/* Subroutine */ int dchkbb_(integer *nsizes, integer *mval, integer *nval, integer *nwdths, integer *kk, integer *ntypes, logical *dotype, integer *nrhs, integer *iseed, doublereal *thresh, integer *nounit, doublereal *a, integer *lda, doublereal *ab, integer *ldab, doublereal *bd, doublereal *be, doublereal *q, integer *ldq, doublereal *p, integer *ldp, doublereal *c__, integer *ldc, doublereal *cc, doublereal *work, integer *lwork, doublereal *result, integer *info) { /* Initialized data */ static integer ktype[15] = { 1,2,4,4,4,4,4,6,6,6,6,6,9,9,9 }; static integer kmagn[15] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3 }; static integer kmode[15] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0 }; /* Format strings */ static char fmt_9999[] = "(\002 DCHKBB: \002,a,\002 returned INFO=\002,i" "5,\002.\002,/9x,\002M=\002,i5,\002 N=\002,i5,\002 K=\002,i5,\002" ", JTYPE=\002,i5,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9998[] = "(\002 M =\002,i4,\002 N=\002,i4,\002, K=\002,i" "3,\002, seed=\002,4(i4,\002,\002),\002 type \002,i2,\002, test" "(\002,i2,\002)=\002,g10.3)"; /* System generated locals */ integer a_dim1, a_offset, ab_dim1, ab_offset, c_dim1, c_offset, cc_dim1, cc_offset, p_dim1, p_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7, i__8, i__9; /* Builtin functions */ double sqrt(doublereal); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, j, k, m, n, kl, jr, ku; doublereal ulp, cond; integer jcol, kmax, mmax, nmax; doublereal unfl, ovfl; extern /* Subroutine */ int dbdt01_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *) , dbdt02_(integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); logical badmm, badnn; integer imode, iinfo; extern /* Subroutine */ int dort01_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *); doublereal anorm; integer mnmin, mnmax, nmats, jsize, nerrs, itype, jtype, ntest; extern /* Subroutine */ int dlahd2_(integer *, char *); logical badnnb; extern /* Subroutine */ int dgbbrd_(char *, integer *, integer *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); extern doublereal dlamch_(char *); integer idumma[1]; extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *); integer ioldsd[4]; extern /* Subroutine */ int dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *), dlatmr_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, char *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, char *, integer *, integer *, integer *, doublereal *, doublereal *, char *, doublereal *, integer *, integer *, integer *), dlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublereal *, integer *, doublereal *, integer *), dlasum_(char *, integer *, integer *, integer *); doublereal amninv; integer jwidth; doublereal rtunfl, rtovfl, ulpinv; integer mtypes, ntestt; /* Fortran I/O blocks */ static cilist io___41 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9998, 0 }; /* -- LAPACK test routine (release 2.0) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DCHKBB tests the reduction of a general real rectangular band */ /* matrix to bidiagonal form. */ /* DGBBRD factors a general band matrix A as Q B P* , where * means */ /* transpose, B is upper bidiagonal, and Q and P are orthogonal; */ /* DGBBRD can also overwrite a given matrix C with Q* C . */ /* For each pair of matrix dimensions (M,N) and each selected matrix */ /* type, an M by N matrix A and an M by NRHS matrix C are generated. */ /* The problem dimensions are as follows */ /* A: M x N */ /* Q: M x M */ /* P: N x N */ /* B: min(M,N) x min(M,N) */ /* C: M x NRHS */ /* For each generated matrix, 4 tests are performed: */ /* (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' */ /* (2) | I - Q' Q | / ( M ulp ) */ /* (3) | I - PT PT' | / ( N ulp ) */ /* (4) | Y - Q' C | / ( |Y| max(M,NRHS) ulp ), where Y = Q' C. */ /* The "types" are specified by a logical array DOTYPE( 1:NTYPES ); */ /* if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. */ /* Currently, the list of possible types is: */ /* The possible matrix types are */ /* (1) The zero matrix. */ /* (2) The identity matrix. */ /* (3) A diagonal matrix with evenly spaced entries */ /* 1, ..., ULP and random signs. */ /* (ULP = (first number larger than 1) - 1 ) */ /* (4) A diagonal matrix with geometrically spaced entries */ /* 1, ..., ULP and random signs. */ /* (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */ /* and random signs. */ /* (6) Same as (3), but multiplied by SQRT( overflow threshold ) */ /* (7) Same as (3), but multiplied by SQRT( underflow threshold ) */ /* (8) A matrix of the form U D V, where U and V are orthogonal and */ /* D has evenly spaced entries 1, ..., ULP with random signs */ /* on the diagonal. */ /* (9) A matrix of the form U D V, where U and V are orthogonal and */ /* D has geometrically spaced entries 1, ..., ULP with random */ /* signs on the diagonal. */ /* (10) A matrix of the form U D V, where U and V are orthogonal and */ /* D has "clustered" entries 1, ULP,..., ULP with random */ /* signs on the diagonal. */ /* (11) Same as (8), but multiplied by SQRT( overflow threshold ) */ /* (12) Same as (8), but multiplied by SQRT( underflow threshold ) */ /* (13) Rectangular matrix with random entries chosen from (-1,1). */ /* (14) Same as (13), but multiplied by SQRT( overflow threshold ) */ /* (15) Same as (13), but multiplied by SQRT( underflow threshold ) */ /* Arguments */ /* ========= */ /* NSIZES (input) INTEGER */ /* The number of values of M and N contained in the vectors */ /* MVAL and NVAL. The matrix sizes are used in pairs (M,N). */ /* If NSIZES is zero, DCHKBB does nothing. NSIZES must be at */ /* least zero. */ /* MVAL (input) INTEGER array, dimension (NSIZES) */ /* The values of the matrix row dimension M. */ /* NVAL (input) INTEGER array, dimension (NSIZES) */ /* The values of the matrix column dimension N. */ /* NWDTHS (input) INTEGER */ /* The number of bandwidths to use. If it is zero, */ /* DCHKBB does nothing. It must be at least zero. */ /* KK (input) INTEGER array, dimension (NWDTHS) */ /* An array containing the bandwidths to be used for the band */ /* matrices. The values must be at least zero. */ /* NTYPES (input) INTEGER */ /* The number of elements in DOTYPE. If it is zero, DCHKBB */ /* does nothing. It must be at least zero. If it is MAXTYP+1 */ /* and NSIZES is 1, then an additional type, MAXTYP+1 is */ /* defined, which is to use whatever matrix is in A. This */ /* is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */ /* DOTYPE(MAXTYP+1) is .TRUE. . */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* If DOTYPE(j) is .TRUE., then for each size in NN a */ /* matrix of that size and of type j will be generated. */ /* If NTYPES is smaller than the maximum number of types */ /* defined (PARAMETER MAXTYP), then types NTYPES+1 through */ /* MAXTYP will not be generated. If NTYPES is larger */ /* than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) */ /* will be