].x;
//      debug_cloud->points[point_i].y = input_->points[point_i].y;
//      debug_cloud->points[point_i].z = input_->points[point_i].z;
//    }

//    char str[512]; sprintf (str, "diffs_%2d.pcd", scale_i);
//    io::savePCDFile (str, *debug_cloud);
//  }
}
        void gradient_descent_local_planner_t::gradient_steer(const state_t* start, const state_t* goal, plan_t& plan)
        {
            //for now only going to do piecewise constant plans
            plan.clear();
            traj.link_space(world_model->get_state_space());
            plan.append_onto_front(max_multiple * simulation::simulation_step);
            const space_t* control_space = world_model->get_control_space();
            sampler->sample(control_space, plan[0].control);
            unsigned count = 0;
            std::vector<double> old_control(control_space->get_dimension());
            std::vector<double> test_control(control_space->get_dimension());
            std::vector<double> control_below(control_space->get_dimension());
            std::vector<double> control_above(control_space->get_dimension());
            std::vector<std::pair<double, double> > diffs(control_space->get_dimension());
            while( count < attempts )
            {
                traj.clear();
                plan[0].duration = max_multiple * simulation::simulation_step;
                propagate(start, plan, traj);
                unsigned num_sim_steps = 0;
                unsigned best_sim_step = 0;
                double best_dist = PRX_INFINITY;
                for( trajectory_t::iterator it = traj.begin(); it != traj.end(); it++ )
                {
                    num_sim_steps++;
                    if( metric->distance_function(*it, goal) < best_dist )
                    {
                        best_dist = metric->distance_function(*it, goal);
                        best_sim_step = num_sim_steps;
                    }
                }
                plan[0].duration = best_sim_step * simulation::simulation_step;
                if( best_dist < accepted_radius )
                {
                    return;
                }
                else
                {
                    state_t* state = world_model->get_state_space()->alloc_point();
                    for( unsigned i = 0; i < control_space->get_dimension(); i++ )
                    {
                        old_control[i] = plan[0].control->at(i);
                        control_below[i] = old_control[i] - .01 * (control_space->get_bounds()[i]->get_upper_bound() - control_space->get_bounds()[i]->get_lower_bound());
                        control_above[i] = old_control[i] + .01 * (control_space->get_bounds()[i]->get_upper_bound() - control_space->get_bounds()[i]->get_lower_bound());
                        diffs[i].first = diffs[i].second = 0;
                    }
                    for( unsigned i = 0; i < control_space->get_dimension(); i++ )
                    {
                        test_control = old_control;
                        test_control[i] = control_below[i];
                        control_space->set_from_vector(test_control, plan[0].control);
                        propagate_step(start, plan, state);
                        diffs[i].first = metric->distance_function(state, goal);
                        test_control[i] = control_above[i];
                        control_space->set_from_vector(test_control, plan[0].control);
                        propagate_step(start, plan, state);
                        diffs[i].second = metric->distance_function(state, goal);
                    }
                    world_model->get_state_space()->free_point(state);

                    //now that all the differences have been computed, determine the direction to move
                    test_control = old_control;
                    for( unsigned i = 0; i < control_space->get_dimension(); i++ )
                    {
                        test_control[i] += (diffs[i].first - diffs[i].second)*(learning_rate);
                    }
                    control_space->set_from_vector(test_control, plan[0].control);
                }

                count++;
            }

            //    PRX_INFO_S(plan.print());

        }
Ejemplo n.º 12
0
int as154_seas(double *inp, int N, int optmethod, int p, int d, int q, int s, int P, int D, int Q,
	double *phi, double *theta, double *PHI, double *THETA, double *wmean,double *var,double *loglik,double *hess) {
	int i, pq, retval, length, offset,ret;
	double *b, *tf, *x,*inp2,*dx,*thess;
	int *ipiv;
	double maxstep;
	alik_seas_object obj;
	custom_function as154_min;
	obj = alik_seas_init(p, d, q, s, P, D, Q, N);
	inp2 = (double*)malloc(sizeof(double)* (N - s*D));
	pq = obj->pq;
	b = (double*)malloc(sizeof(double)* pq);
	tf = (double*)malloc(sizeof(double)* pq);
	thess = (double*)malloc(sizeof(double)* pq*pq);
	dx = (double*)malloc(sizeof(double)* pq);
	ipiv = (int*)malloc(sizeof(int)* pq);

	length = N;

	maxstep = 1.0;


	css_seas(inp, N, optmethod, p, d, q, s, P, D, Q, phi, theta, PHI, THETA, wmean, var,loglik,hess);