ignored. */ /* NRHS (input) INTEGER */ /* The number of columns in the "right-hand side" matrix C. */ /* If NRHS = 0, then the operations on the right-hand side will */ /* not be tested. NRHS must be at least 0. */ /* ISEED (input/output) INTEGER array, dimension (4) */ /* On entry ISEED specifies the seed of the random number */ /* generator. The array elements should be between 0 and 4095; */ /* if not they will be reduced mod 4096. Also, ISEED(4) must */ /* be odd. The random number generator uses a linear */ /* congruential sequence limited to small integers, and so */ /* should produce machine independent random numbers. The */ /* values of ISEED are changed on exit, and can be used in the */ /* next call to DCHKBB to continue the same random number */ /* sequence. */ /* THRESH (input) DOUBLE PRECISION */ /* A test will count as "failed" if the "error", computed as */ /* described above, exceeds THRESH. Note that the error */ /* is scaled to be O(1), so THRESH should be a reasonably */ /* small multiple of 1, e.g., 10 or 100. In particular, */ /* it should not depend on the precision (single vs. double) */ /* or the size of the matrix. It must be at least zero. */ /* NOUNIT (input) INTEGER */ /* The FORTRAN unit number for printing out error messages */ /* (e.g., if a routine returns IINFO not equal to 0.) */ /* A (input/workspace) DOUBLE PRECISION array, dimension */ /* (LDA, max(NN)) */ /* Used to hold the matrix A. */ /* LDA (input) INTEGER */ /* The leading dimension of A. It must be at least 1 */ /* and at least max( NN ). */ /* AB (workspace) DOUBLE PRECISION array, dimension (LDAB, max(NN)) */ /* Used to hold A in band storage format. */ /* LDAB (input) INTEGER */ /* The leading dimension of AB. It must be at least 2 (not 1!) */ /* and at least max( KK )+1. */ /* BD (workspace) DOUBLE PRECISION array, dimension (max(NN)) */ /* Used to hold the diagonal of the bidiagonal matrix computed */ /* by DGBBRD. */ /* BE (workspace) DOUBLE PRECISION array, dimension (max(NN)) */ /* Used to hold the off-diagonal of the bidiagonal matrix */ /* computed by DGBBRD. */ /* Q (workspace) DOUBLE PRECISION array, dimension (LDQ, max(NN)) */ /* Used to hold the orthogonal matrix Q computed by DGBBRD. */ /* LDQ (input) INTEGER */ /* The leading dimension of Q. It must be at least 1 */ /* and at least max( NN ). */ /* P (workspace) DOUBLE PRECISION array, dimension (LDP, max(NN)) */ /* Used to hold the orthogonal matrix P computed by DGBBRD. */ /* LDP (input) INTEGER */ /* The leading dimension of P. It must be at least 1 */ /* and at least max( NN ). */ /* C (workspace) DOUBLE PRECISION array, dimension (LDC, max(NN)) */ /* Used to hold the matrix C updated by DGBBRD. */ /* LDC (input) INTEGER */ /* The leading dimension of U. It must be at least 1 */ /* and at least max( NN ). */ /* CC (workspace) DOUBLE PRECISION array, dimension (LDC, max(NN)) */ /* Used to hold a copy of the matrix C. */ /* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The number of entries in WORK. This must be at least */ /* max( LDA+1, max(NN)+1 )*max(NN). */ /* RESULT (output) DOUBLE PRECISION array, dimension (4) */ /* The values computed by the tests described above. */ /* The values are currently limited to 1/ulp, to avoid */ /* overflow. */ /* INFO (output) INTEGER */ /* If 0, then everything ran OK. */ /* ----------------------------------------------------------------------- */ /* Some Local Variables and Parameters: */ /* ---- ----- --------- --- ---------- */ /* ZERO, ONE Real 0 and 1. */ /* MAXTYP The number of types defined. */ /* NTEST The number of tests performed, or which can */ /* be performed so far, for the current matrix. */ /* NTESTT The total number of tests performed so far. */ /* NMAX Largest value in NN. */ /* NMATS The number of matrices generated so far. */ /* NERRS The number of tests which have exceeded THRESH */ /* so far. */ /* COND, IMODE Values to be passed to the matrix generators. */ /* ANORM Norm of A; passed to matrix generators. */ /* OVFL, UNFL Overflow and underflow thresholds. */ /* ULP, ULPINV Finest relative precision and its inverse. */ /* RTOVFL, RTUNFL Square roots of the previous 2 values. */ /* The following four arrays decode JTYPE: */ /* KTYPE(j) The general type (1-10) for type "j". */ /* KMODE(j) The MODE value to be passed to the matrix */ /* generator for type "j". */ /* KMAGN(j) The order of magnitude ( O(1), */ /* O(overflow^(1/2) ), O(underflow^(1/2) ) */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --mval; --nval; --kk; --dotype; --iseed; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; ab_dim1 = *ldab; ab_offset = 1 + ab_dim1; ab -= ab_offset; --bd; --be; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; p_dim1 = *ldp; p_offset = 1 + p_dim1; p -= p_offset; cc_dim1 = *ldc; cc_offset = 1 + cc_dim1; cc -= cc_offset; c_dim1 = *ldc; c_offset = 1 + c_dim1; c__ -= c_offset; --work; --result; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Check for errors */ ntestt = 0; *info = 0; /* Important constants */ badmm = FALSE_; badnn = FALSE_; mmax = 1; nmax = 1; mnmax = 1; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = mmax, i__3 = mval[j]; mmax = max(i__2,i__3); if (mval[j] < 0) { badmm = TRUE_; } /* Computing MAX */ i__2 = nmax, i__3 = nval[j]; nmax = max(i__2,i__3); if (nval[j] < 0) { badnn = TRUE_; } /* Computing MAX */ /* Computing MIN */ i__4 = mval[j], i__5 = nval[j]; i__2 = mnmax, i__3 = min(i__4,i__5); mnmax = max(i__2,i__3); /* L10: */ } badnnb = FALSE_; kmax = 0; i__1 = *nwdths; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = kmax, i__3 = kk[j]; kmax = max(i__2,i__3); if (kk[j] < 0) { badnnb = TRUE_; } /* L20: */ } /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badmm) { *info = -2; } else if (badnn) { *info = -3; } else if (*nwdths < 0) { *info = -4; } else if (badnnb) { *info = -5; } else if (*ntypes < 0) { *info = -6; } else if (*nrhs < 0) { *info = -8; } else if (*lda < nmax) { *info = -13; } else if (*ldab < (kmax << 1) + 1) { *info = -15; } else if (*ldq < nmax) { *info = -19; } else if (*ldp < nmax) { *info = -21; } else if (*ldc < nmax) { *info = -23; } else if ((max(*lda,nmax) + 1) * nmax > *lwork) { *info = -26; } if (*info != 0) { i__1 = -(*info); xerbla_("DCHKBB", &i__1); return 0; } /* Quick return if possible */ if (*nsizes == 0 || *ntypes == 0 || *nwdths == 0) { return 0; } /* More Important constants */ unfl = dlamch_("Safe minimum"); ovfl = 1. / unfl; ulp = dlamch_("Epsilon") * dlamch_("Base"); ulpinv = 1. / ulp; rtunfl = sqrt(unfl); rtovfl = sqrt(ovfl); /* Loop over sizes, widths, types */ nerrs = 0; nmats = 0; i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { m = mval[jsize]; n = nval[jsize]; mnmin = min(m,n); /* Computing MAX */ i__2 = max(1,m); amninv = 1. / (doublereal) max(i__2,n); i__2 = *nwdths; for (jwidth = 1; jwidth <= i__2; ++jwidth) { k = kk[jwidth]; if (k >= m && k >= n) { goto L150; } /* Computing MAX */ /* Computing MIN */ i__5 = m - 1; i__3 = 0, i__4 = min(i__5,k); kl = max(i__3,i__4); /* Computing MAX */ /* Computing MIN */ i__5 = n - 1; i__3 = 0, i__4 = min(i__5,k); ku = max(i__3,i__4); if (*nsizes != 1) { mtypes = min(15,*ntypes); } else { mtypes = min(16,*ntypes); } i__3 = mtypes; for (jtype = 1; jtype <= i__3; ++jtype) { if (! dotype[jtype]) { goto L140; } ++nmats; ntest = 0; for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L30: */ } /* Compute "A". */ /* Control parameters: */ /* KMAGN KMODE KTYPE */ /* =1 O(1) clustered 1 zero */ /* =2 large clustered 2 identity */ /* =3 small exponential (none) */ /* =4 arithmetic diagonal, (w/ singular values) */ /* =5 random log (none) */ /* =6 random nonhermitian, w/ singular values */ /* =7 (none) */ /* =8 (none) */ /* =9 random nonhermitian */ if (mtypes > 15) { goto L90; } itype = ktype[jtype - 1]; imode = kmode[jtype - 1]; /* Compute norm */ switch (kmagn[jtype - 1]) { case 1: goto L40; case 2: goto L50; case 3: goto L60; } L40: anorm = 1.; goto L70; L50: anorm = rtovfl * ulp * amninv; goto L70; L60: anorm = rtunfl * max(m,n) * ulpinv; goto L70; L70: dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda); dlaset_("Full", ldab, &n, &c_b18, &c_b18, &ab[ab_offset], ldab); iinfo = 0; cond = ulpinv; /* Special Matrices -- Identity & Jordan block */ /* Zero */ if (itype == 1) { iinfo = 0; } else if (itype == 2) { /* Identity */ i__4 = n; for (jcol = 1; jcol <= i__4; ++jcol) { a[jcol + jcol * a_dim1] = anorm; /* L80: */ } } else if (itype == 4) { /* Diagonal Matrix, singular values specified */ dlatms_(&m, &n, "S", &iseed[1], "N", &work[1], &imode, & cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[m + 1], &iinfo); } else if (itype == 6) { /* Nonhermitian, singular values specified */ dlatms_(&m, &n, "S", &iseed[1], "N", &work[1], &imode, & cond, &anorm, &kl, &ku, "N", &a[a_offset], lda, & work[m + 1], &iinfo); } else if (itype == 9) { /* Nonhermitian, random entries */ dlatmr_(&m, &n, "S", &iseed[1], "N", &work[1], &c__6, & c_b35, &c_b35, "T", "N", &work[n + 1], &c__1, & c_b35, &work[(n << 1) + 1], &c__1, &c_b35, "N", idumma, &kl, &ku, &c_b18, &anorm, "N", &a[ a_offset], lda, idumma, &iinfo); } else { iinfo = 1; } /* Generate Right-Hand Side */ dlatmr_(&m, nrhs, "S", &iseed[1], "N", &work[1], &c__6, & c_b35, &c_b35, "T", "N", &work[m + 1], &c__1, &c_b35, &work[(m << 1) + 1], &c__1, &c_b35, "N", idumma, &m, nrhs, &c_b18, &c_b35, "NO", &c__[c_offset], ldc, idumma, &iinfo); if (iinfo != 0) { io___41.ciunit = *nounit; s_wsfe(&io___41); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); return 0; } L90: /* Copy A to band storage. */ i__4 = n; for (j = 1; j <= i__4; ++j) { /* Computing MAX */ i__5 = 1, i__6 = j - ku; /* Computing MIN */ i__8 = m, i__9 = j + kl; i__7 = min(i__8,i__9); for (i__ = max(i__5,i__6); i__ <= i__7; ++i__) { ab[ku + 1 + i__ - j + j * ab_dim1] = a[i__ + j * a_dim1]; /* L100: */ } /* L110: */ } /* Copy C */ dlacpy_("Full", &m, nrhs, &c__[c_offset], ldc, &cc[cc_offset], ldc); /* Call DGBBRD to compute B, Q and P, and to update C. */ dgbbrd_("B", &m, &n, nrhs, &kl, &ku, &ab[ab_offset], ldab, & bd[1], &be[1], &q[q_offset], ldq, &p[p_offset], ldp, & cc[cc_offset], ldc, &work[1], &iinfo); if (iinfo != 0) { io___43.ciunit = *nounit; s_wsfe(&io___43); do_fio(&c__1, "DGBBRD", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[1] = ulpinv; goto L120; } } /* Test 1: Check the decomposition A := Q * B * P' */ /* 2: Check the orthogonality of Q */ /* 3: Check the orthogonality of P */ /* 4: Check the computation of Q' * C */ dbdt01_(&m, &n, &c_n1, &a[a_offset], lda, &q[q_offset], ldq, & bd[1], &be[1], &p[p_offset], ldp, &work[1], &result[1] ); dort01_("Columns", &m, &m, &q[q_offset], ldq, &work[1], lwork, &result[2]); dort01_("Rows", &n, &n, &p[p_offset], ldp, &work[1], lwork, & result[3]); dbdt02_(&m, nrhs, &c__[c_offset], ldc, &cc[cc_offset], ldc, & q[q_offset], ldq, &work[1], &result[4]); /* End of Loop -- Check for RESULT(j) > THRESH */ ntest = 4; L120: ntestt += ntest; /* Print out tests which fail. */ i__4 = ntest; for (jr = 1; jr <= i__4; ++jr) { if (result[jr] >= *thresh) { if (nerrs == 0) { dlahd2_(nounit, "DBB"); } ++nerrs; io___45.ciunit = *nounit; s_wsfe(&io___45); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof( integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&jr, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[jr], (ftnlen)sizeof( doublereal)); e_wsfe(); } /* L130: */ } L140: ; } L150: ; } /* L160: */ } /* Summary */ dlasum_("DBB", nounit, &nerrs, &ntestt); return 0; /* End of DCHKBB */ } /* dchkbb_ */
/* Subroutine */ int dchkbd_(integer *nsizes, integer *mval, integer *nval, integer *ntypes, logical *dotype, integer *nrhs, integer *iseed, doublereal *thresh, doublereal *a, integer *lda, doublereal *bd, doublereal *be, doublereal *s1, doublereal *s2, doublereal *x, integer *ldx, doublereal *y, doublereal *z__, doublereal *q, integer * ldq, doublereal *pt, integer *ldpt, doublereal *u, doublereal *vt, doublereal *work, integer *lwork, integer *iwork, integer *nout, integer *info) { /* Initialized data */ static integer ktype[16] = { 1,2,4,4,4,4,4,6,6,6,6,6,9,9,9,10 }; static integer kmagn[16] = { 1,1,1,1,1,2,3,1,1,1,2,3,1,2,3,0 }; static integer kmode[16] = { 0,0,4,3,1,4,4,4,3,1,4,4,0,0,0,0 }; /* Format strings */ static char fmt_9998[] = "(\002 DCHKBD: \002,a,\002 returned INFO=\002,i" "6,\002.\002,/9x,\002M=\002,i6,\002, N=\002,i6,\002, JTYPE=\002,i" "6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)"; static char fmt_9999[] = "(\002 M=\002,i5,\002, N=\002,i5,\002, type " "\002,i2,\002, seed=\002,4(i4,\002,\002),\002 test(\002,i2,\002)" "=\002,g11.4)"; /* System generated locals */ integer a_dim1, a_offset, pt_dim1, pt_offset, q_dim1, q_offset, u_dim1, u_offset, vt_dim1, vt_offset, x_dim1, x_offset, y_dim1, y_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7; doublereal d__1, d__2, d__3, d__4, d__5, d__6, d__7; /* Builtin functions */ /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen); double log(doublereal), sqrt(doublereal), exp(doublereal); integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer i__, j, m, n, mq; doublereal dum[1], ulp, cond; integer jcol; char path[3]; integer idum[1], mmax, nmax; doublereal unfl, ovfl; char uplo[1]; doublereal temp1, temp2; extern /* Subroutine */ int dbdt01_(integer *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *) , dbdt02_(integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); logical badmm; extern /* Subroutine */ int dbdt03_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, doublereal *); logical badnn; integer nfail; extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *); integer imode; doublereal dumma[1]; integer iinfo; extern /* Subroutine */ int dort01_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *); doublereal anorm; integer mnmin; extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, doublereal *, integer *); integer mnmax, jsize, itype, jtype, ntest; extern /* Subroutine */ int dlahd2_(integer *, char *); integer log2ui; extern /* Subroutine */ int dlabad_(doublereal *, doublereal *); logical bidiag; extern /* Subroutine */ int dbdsdc_(char *, char *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, integer *), dgebrd_(integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, doublereal *, doublereal *, doublereal *, integer *, integer *); extern doublereal dlamch_(char *), dlarnd_(integer *, integer *); extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, doublereal *, integer *, doublereal *, integer *), dlaset_(char *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *); integer ioldsd[4]; extern /* Subroutine */ int dbdsqr_(char *, integer *, integer *, integer *, integer *, doublereal *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *), dorgbr_(char *, integer *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *), xerbla_(char *, integer *), alasum_( char *, integer *, integer *, integer *, integer *), dlatmr_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, char *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, char *, integer *, integer *, integer *, doublereal *, doublereal *, char *, doublereal *, integer *, integer *, integer *), dlatms_(integer *, integer *, char *, integer *, char *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, char *, doublereal *, integer *, doublereal *, integer *); doublereal amninv; integer minwrk; doublereal rtunfl, rtovfl, ulpinv, result[19]; integer mtypes; /* Fortran I/O blocks */ static cilist io___39 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___40 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___42 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___43 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___44 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___45 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___51 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___52 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___53 = { 0, 0, 0, fmt_9999, 0 }; /* -- LAPACK test routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DCHKBD checks the singular value decomposition (SVD) routines. */ /* DGEBRD reduces a real general m by n matrix A to upper or lower */ /* bidiagonal form B by an orthogonal transformation: Q' * A * P = B */ /* (or A = Q * B * P'). The matrix B is upper bidiagonal if m >= n */ /* and lower bidiagonal if m < n. */ /* DORGBR generates the orthogonal matrices Q and P' from DGEBRD. */ /* Note that Q and P are not necessarily square. */ /* DBDSQR computes the singular value decomposition of the bidiagonal */ /* matrix B as B = U S V'. It is called three times to compute */ /* 1) B = U S1 V', where S1 is the diagonal matrix of singular */ /* values and the columns of the matrices U and V are the left */ /* and right singular vectors, respectively, of B. */ /* 2) Same as 1), but the singular values are stored in S2 and the */ /* singular vectors are not computed. */ /* 3) A = (UQ) S (P'V'), the SVD of the original matrix A. */ /* In addition, DBDSQR has an option to apply the left orthogonal matrix */ /* U to a matrix X, useful in least squares applications. */ /* DBDSDC computes the singular value decomposition of the bidiagonal */ /* matrix B as B = U S V' using divide-and-conquer. It is called twice */ /* to compute */ /* 1) B = U S1 V', where S1 is the diagonal matrix of singular */ /* values and the columns of the matrices U and V are the left */ /* and right singular vectors, respectively, of B. */ /* 2) Same as 1), but the singular values are stored in S2 and the */ /* singular vectors are not computed. */ /* For each pair of matrix dimensions (M,N) and each selected matrix */ /* type, an M by N matrix A and an M by NRHS matrix X are generated. */ /* The problem dimensions are as follows */ /* A: M x N */ /* Q: M x min(M,N) (but M x M if NRHS > 0) */ /* P: min(M,N) x N */ /* B: min(M,N) x min(M,N) */ /* U, V: min(M,N) x min(M,N) */ /* S1, S2 diagonal, order min(M,N) */ /* X: M x NRHS */ /* For each generated matrix, 14 tests are performed: */ /* Test DGEBRD and DORGBR */ /* (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P' */ /* (2) | I - Q' Q | / ( M ulp ) */ /* (3) | I - PT PT' | / ( N ulp ) */ /* Test DBDSQR on bidiagonal matrix B */ /* (4) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' */ /* (5) | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X */ /* and Z = U' Y. */ /* (6) | I - U' U | / ( min(M,N) ulp ) */ /* (7) | I - VT VT' | / ( min(M,N) ulp ) */ /* (8) S1 contains min(M,N) nonnegative values in decreasing order. */ /* (Return 0 if true, 1/ULP if false.) */ /* (9) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without */ /* computing U and V. */ /* (10) 0 if the true singular values of B are within THRESH of */ /* those in S1. 2*THRESH if they are not. (Tested using */ /* DSVDCH) */ /* Test DBDSQR on matrix A */ /* (11) | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp ) */ /* (12) | X - (QU) Z | / ( |X| max(M,k) ulp ) */ /* (13) | I - (QU)'(QU) | / ( M ulp ) */ /* (14) | I - (VT PT) (PT'VT') | / ( N ulp ) */ /* Test DBDSDC on bidiagonal matrix B */ /* (15) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V' */ /* (16) | I - U' U | / ( min(M,N) ulp ) */ /* (17) | I - VT VT' | / ( min(M,N) ulp ) */ /* (18) S1 contains min(M,N) nonnegative values in decreasing order. */ /* (Return 0 if true, 1/ULP if false.) */ /* (19) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without */ /* computing U and V. */ /* The possible matrix types are */ /* (1) The zero matrix. */ /* (2) The identity matrix. */ /* (3) A diagonal matrix with evenly spaced entries */ /* 1, ..., ULP and random signs. */ /* (ULP = (first number larger than 1) - 1 ) */ /* (4) A diagonal matrix with geometrically spaced entries */ /* 1, ..., ULP and random signs. */ /* (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP */ /* and random signs. */ /* (6) Same as (3), but multiplied by SQRT( overflow threshold ) */ /* (7) Same as (3), but multiplied by SQRT( underflow threshold ) */ /* (8) A matrix of the form U D V, where U and V are orthogonal and */ /* D has evenly spaced entries 1, ..., ULP with random signs */ /* on the diagonal. */ /* (9) A matrix of the form U D V, where U and V are orthogonal and */ /* D has geometrically spaced entries 1, ..., ULP with random */ /* signs on the diagonal. */ /* (10) A matrix of the form U D V, where U and V are orthogonal and */ /* D has "clustered" entries 1, ULP,..., ULP with random */ /* signs on the diagonal. */ /* (11) Same as (8), but multiplied by SQRT( overflow threshold ) */ /* (12) Same as (8), but multiplied by SQRT( underflow threshold ) */ /* (13) Rectangular matrix with random entries chosen from (-1,1). */ /* (14) Same as (13), but multiplied by SQRT( overflow threshold ) */ /* (15) Same as (13), but multiplied by SQRT( underflow threshold ) */ /* Special case: */ /* (16) A bidiagonal