	/*

	*/

	if (D > 0) {
		N = diffs(inp, N, D, s, inp2);
	}
	else {
		for (i = 0; i < N; ++i) {
			inp2[i] = inp[i];
		}
	}

	x = (double*)malloc(sizeof(double)* (N - d));

	if (d > 0) {
		N = diff(inp2, N, d, x); // No need to demean x
	}
	else {
		for (i = 0; i < N; ++i) {
			x[i] = inp2[i];
		}
	}

	obj->N = N;

	offset = obj->offset;
	for (i = 0; i < p; ++i) {
		b[i] = phi[i];
	}
	for (i = 0; i < q; ++i) {
		b[p + i] = -theta[i];
	}
	for (i = 0; i < P; ++i) {
		b[p + q + i] = PHI[i];
	}
	for (i = 0; i < Q; ++i) {
		b[p + q + P + i] = -THETA[i];
	}

	if (obj->M == 1) {
		b[p + q + P + Q] = *wmean;
	}

	obj->mean = *wmean;

	//mdisplay(b, 1, p + q + P + Q);

	for (i = 0; i < N; ++i) {
		obj->x[offset + i] = obj->x[offset + 2 * N + i] = x[i];
	}
	for (i = N; i < 2 * N; ++i) {
		obj->x[offset + i] = 0.0;
	}
	//printf("\n %d %g ", pq,maxstep);

//	custom_function as154_min = { fas154_seas, obj };
	as154_min.funcpt = fas154_seas;
	as154_min.params = obj;

	retval = fminunc(&as154_min, NULL, pq, b, maxstep, optmethod, tf);
	if (retval == 0) {
		ret = 0;
	}
	else if (retval == 15) {
		ret = 15;
	}
	else if (retval == 4) {
		ret = 4;
	}
	else {
		ret = 1;
	}

	for (i = 0; i < pq; ++i) {
		dx[i] = 1.0;
	}

	hessian_fd(&as154_min, tf, pq, dx, obj->eps, hess);

	mtranspose(hess, pq, pq, thess);

	for (i = 0; i < pq*pq; ++i) {
		thess[i] = (N - d - s*D) * 0.5 * (hess[i] + thess[i]);
	}


	ludecomp(thess, pq, ipiv);
	minverse(thess, pq, ipiv, hess);

	for (i = 0; i < p; ++i) {
		phi[i] = tf[i];
	}
	for (i = 0; i < q; ++i) {
		theta[i] = -tf[p + i];
	}
	for (i = 0; i < P; ++i) {
		PHI[i] = tf[p + q + i];
	}
	for (i = 0; i < Q; ++i) {
		THETA[i] = -tf[p + q + P + i];
	}

	if (obj->M == 1) {
		*wmean = tf[p + q + Q + P];
	}
	else {
		*wmean = 0.0;
	}

	*var = (obj->ssq) / (double) N;
	*loglik = obj->loglik;
	//printf("MEAN %g \n", mean(obj->x+N,N));
	//mdisplay(obj->x + N, 1, N);

	free(b);
	free(tf);
	free(inp2);
	free(x);
	free(dx);
	free(thess);
	free(ipiv);
	free_alik_seas(obj);
	return ret;
}
Ejemplo n.º 13
0
template <typename PointT, typename PointNT> float
pcl::SurfelSmoothing<PointT, PointNT>::smoothCloudIteration (PointCloudInPtr &output_positions,
                                                             NormalCloudPtr &output_normals)
{
//  PCL_INFO ("SurfelSmoothing: cloud smoothing iteration starting ...\n");

  output_positions = PointCloudInPtr (new PointCloudIn);
  output_positions->points.resize (interm_cloud_->points.size ());
  output_normals = NormalCloudPtr (new NormalCloud);
  output_normals->points.resize (interm_cloud_->points.size ());

  std::vector<int> nn_indices;
  std::vector<float> nn_distances;

  std::vector<float> diffs (interm_cloud_->points.size ());
  float total_residual = 0.0f;

  for (size_t i = 0; i < interm_cloud_->points.size (); ++i)
  {
    Eigen::Vector4f smoothed_point  = Eigen::Vector4f::Zero ();
    Eigen::Vector4f smoothed_normal = Eigen::Vector4f::Zero (); 

    // get neighbors
    // @todo using 5x the scale for searching instead of all the points to avoid O(N^2)
    tree_->radiusSearch (interm_cloud_->points[i], 5*scale_, nn_indices, nn_distances);

    float theta_normalization_factor = 0.0;
    std::vector<float> theta (nn_indices.size ());
    for (size_t nn_index_i = 0; nn_index_i < nn_indices.size (); ++nn_index_i)
    {
      float dist = pcl::squaredEuclideanDistance (interm_cloud_->points[i], input_->points[nn_indices[nn_index_i]]);//interm_cloud_->points[nn_indices[nn_index_i]]);
      float theta_i = exp ( (-1) * dist / scale_squared_);
      theta_normalization_factor += theta_i;

      smoothed_normal += theta_i * interm_normals_->points[nn_indices[nn_index_i]].getNormalVector4fMap ();

      theta[nn_index_i] = theta_i;
    }

    smoothed_normal /= theta_normalization_factor;
    smoothed_normal(3) = 0.0f;
    smoothed_normal.normalize ();


    // find minimum along the normal
    float e_residual;
    smoothed_point = interm_cloud_->points[i].getVector4fMap ();
    while (1)
    {
      e_residual = 0.0f;
      smoothed_point(3) = 0.0f;
      for (size_t nn_index_i = 0; nn_index_i < nn_indices.size (); ++nn_index_i)
      {
        Eigen::Vector4f neighbor = input_->points[nn_indices[nn_index_i]].getVector4fMap ();//interm_cloud_->points[nn_indices[nn_index_i]].getVector4fMap ();
        neighbor(3) = 0.0f;
        float dot_product = smoothed_normal.dot (neighbor - smoothed_point);
        e_residual += theta[nn_index_i] * dot_product;// * dot_product;
      }
      e_residual /= theta_normalization_factor;
      if (e_residual < 1e-5) break;

      smoothed_point = smoothed_point + e_residual * smoothed_normal;
    }

    total_residual += e_residual;

    output_positions->points[i].getVector4fMap () = smoothed_point;
    output_normals->points[i].getNormalVector4fMap () = normals_->points[i].getNormalVector4fMap ();//smoothed_normal;
  }

//  std::cerr << "Total residual after iteration: " << total_residual << std::endl;
//  PCL_INFO("SurfelSmoothing done iteration\n");
  return total_residual;
}
Ejemplo n.º 14
0
/*
 * grind - memory-bound task
 *
 * Note that this won't work until you have a VM system.
 */
void
grind(unsigned groupid, unsigned id)
{
	unsigned *p;
	unsigned i, n, s;

	(void)groupid;

	waitstart();

	/* each grind task uses 768K */
	n = (768*1024) / sizeof(*p);
	p = malloc(n * sizeof(*p));
	if (p == NULL) {
		if (errno == ENOSYS) {
			/*
			 * If we don't have sbrk, just bail out with
			 * "success" instead of failing the whole
			 * workload.
			 */
			errx(0, "grind: sbrk/malloc not implemented");
		}
		err(1, "malloc");
	}

	/* First, get some random integers. */
	warnx("grind %u: seeding", id);
	srandom(1753);
	for (i=0; i<n; i++) {
		p[i] = random();
	}

	/* Now sort them. */
	warnx("grind %u: sorting", id);
	qsort(p, n, sizeof(p[0]), uintcmp);

	/* Sort by a different comparison. */
	warnx("grind %u: sorting alternately", id);
	qsort(p, n, sizeof(p[0]), altcmp);

	/* Take the sum. */
	warnx("grind %u: summing", id);
	s = sum(p, n);
	warnx("grind %u: sum is %u (should be %u)", id, s, RIGHT);
	if (s != RIGHT) {
		errx(1, "grind %u FAILED", id);
	}

	/* Take first differences. */
	warnx("grind %u: first differences", id);
	diffs(p, n);