matrix with random entries chosen from a */ /* logarithmic distribution on [ulp^2,ulp^(-2)] (I.e., each */ /* entry is e^x, where x is chosen uniformly on */ /* [ 2 log(ulp), -2 log(ulp) ] .) For *this* type: */ /* (a) DGEBRD is not called to reduce it to bidiagonal form. */ /* (b) the bidiagonal is min(M,N) x min(M,N); if M<N, the */ /* matrix will be lower bidiagonal, otherwise upper. */ /* (c) only tests 5--8 and 14 are performed. */ /* A subset of the full set of matrix types may be selected through */ /* the logical array DOTYPE. */ /* Arguments */ /* ========== */ /* NSIZES (input) INTEGER */ /* The number of values of M and N contained in the vectors */ /* MVAL and NVAL. The matrix sizes are used in pairs (M,N). */ /* MVAL (input) INTEGER array, dimension (NM) */ /* The values of the matrix row dimension M. */ /* NVAL (input) INTEGER array, dimension (NM) */ /* The values of the matrix column dimension N. */ /* NTYPES (input) INTEGER */ /* The number of elements in DOTYPE. If it is zero, DCHKBD */ /* does nothing. It must be at least zero. If it is MAXTYP+1 */ /* and NSIZES is 1, then an additional type, MAXTYP+1 is */ /* defined, which is to use whatever matrices are in A and B. */ /* This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and */ /* DOTYPE(MAXTYP+1) is .TRUE. . */ /* DOTYPE (input) LOGICAL array, dimension (NTYPES) */ /* If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix */ /* of type j will be generated. If NTYPES is smaller than the */ /* maximum number of types defined (PARAMETER MAXTYP), then */ /* types NTYPES+1 through MAXTYP will not be generated. If */ /* NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through */ /* DOTYPE(NTYPES) will be ignored. */ /* NRHS (input) INTEGER */ /* The number of columns in the "right-hand side" matrices X, Y, */ /* and Z, used in testing DBDSQR. If NRHS = 0, then the */ /* operations on the right-hand side will not be tested. */ /* NRHS must be at least 0. */ /* ISEED (input/output) INTEGER array, dimension (4) */ /* On entry ISEED specifies the seed of the random number */ /* generator. The array elements should be between 0 and 4095; */ /* if not they will be reduced mod 4096. Also, ISEED(4) must */ /* be odd. The values of ISEED are changed on exit, and can be */ /* used in the next call to DCHKBD to continue the same random */ /* number sequence. */ /* THRESH (input) DOUBLE PRECISION */ /* The threshold value for the test ratios. A result is */ /* included in the output file if RESULT >= THRESH. To have */ /* every test ratio printed, use THRESH = 0. Note that the */ /* expected value of the test ratios is O(1), so THRESH should */ /* be a reasonably small multiple of 1, e.g., 10 or 100. */ /* A (workspace) DOUBLE PRECISION array, dimension (LDA,NMAX) */ /* where NMAX is the maximum value of N in NVAL. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,MMAX), */ /* where MMAX is the maximum value of M in MVAL. */ /* BD (workspace) DOUBLE PRECISION array, dimension */ /* (max(min(MVAL(j),NVAL(j)))) */ /* BE (workspace) DOUBLE PRECISION array, dimension */ /* (max(min(MVAL(j),NVAL(j)))) */ /* S1 (workspace) DOUBLE PRECISION array, dimension */ /* (max(min(MVAL(j),NVAL(j)))) */ /* S2 (workspace) DOUBLE PRECISION array, dimension */ /* (max(min(MVAL(j),NVAL(j)))) */ /* X (workspace) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* LDX (input) INTEGER */ /* The leading dimension of the arrays X, Y, and Z. */ /* LDX >= max(1,MMAX) */ /* Y (workspace) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* Z (workspace) DOUBLE PRECISION array, dimension (LDX,NRHS) */ /* Q (workspace) DOUBLE PRECISION array, dimension (LDQ,MMAX) */ /* LDQ (input) INTEGER */ /* The leading dimension of the array Q. LDQ >= max(1,MMAX). */ /* PT (workspace) DOUBLE PRECISION array, dimension (LDPT,NMAX) */ /* LDPT (input) INTEGER */ /* The leading dimension of the arrays PT, U, and V. */ /* LDPT >= max(1, max(min(MVAL(j),NVAL(j)))). */ /* U (workspace) DOUBLE PRECISION array, dimension */ /* (LDPT,max(min(MVAL(j),NVAL(j)))) */ /* V (workspace) DOUBLE PRECISION array, dimension */ /* (LDPT,max(min(MVAL(j),NVAL(j)))) */ /* WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) */ /* LWORK (input) INTEGER */ /* The number of entries in WORK. This must be at least */ /* 3(M+N) and M(M + max(M,N,k) + 1) + N*min(M,N) for all */ /* pairs (M,N)=(MM(j),NN(j)) */ /* IWORK (workspace) INTEGER array, dimension at least 8*min(M,N) */ /* NOUT (input) INTEGER */ /* The FORTRAN unit number for printing out error messages */ /* (e.g., if a routine returns IINFO not equal to 0.) */ /* INFO (output) INTEGER */ /* If 0, then everything ran OK. */ /* -1: NSIZES < 0 */ /* -2: Some MM(j) < 0 */ /* -3: Some NN(j) < 0 */ /* -4: NTYPES < 0 */ /* -6: NRHS < 0 */ /* -8: THRESH < 0 */ /* -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ). */ /* -17: LDB < 1 or LDB < MMAX. */ /* -21: LDQ < 1 or LDQ < MMAX. */ /* -23: LDPT< 1 or LDPT< MNMAX. */ /* -27: LWORK too small. */ /* If DLATMR, SLATMS, DGEBRD, DORGBR, or DBDSQR, */ /* returns an error code, the */ /* absolute value of it is returned. */ /* ----------------------------------------------------------------------- */ /* Some Local Variables and Parameters: */ /* ---- ----- --------- --- ---------- */ /* ZERO, ONE Real 0 and 1. */ /* MAXTYP The number of types defined. */ /* NTEST The number of tests performed, or which can */ /* be performed so far, for the current matrix. */ /* MMAX Largest value in NN. */ /* NMAX Largest value in NN. */ /* MNMIN min(MM(j), NN(j)) (the dimension of the bidiagonal */ /* matrix.) */ /* MNMAX The maximum value of MNMIN for j=1,...,NSIZES. */ /* NFAIL The number of tests which have exceeded THRESH */ /* COND, IMODE Values to be passed to the matrix generators. */ /* ANORM Norm of A; passed to matrix generators. */ /* OVFL, UNFL Overflow and underflow thresholds. */ /* RTOVFL, RTUNFL Square roots of the previous 2 values. */ /* ULP, ULPINV Finest relative precision and its inverse. */ /* The following four arrays decode JTYPE: */ /* KTYPE(j) The general type (1-10) for type "j". */ /* KMODE(j) The MODE value to be passed to the matrix */ /* generator for type "j". */ /* KMAGN(j) The order of magnitude ( O(1), */ /* O(overflow^(1/2) ), O(underflow^(1/2) ) */ /* ====================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Local Arrays .