	/* Sort. */
	warnx("grind %u: sorting", id);
	qsort(p, n, sizeof(p[0]), uintcmp);

	warnx("grind %u: summing", id);
	s = sum(p, n);
	warnx("grind %u: sum is %u (should be 0)", id, s);
	if (s != 0) {
		errx(1, "grind %u FAILED", id);
	}
}
Ejemplo n.º 15
0
/* the function called by each thread is "mainLoop" */
void*
mainLoop(void* arg)
{
  loopArg *loopA = (loopArg*)arg;
  istream* testSStream = loopA->inpt;
  ostream* pstatStream = loopA->outpt;
  int id = loopA->id;
  double log600 = log2(600.0);
  PrintStack printStack;
  for( ;  ; )
    {
      InputTree     correct;  
      InputTree*    cuse;

      /* first lock to read in the material */
      pthread_mutex_lock(&readlock);
      if( !*testSStream ) {
	pthread_mutex_unlock(&readlock);
	break;
      }
      *testSStream >> correct;
      if( !*testSStream ){
	pthread_mutex_unlock(&readlock);
	break;
      }
      totWords += correct.length()+1;
      int locCount = sentenceCount++;
      list<ECString>  wtList;
      correct.make(wtList);
      SentRep sr( wtList );  // used in precision calc

      ExtPos extPos;
      if(params.extPosIfstream)
	extPos.read(params.extPosIfstream,sr);
      pthread_mutex_unlock(&readlock);

      cuse = &correct;
      int len = correct.length();
      if(len > params.maxSentLen) continue;
      //cerr << "Len = " << len << endl;
      /*
	if( !params.field().in(sentenceCount) )
	{
	sentenceCount++;
	continue;
	}
	if(sentenceCount < -1)
	{
	sentenceCount++;
	continue;
	}
	sentenceCount++;
      */
      vector<ECString> poslist;
      correct.makePosList(poslist);
      ScoreTree sc;
      sc.setEquivInts(poslist);
      MeChart*	chart = new MeChart( sr,extPos,id );
       
      chart->parse( );
      Item* topS = chart->topS();
      if(!topS)
	{
	  cerr << "Parse failed" << endl;
	  cerr << correct << endl;
	  error(" could not parse "); 
	  delete chart;
	  continue;
	}
       
      // compute the outside probabilities on the items so that we can
      // skip doing detailed computations on the really bad ones 

      chart->set_Alphas();

      Bst& bst = chart->findMapParse();
      if( bst.empty()) error( "mapProbs did not return answer");
      float bestF = -1;
      int i;
      int numVersions = 0;
      Link diffs(0);
      //cerr << "Need num diff: " << Bchart::Nth << endl;
      printStruct printS;
      printS.sentenceCount = locCount;
      printS.numDiff = 0;
      for(numVersions = 0 ; ; numVersions++)
	{
	  short pos = 0;
	  Val* val = bst.next(numVersions);
	  if(!val)
	    {
	      //cerr << "Breaking" << endl;
	      break;
	    }
	  InputTree*  mapparse = inputTreeFromBsts(val,pos,sr);
	  bool isU;
	  int dummy = 0;
	  diffs.is_unique(mapparse, isU, dummy);
	  // cerr << "V " << isU << " " << numVersions << *mapparse << endl;
	  if(isU)
	    {
	      printS.probs.push_back(val->prob());
	      printS.trees.push_back(mapparse);
	      printS.numDiff++;
	    }
	  else
	    {
	      delete mapparse;
	    }
	  if(printS.numDiff >= Bchart::Nth) break;
	  if(numVersions > 20000) break;
	}

      ParseStats* locPst = new ParseStats[Bchart::Nth];
      ParseStats bestPs;
      for(i = 0 ; i <printS.numDiff ; i++)
	{
	  InputTree *mapparse = printS.trees[i];
	  assert(mapparse);
	  sc.trips.clear();
	  ParseStats pSt;
	  sc.recordGold(cuse,pSt);
	  sc.precisionRecall(mapparse,pSt);
	  float newF = pSt.fMeasure();
	  cerr << printS.sentenceCount << "\t" << newF << endl;
	  if(newF > bestF)
	    {
	      bestF = newF;
	      bestPs = pSt;
	    }
	  if(histPoints[i])
	    {
	      locPst[i] += bestPs;
	    }
	}
      if(printS.numDiff < Bchart::Nth)
	{
	  for(i = printS.numDiff ; i < Bchart::Nth ; i++)
	    {
	      if(histPoints[i]) locPst[i] += bestPs;
	    }
	}

      pthread_mutex_lock(&scorelock);
      for(i = 0 ; i < Bchart::Nth ; i++) totPst[i]+=locPst[i];
      pthread_mutex_unlock(&scorelock);

      int numPrinted;

      /* put the sentence with which we just finished at the end of the printStack*/
      printStack.push_back(printS);
      PrintStack::iterator psi = printStack.begin();
      /* now look at each item from the front of the print stack
	 to see if it should be printed now */
      pthread_mutex_lock(&writelock);
      for( numPrinted =0; psi != printStack.end(); numPrinted++ )
	{
	  printStruct& pstr=(*psi);
	  if(pstr.sentenceCount != printCount) break;
	  *pstatStream << pstr.sentenceCount << "\t" << pstr.numDiff << "\n";
	  printCount++;
	  for(i = 0 ; i < pstr.numDiff ; i++)
	    {
	      InputTree*  mapparse = pstr.trees[i];
	      assert(mapparse);
	      double logP =log2(pstr.probs[i]);
	      logP -= (sr.length()*log600);
	      *pstatStream <<  logP << "\n";
	      if(Bchart::prettyPrint) *pstatStream << *mapparse << "\n\n";
	      else
		{
		  mapparse->printproper(*pstatStream);
		  *pstatStream << "\n";
		}
	      delete mapparse;
	    }
	  *pstatStream << endl;
	  psi++;
	}
      pthread_mutex_unlock(&writelock);
      for(i = 0 ; i < numPrinted ; i++) printStack.pop_front();
      if(Feature::isLM)
	{
	  double lgram = log2(bst.sum());
	  lgram -= (sr.length()*log600);
	  double pgram = pow(2,lgram);
	  double iptri = chart->triGram();;
	  double ltri = (log2(iptri)-sr.length()*log600);
	  double ptri = pow(2.0,ltri);
	  double pcomb1 = (0.667 * pgram)+(0.333 * ptri);
	  double lcom1 = log2(pcomb1);
	  totGram -= lgram;
	  totTri -= ltri;
	  totMix -= lcom1;
	  if(locCount%10 == 9)
	    {
	      cerr << locCount << "\t";
	      cerr << pow(2.0,totGram/(double)totWords);
	      cerr <<"\t" <<  pow(2.0,totTri/(double)totWords);
	      cerr << "\t" << pow(2.0,totMix/(double)(totWords));
	      cerr << endl;
	    }
	}
      if(locCount%50 == 1)
	{
	  cerr << sentenceCount << "\t";
	  for(int i = 0 ; i < Bchart::Nth ; i++)
	    if(histPoints[i])
	      {
		cerr << i << " " << totPst[i].fMeasure() << "\t";
	      }
	  cerr << endl;
	}

      delete chart;
      delete [] locPst;
    }
  return 0;
}
Ejemplo n.º 16
0
  void Do(LocalHeap & lh) {    
    // We proceed in three steps:
    // 1.  Compute the difference between Q and q
    // 2.  Compute the H(div) Schur complement 
    // 3.  Apply Schur complement to the difference


    // grid function with (interpolated) exact flux, grad(u) 
    BaseVector& vecQ = Q->GetVector();    
    // numerical flux q
    BaseVector& vecq = q->GetVector(); 
    // p.w. constant gridfunction to store element-wise error
    BaseVector& errvec = err->GetVector();   
    errvec.FV<double>() = 0.0;
    double sqer =0.0;   // this will contain the total error square
    
    for(int k=0; k<ma->GetNE(); k++)  {
      
      ElementId ei (VOL, k);
      double elndof = ext->GetFE(k,lh).GetNDof(); 
      Vector<SCAL> diff(elndof);           
      // dof nrs: global, global inner, local inner, local Schur
      Array<int>  Gn,     Ginn,         Linn,        Lsn;

      // compute the difference between Q and q
      ext->GetDofNrs(k,Gn);        // Global# of all dofs on element k
      diff = SCAL(0.0);
      for(int j=0; j<elndof; j++)
	diff[j] = vecQ.FV<SCAL>()[Gn[j]] - vecq.FV<SCAL>()[Gn[j]];
      