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Scalars in Common .. */ /* .. */ /* .. Common blocks .. */ /* .. */ /* .. Data statements .. */ /* Parameter adjustments */ --mval; --nval; --dotype; --iseed; a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --bd; --be; --s1; --s2; z_dim1 = *ldx; z_offset = 1 + z_dim1; z__ -= z_offset; y_dim1 = *ldx; y_offset = 1 + y_dim1; y -= y_offset; x_dim1 = *ldx; x_offset = 1 + x_dim1; x -= x_offset; q_dim1 = *ldq; q_offset = 1 + q_dim1; q -= q_offset; vt_dim1 = *ldpt; vt_offset = 1 + vt_dim1; vt -= vt_offset; u_dim1 = *ldpt; u_offset = 1 + u_dim1; u -= u_offset; pt_dim1 = *ldpt; pt_offset = 1 + pt_dim1; pt -= pt_offset; --work; --iwork; /* Function Body */ /* .. */ /* .. Executable Statements .. */ /* Check for errors */ *info = 0; badmm = FALSE_; badnn = FALSE_; mmax = 1; nmax = 1; mnmax = 1; minwrk = 1; i__1 = *nsizes; for (j = 1; j <= i__1; ++j) { /* Computing MAX */ i__2 = mmax, i__3 = mval[j]; mmax = max(i__2,i__3); if (mval[j] < 0) { badmm = TRUE_; } /* Computing MAX */ i__2 = nmax, i__3 = nval[j]; nmax = max(i__2,i__3); if (nval[j] < 0) { badnn = TRUE_; } /* Computing MAX */ /* Computing MIN */ i__4 = mval[j], i__5 = nval[j]; i__2 = mnmax, i__3 = min(i__4,i__5); mnmax = max(i__2,i__3); /* Computing MAX */ /* Computing MAX */ i__4 = mval[j], i__5 = nval[j], i__4 = max(i__4,i__5); /* Computing MIN */ i__6 = nval[j], i__7 = mval[j]; i__2 = minwrk, i__3 = (mval[j] + nval[j]) * 3, i__2 = max(i__2,i__3), i__3 = mval[j] * (mval[j] + max(i__4,*nrhs) + 1) + nval[j] * min(i__6,i__7); minwrk = max(i__2,i__3); /* L10: */ } /* Check for errors */ if (*nsizes < 0) { *info = -1; } else if (badmm) { *info = -2; } else if (badnn) { *info = -3; } else if (*ntypes < 0) { *info = -4; } else if (*nrhs < 0) { *info = -6; } else if (*lda < mmax) { *info = -11; } else if (*ldx < mmax) { *info = -17; } else if (*ldq < mmax) { *info = -21; } else if (*ldpt < mnmax) { *info = -23; } else if (minwrk > *lwork) { *info = -27; } if (*info != 0) { i__1 = -(*info); xerbla_("DCHKBD", &i__1); return 0; } /* Initialize constants */ s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16); s_copy(path + 1, "BD", (ftnlen)2, (ftnlen)2); nfail = 0; ntest = 0; unfl = dlamch_("Safe minimum"); ovfl = dlamch_("Overflow"); dlabad_(&unfl, &ovfl); ulp = dlamch_("Precision"); ulpinv = 1. / ulp; log2ui = (integer) (log(ulpinv) / log(2.)); rtunfl = sqrt(unfl); rtovfl = sqrt(ovfl); infoc_1.infot = 0; /* Loop over sizes, types */ i__1 = *nsizes; for (jsize = 1; jsize <= i__1; ++jsize) { m = mval[jsize]; n = nval[jsize]; mnmin = min(m,n); /* Computing MAX */ i__2 = max(m,n); amninv = 1. / max(i__2,1); if (*nsizes != 1) { mtypes = min(16,*ntypes); } else { mtypes = min(17,*ntypes); } i__2 = mtypes; for (jtype = 1; jtype <= i__2; ++jtype) { if (! dotype[jtype]) { goto L190; } for (j = 1; j <= 4; ++j) { ioldsd[j - 1] = iseed[j]; /* L20: */ } for (j = 1; j <= 14; ++j) { result[j - 1] = -1.; /* L30: */ } *(unsigned char *)uplo = ' '; /* Compute "A" */ /* Control parameters: */ /* KMAGN KMODE KTYPE */ /* =1 O(1) clustered 1 zero */ /* =2 large clustered 2 identity */ /* =3 small exponential (none) */ /* =4 arithmetic diagonal, (w/ eigenvalues) */ /* =5 random symmetric, w/ eigenvalues */ /* =6 nonsymmetric, w/ singular values */ /* =7 random diagonal */ /* =8 random symmetric */ /* =9 random nonsymmetric */ /* =10 random bidiagonal (log. distrib.) */ if (mtypes > 16) { goto L100; } itype = ktype[jtype - 1]; imode = kmode[jtype - 1]; /* Compute norm */ switch (kmagn[jtype - 1]) { case 1: goto L40; case 2: goto L50; case 3: goto L60; } L40: anorm = 1.; goto L70; L50: anorm = rtovfl * ulp * amninv; goto L70; L60: anorm = rtunfl * max(m,n) * ulpinv; goto L70; L70: dlaset_("Full", lda, &n, &c_b20, &c_b20, &a[a_offset], lda); iinfo = 0; cond = ulpinv; bidiag = FALSE_; if (itype == 1) { /* Zero matrix */ iinfo = 0; } else if (itype == 2) { /* Identity */ i__3 = mnmin; for (jcol = 1; jcol <= i__3; ++jcol) { a[jcol + jcol * a_dim1] = anorm; /* L80: */ } } else if (itype == 4) { /* Diagonal Matrix, [Eigen]values Specified */ dlatms_(&mnmin, &mnmin, "S", &iseed[1], "N", &work[1], &imode, &cond, &anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[mnmin + 1], &iinfo); } else if (itype == 5) { /* Symmetric, eigenvalues specified */ dlatms_(&mnmin, &mnmin, "S", &iseed[1], "S", &work[1], &imode, &cond, &anorm, &m, &n, "N", &a[a_offset], lda, &work[ mnmin + 1], &iinfo); } else if (itype == 6) { /* Nonsymmetric, singular values specified */ dlatms_(&m, &n, "S", &iseed[1], "N", &work[1], &imode, &cond, &anorm, &m, &n, "N", &a[a_offset], lda, &work[mnmin + 1], &iinfo); } else if (itype == 7) { /* Diagonal, random entries */ dlatmr_(&mnmin, &mnmin, "S", &iseed[1], "N", &work[1], &c__6, &c_b37, &c_b37, "T", "N", &work[mnmin + 1], &c__1, & c_b37, &work[(mnmin << 1) + 1], &c__1, &c_b37, "N", & iwork[1], &c__0, &c__0, &c_b20, &anorm, "NO", &a[ a_offset], lda, &iwork[1], &iinfo); } else if (itype == 8) { /* Symmetric, random entries */ dlatmr_(&mnmin, &mnmin, "S", &iseed[1], "S", &work[1], &c__6, &c_b37, &c_b37, "T", "N", &work[mnmin + 1], &c__1, & c_b37, &work[m + mnmin + 1], &c__1, &c_b37, "N", & iwork[1], &m, &n, &c_b20, &anorm, "NO", &a[a_offset], lda, &iwork[1], &iinfo); } else if (itype == 9) { /* Nonsymmetric, random entries */ dlatmr_(&m, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b37, &c_b37, "T", "N", &work[mnmin + 1], &c__1, &c_b37, & work[m + mnmin + 1], &c__1, &c_b37, "N", &iwork[1], & m, &n, &c_b20, &anorm, "NO", &a[a_offset], lda, & iwork[1], &iinfo); } else if (itype == 10) { /* Bidiagonal, random entries */ temp1 = log(ulp) * -2.; i__3 = mnmin; for (j = 1; j <= i__3; ++j) { bd[j] = exp(temp1 * dlarnd_(&c__2, &iseed[1])); if (j < mnmin) { be[j] = exp(temp1 * dlarnd_(&c__2, &iseed[1])); } /* L90: */ } iinfo = 0; bidiag = TRUE_; if (m >= n) { *(unsigned char *)uplo = 'U'; } else { *(unsigned char *)uplo = 'L'; } } else { iinfo = 1; } if (iinfo == 0) { /* Generate Right-Hand Side */ if (bidiag) { dlatmr_(&mnmin, nrhs, "S", &iseed[1], "N", &work[1], & c__6, &c_b37, &c_b37, "T", "N", &work[mnmin + 1], &c__1, &c_b37, &work[(mnmin << 1) + 1], &c__1, & c_b37, "N", &iwork[1], &mnmin, nrhs, &c_b20, & c_b37, "NO", &y[y_offset], ldx, &iwork[1], &iinfo); } else { dlatmr_(&m, nrhs, "S", &iseed[1], "N", &work[1], &c__6, & c_b37, &c_b37, "T", "N", &work[m + 1], &c__1, & c_b37, &work[(m << 1) + 1], &c__1, &c_b37, "N", & iwork[1], &m, nrhs, &c_b20, &c_b37, "NO", &x[ x_offset], ldx, &iwork[1], &iinfo); } } /* Error Exit */ if (iinfo != 0) { io___39.ciunit = *nout; s_wsfe(&io___39); do_fio(&c__1, "Generator", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); return 0; } L100: /* Call DGEBRD and DORGBR to compute B, Q, and P, do tests. */ if (! bidiag) { /* Compute transformations to reduce A to bidiagonal form: */ /* B := Q' * A * P. */ dlacpy_(" ", &m, &n, &a[a_offset], lda, &q[q_offset], ldq); i__3 = *lwork - (mnmin << 1); dgebrd_(&m, &n, &q[q_offset], ldq, &bd[1], &be[1], &work[1], & work[mnmin + 1], &work[(mnmin << 1) + 1], &i__3, & iinfo); /* Check error code from DGEBRD. */ if (iinfo != 0) { io___40.ciunit = *nout; s_wsfe(&io___40); do_fio(&c__1, "DGEBRD", (ftnlen)6); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); return 0; } dlacpy_(" ", &m, &n, &q[q_offset], ldq, &pt[pt_offset], ldpt); if (m >= n) { *(unsigned char *)uplo = 'U'; } else { *(unsigned char *)uplo = 'L'; } /* Generate Q */ mq = m; if (*nrhs <= 0) { mq = mnmin; } i__3 = *lwork - (mnmin << 1); dorgbr_("Q", &m, &mq, &n, &q[q_offset], ldq, &work[1], &work[( mnmin << 1) + 1], &i__3, &iinfo); /* Check error code from DORGBR. */ if (iinfo != 0) { io___42.ciunit = *nout; s_wsfe(&io___42); do_fio(&c__1, "DORGBR(Q)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); return 0; } /* Generate P' */ i__3 = *lwork - (mnmin << 1); dorgbr_("P", &mnmin, &n, &m, &pt[pt_offset], ldpt, &work[ mnmin + 1], &work[(mnmin << 1) + 1], &i__3, &iinfo); /* Check error code from DORGBR. */ if (iinfo != 0) { io___43.ciunit = *nout; s_wsfe(&io___43); do_fio(&c__1, "DORGBR(P)", (ftnlen)9); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; e_wsfe(); *info = abs(iinfo); return 0; } /* Apply Q' to an M by NRHS matrix X: Y := Q' * X. */ dgemm_("Transpose", "No transpose", &m, nrhs, &m, &c_b37, &q[ q_offset], ldq, &x[x_offset], ldx, &c_b20, &y[ y_offset], ldx); /* Test 1: Check the decomposition A := Q * B * PT */ /* 2: Check the orthogonality of Q */ /* 3: Check the orthogonality of PT */ dbdt01_(&m, &n, &c__1, &a[a_offset], lda, &q[q_offset], ldq, & bd[1], &be[1], &pt[pt_offset], ldpt, &work[1], result) ; dort01_("Columns", &m, &mq, &q[q_offset], ldq, &work[1], lwork, &result[1]); dort01_("Rows", &mnmin, &n, &pt[pt_offset], ldpt, &work[1], lwork, &result[2]); } /* Use DBDSQR to form the SVD of the bidiagonal matrix B: */ /* B := U * S1 * VT, and compute Z = U' * Y. */ dcopy_(&mnmin, &bd[1], &c__1, &s1[1], &c__1); if (mnmin > 0) { i__3 = mnmin - 1; dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1); } dlacpy_(" ", &m, nrhs, &y[y_offset], ldx, &z__[z_offset], ldx); dlaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &u[u_offset], ldpt); dlaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &vt[vt_offset], ldpt); dbdsqr_(uplo, &mnmin, &mnmin, &mnmin, nrhs, &s1[1], &work[1], &vt[ vt_offset], ldpt, &u[u_offset], ldpt, &z__[z_offset], ldx, &work[mnmin + 1], &iinfo); /* Check error code from DBDSQR. */ if (iinfo != 0) { io___44.ciunit = *nout; s_wsfe(&io___44); do_fio(&c__1, "DBDSQR(vects)", (ftnlen)13); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[3] = ulpinv; goto L170; } } /* Use DBDSQR to compute only the singular values of the */ /* bidiagonal matrix B; U, VT, and Z should not be modified. */ dcopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1); if (mnmin > 0) { i__3 = mnmin - 1; dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1); } dbdsqr_(uplo, &mnmin, &c__0, &c__0, &c__0, &s2[1], &work[1], &vt[ vt_offset], ldpt, &u[u_offset], ldpt, &z__[z_offset], ldx, &work[mnmin + 1], &iinfo); /* Check error code from DBDSQR. */ if (iinfo != 0) { io___45.ciunit = *nout; s_wsfe(&io___45); do_fio(&c__1, "DBDSQR(values)", (ftnlen)14); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[8] = ulpinv; goto L170; } } /* Test 4: Check the decomposition B := U * S1 * VT */ /* 5: Check the computation Z := U' * Y */ /* 6: Check the orthogonality of U */ /* 7: Check the orthogonality of VT */ dbdt03_(uplo, &mnmin, &c__1, &bd[1], &be[1], &u[u_offset], ldpt, & s1[1], &vt[vt_offset], ldpt, &work[1], &result[3]); dbdt02_(&mnmin, nrhs, &y[y_offset], ldx, &z__[z_offset], ldx, &u[ u_offset], ldpt, &work[1], &result[4]); dort01_("Columns", &mnmin, &mnmin, &u[u_offset], ldpt, &work[1], lwork, &result[5]); dort01_("Rows", &mnmin, &mnmin, &vt[vt_offset], ldpt, &work[1], lwork, &result[6]); /* Test 8: Check that the singular values are sorted in */ /* non-increasing order and are non-negative */ result[7] = 0.; i__3 = mnmin - 1; for (i__ = 1; i__ <= i__3; ++i__) { if (s1[i__] < s1[i__ + 1]) { result[7] = ulpinv; } if (s1[i__] < 0.) { result[7] = ulpinv; } /* L110: */ } if (mnmin >= 1) { if (s1[mnmin] < 0.) { result[7] = ulpinv; } } /* Test 9: Compare DBDSQR with and without singular vectors */ temp2 = 0.; i__3 = mnmin; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ /* Computing MAX */ d__6 = (d__1 = s1[j], abs(d__1)), d__7 = (d__2 = s2[j], abs( d__2)); d__4 = sqrt(unfl) * max(s1[1],1.), d__5 = ulp * max(d__6,d__7) ; temp1 = (d__3 = s1[j] - s2[j], abs(d__3)) / max(d__4,d__5); temp2 = max(temp1,temp2); /* L120: */ } result[8] = temp2; /* Test 10: Sturm sequence test of singular values */ /* Go up by factors of two until it succeeds */ temp1 = *thresh * (.5 - ulp); i__3 = log2ui; for (j = 0; j <= i__3; ++j) { /* CALL DSVDCH( MNMIN, BD, BE, S1, TEMP1, IINFO ) */ if (iinfo == 0) { goto L140; } temp1 *= 2.; /* L130: */ } L140: result[9] = temp1; /* Use DBDSQR to form the decomposition A := (QU) S (VT PT) */ /* from the bidiagonal form A := Q B PT. */ if (! bidiag) { dcopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1); if (mnmin > 0) { i__3 = mnmin - 1; dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1); } dbdsqr_(uplo, &mnmin, &n, &m, nrhs, &s2[1], &work[1], &pt[ pt_offset], ldpt, &q[q_offset], ldq, &y[y_offset], ldx, &work[mnmin + 1], &iinfo); /* Test 11: Check the decomposition A := Q*U * S2 * VT*PT */ /* 12: Check the computation Z := U' * Q' * X */ /* 13: Check the orthogonality of Q*U */ /* 14: Check the orthogonality of VT*PT */ dbdt01_(&m, &n, &c__0, &a[a_offset], lda, &q[q_offset], ldq, & s2[1], dumma, &pt[pt_offset], ldpt, &work[1], &result[ 10]); dbdt02_(&m, nrhs, &x[x_offset], ldx, &y[y_offset], ldx, &q[ q_offset], ldq, &work[1], &result[11]); dort01_("Columns", &m, &mq, &q[q_offset], ldq, &work[1], lwork, &result[12]); dort01_("Rows", &mnmin, &n, &pt[pt_offset], ldpt, &work[1], lwork, &result[13]); } /* Use DBDSDC to form the SVD of the bidiagonal matrix B: */ /* B := U * S1 * VT */ dcopy_(&mnmin, &bd[1], &c__1, &s1[1], &c__1); if (mnmin > 0) { i__3 = mnmin - 1; dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1); } dlaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &u[u_offset], ldpt); dlaset_("Full", &mnmin, &mnmin, &c_b20, &c_b37, &vt[vt_offset], ldpt); dbdsdc_(uplo, "I", &mnmin, &s1[1], &work[1], &u[u_offset], ldpt, & vt[vt_offset], ldpt, dum, idum, &work[mnmin + 1], &iwork[ 1], &iinfo); /* Check error code from DBDSDC. */ if (iinfo != 0) { io___51.ciunit = *nout; s_wsfe(&io___51); do_fio(&c__1, "DBDSDC(vects)", (ftnlen)13); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[14] = ulpinv; goto L170; } } /* Use DBDSDC to compute only the singular values of the */ /* bidiagonal matrix B; U and VT should not be modified. */ dcopy_(&mnmin, &bd[1], &c__1, &s2[1], &c__1); if (mnmin > 0) { i__3 = mnmin - 1; dcopy_(&i__3, &be[1], &c__1, &work[1], &c__1); } dbdsdc_(uplo, "N", &mnmin, &s2[1], &work[1], dum, &c__1, dum, & c__1, dum, idum, &work[mnmin + 1], &iwork[1], &iinfo); /* Check error code from DBDSDC. */ if (iinfo != 0) { io___52.ciunit = *nout; s_wsfe(&io___52); do_fio(&c__1, "DBDSDC(values)", (ftnlen)14); do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)); e_wsfe(); *info = abs(iinfo); if (iinfo < 0) { return 0; } else { result[17] = ulpinv; goto L170; } } /* Test 15: Check the decomposition B := U * S1 * VT */ /* 16: Check the orthogonality of U */ /* 17: Check the orthogonality of VT */ dbdt03_(uplo, &mnmin, &c__1, &bd[1], &be[1], &u[u_offset], ldpt, & s1[1], &vt[vt_offset], ldpt, &work[1], &result[14]); dort01_("Columns", &mnmin, &mnmin, &u[u_offset], ldpt, &work[1], lwork, &result[15]); dort01_("Rows", &mnmin, &mnmin, &vt[vt_offset], ldpt, &work[1], lwork, &result[16]); /* Test 18: Check that the singular values are sorted in */ /* non-increasing order and are non-negative */ result[17] = 0.; i__3 = mnmin - 1; for (i__ = 1; i__ <= i__3; ++i__) { if (s1[i__] < s1[i__ + 1]) { result[17] = ulpinv; } if (s1[i__] < 0.) { result[17] = ulpinv; } /* L150: */ } if (mnmin >= 1) { if (s1[mnmin] < 0.) { result[17] = ulpinv; } } /* Test 19: Compare DBDSQR with and without singular vectors */ temp2 = 0.; i__3 = mnmin; for (j = 1; j <= i__3; ++j) { /* Computing MAX */ /* Computing MAX */ d__4 = abs(s1[1]), d__5 = abs(s2[1]); d__2 = sqrt(unfl) * max(s1[1],1.), d__3 = ulp * max(d__4,d__5) ; temp1 = (d__1 = s1[j] - s2[j], abs(d__1)) / max(d__2,d__3); temp2 = max(temp1,temp2); /* L160: */ } result[18] = temp2; /* End of Loop -- Check for RESULT(j) > THRESH */ L170: for (j = 1; j <= 19; ++j) { if (result[j - 1] >= *thresh) { if (nfail == 0) { dlahd2_(nout, path); } io___53.ciunit = *nout; s_wsfe(&io___53); do_fio(&c__1, (char *)&m, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer)) ; do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[j - 1], (ftnlen)sizeof( doublereal)); e_wsfe(); ++nfail; } /* L180: */ } if (! bidiag) { ntest += 19; } else { ntest += 5; } L190: ; } /* L200: */ } /* Summary */ alasum_(path, nout, &nfail, &ntest, &c__0); return 0; /* End of DCHKBD */ } /* dchkbd_ */
/* Subroutine */ int dlafts_(char *type__, integer *m, integer *n, integer * imat, integer *ntests, doublereal *result, integer *iseed, doublereal *thresh, integer *iounit, integer *ie) { /* Format strings */ static char fmt_9999[] = "(\002 Matrix order=\002,i5,\002, type=\002,i2" ",\002, seed=\002,4(i4,\002,\002),\002 result \002,i3,\002 is\002" ",0p,f8.2)"; static char fmt_9998[] = "(\002 Matrix order=\002,i5,\002, type=\002,i2" ",\002, seed=\002,4(i4,\002,\002),\002 result \002,i3,\002 is\002" ",1p,d10.3)"; static char fmt_9997[] = "(1x,i5,\002 x\002,i5,\002 matrix, type=\002," "i2,\002, s\002,\002eed=\002,3(i4,\002,\002),i4,\002: result \002" ",i3,\002 is\002,0p,f8.2)"; static char fmt_9996[] = "(1x,i5,\002 x\002,i5,\002 matrix, type=\002," "i2,\002, s\002,\002eed=\002,3(i4,\002,\002),i4,\002: result \002" ",i3,\002 is\002,1p,d10.3)"; /* System generated locals */ integer i__1; /* Builtin functions */ integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void); /* Local variables */ integer k; extern /* Subroutine */ int dlahd2_(integer *, char *); /* Fortran I/O blocks */ static cilist io___2 = { 0, 0, 0, fmt_9999, 0 }; static cilist io___3 = { 0, 0, 0, fmt_9998, 0 }; static cilist io___4 = { 0, 0, 0, fmt_9997, 0 }; static cilist io___5 = { 0, 0, 0, fmt_9996, 0 }; /* -- LAPACK auxiliary test routine (version 3.1.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* April 2009 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLAFTS tests the result vector against the threshold value to */ /* see which tests for this matrix type failed to pass the threshold. */ /* Output is to the file given by unit IOUNIT. */ /* Arguments */ /* ========= */ /* TYPE - CHARACTER*3 */ /* On entry, TYPE specifies the matrix type to be used in the */ /* printed messages. */ /* Not modified. */ /* N - INTEGER */ /* On entry, N specifies the order of the test matrix. */ /* Not modified. */ /* IMAT - INTEGER */ /* On entry, IMAT specifies the type of the test matrix. */ /* A listing of the different types is printed by DLAHD2 */ /* to the output file if a test fails to pass the threshold. */ /* Not modified. */ /* NTESTS - INTEGER */ /* On entry, NTESTS is the number of tests performed on the */ /* subroutines in the path given by TYPE. */ /* Not modified. */ /* RESULT - DOUBLE PRECISION array of dimension( NTESTS ) */ /* On entry, RESULT contains the test ratios from the tests */ /* performed in the calling program. */ /* Not modified. */ /* ISEED - INTEGER array of dimension( 4 ) */ /* Contains the random seed that generated the matrix used */ /* for the tests whose ratios are in RESULT. */ /* Not modified. */ /* THRESH - DOUBLE PRECISION */ /* On entry, THRESH specifies the acceptable threshold of the */ /* test ratios. If RESULT( K ) > THRESH, then the K-th test */ /* did not pass the threshold and a message will be printed. */ /* Not modified. */ /* IOUNIT - INTEGER */ /* On entry, IOUNIT specifies the unit number of the file */ /* to which the messages are printed. */ /* Not modified. */ /* IE - INTEGER */ /* On entry, IE contains the number of tests which have */ /* failed to pass the threshold so far. */ /* Updated on exit if any of the ratios in RESULT also fail. */ /* ===================================================================== */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --iseed; --result; /* Function Body */ if (*m == *n) { /* Output for square matrices: */ i__1 = *ntests; for (k = 1; k <= i__1; ++k) { if (result[k] >= *thresh) { /* If this is the first test to fail, call DLAHD2 */ /* to print a header to the data file. */ if (*ie == 0) { dlahd2_(iounit, type__); } ++(*ie); if (result[k] < 1e4) { io___2.ciunit = *iounit; s_wsfe(&io___2); do_fio(&c__1, (char *)&(*n), (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&(*imat), (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&iseed[1], (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k], (ftnlen)sizeof( doublereal)); e_wsfe(); } else { io___3.ciunit = *iounit; s_wsfe(&io___3); do_fio(&c__1, (char *)&(*n), (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&(*imat), (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&iseed[1], (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k], (ftnlen)sizeof( doublereal)); e_wsfe(); } } /* L10: */ } } else { /* Output for rectangular matrices */ i__1 = *ntests; for (k = 1; k <= i__1; ++k) { if (result[k] >= *thresh) { /* If this is the first test to fail, call DLAHD2 */ /* to print a header to the data file. */ if (*ie == 0) { dlahd2_(iounit, type__); } ++(*ie); if (result[k] < 1e4) { io___4.ciunit = *iounit; s_wsfe(&io___4); do_fio(&c__1, (char *)&(*m), (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&(*n), (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&(*imat), (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&iseed[1], (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k], (ftnlen)sizeof( doublereal)); e_wsfe(); } else { io___5.ciunit = *iounit; s_wsfe(&io___5); do_fio(&c__1, (char *)&(*m), (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&(*n), (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&(*imat), (ftnlen)sizeof(integer)); do_fio(&c__4, (char *)&iseed[1], (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); do_fio(&c__1, (char *)&result[k], (ftnlen)sizeof( doublereal)); e_wsfe(); } } /* L20: */ } } return 0; /* End of DLAFTS */ } /* dlafts_ */