      // H(div) Gram matrix (given in two parts in pde file)
      Matrix<double> elmat(elndof), elmat2(elndof);
      elmat = 0.0; elmat2 = 0.0;
      hdivip->GetIntegrator(0)->
	CalcElementMatrix(ext->GetFE(ei,lh),ma->GetTrafo(ei,lh),elmat,lh);
      hdivip->GetIntegrator(1)->
	CalcElementMatrix(ext->GetFE(ei,lh),ma->GetTrafo(ei,lh),elmat2,lh);
      elmat += elmat2;
    
      // compute the H(div) Schur complement 
      ext->GetInnerDofNrs(k,Ginn); // Global# of inner dofs on element k
      for(int j=0; j<elndof; j++)
	if (Ginn.Contains( Gn[j] ))
	  Linn.Append(j);          // Local#  of inner dofs on element k
	else
	  Lsn.Append(j);           // Local#  of Schur dofs on element k

      int ielndof = Linn.Size();
      Matrix<double> elmati(ielndof),elmatiinv(ielndof);
      elmati = elmat.Rows(Linn).Cols(Linn);
      CalcInverse(elmati,elmatiinv);
            
      // apply Schur complement to the difference
      int selndof = elndof - ielndof;
      Vector<SCAL> diffs(selndof);
      Matrix<double> S(selndof), Asi(selndof,ielndof);
      diffs = diff(Lsn);

      //      S  =  A_ss  -  A_si  * inv(A_ii) *  A_is
      Asi = elmat.Rows(Lsn).Cols(Linn);
      S   = elmat.Rows(Lsn).Cols(Lsn);
      S  -= Asi  * elmatiinv * Trans(Asi);
      //      error  = (S * diffs, diffs)
      errvec.FVDouble()[k] = fabs(InnerProduct(diffs,  S * diffs));
      sqer += errvec.FVDouble()[k];
    }
    
    cout<<"Discrete H^(-1/2) norm of error in q = "<<sqrt(sqer)<<endl;
    
    // write file (don't know what the last argument of AddVariable 
    // does, but 6 seems to be the value everywhere! It seems to intializes 
    // an object  of class IM (important message).
    GetPDE()->AddVariable (string("fluxerr.")+GetName()+".value", sqrt(sqer), 6);  

  }
Ejemplo n.º 17
0
    size_t ArithmeticUtilEncoder::encode(byte* start, uint64 size) {
        std::vector<uint64> counts(256,0);
        long p=out->getPos();

        for(byte* b = start; b!= (start+size); b++) counts[*b]++;
        int sum=0;
        for(int i=0;i<256;i++) sum+=(counts[i]=counts[i]*SCALE/size);

        long header_pos = out->getPos();
        for(int i=0;i<6;i++) out->writeByte(0);
        out->write48bits(size,header_pos);
        long bits_pos = out->getPos();
        for(int i=0;i<6;i++) out->writeByte(0);
        bytes_used=0;
        bytes_used += 6*2;

        bits_used=0;
        int it=0;
        int bsum=0;
        for(int i=0;i<256;i++)  {
            if(counts[i]==0) {
                if(sum==SCALE) {
                    while(counts[it%256]<=1) it++;
                    counts[(it++)%256]--;
                } else sum++;
                counts[i]++;
            }
        }
        int add=SCALE-sum;
        for(int i=0;i<256;i++) {
            counts[i]+=add/256;
            if(i< (add%256)){
                counts[i]++;
            }
        }

        std::vector<uint64> diffs(256,0);
        long a=bytes_used;
        bytes_used += utils::gammaEncode(counts,out);
        long pp=bytes_used;
        std::vector<SYMBOL> symbols(256);
        int cumul=0;
        for(int i=0;i<256;i++) {
            symbols[i].scale=SCALE;
            symbols[i].low_count=cumul;
            symbols[i].high_count= cumul = cumul + counts[i];
        }
        size_t tmp=bytes_used;
        byte* ptr=start;

        ptr=start;
        while(ptr != start + size) {
            encode_symbol(symbols[*ptr]);
            ptr++;
        }
        flush();
        while(bytes_used-tmp<4) {
            out->writeByte(0);
            bytes_used++;
            bits_used+=8;
        }
        //std::cout<<"bytes used for counts: "<<1.0*(pp-a)/(bytes_used-a)<<"\n";
        std::cout<<"bytes used for counts: "<<(pp-a)<<"\n";
        
        out->write48bits(bits_used/8,bits_pos);
        return bytes_used;
    }