Ejemplo n.º 1
0
static int dm355evm_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	union evm_time	time;
	int		status;
	int		tries = 0;

	do {
		/*
		 * Read LSB(0) to MSB(3) bytes.  Defend against the counter
		 * rolling over by re-reading until the value is stable,
		 * and assuming the four reads take at most a few seconds.
		 */
		status = dm355evm_msp_read(DM355EVM_MSP_RTC_0);
		if (status < 0)
			return status;
		if (tries && time.bytes[0] == status)
			break;
		time.bytes[0] = status;

		status = dm355evm_msp_read(DM355EVM_MSP_RTC_1);
		if (status < 0)
			return status;
		if (tries && time.bytes[1] == status)
			break;
		time.bytes[1] = status;

		status = dm355evm_msp_read(DM355EVM_MSP_RTC_2);
		if (status < 0)
			return status;
		if (tries && time.bytes[2] == status)
			break;
		time.bytes[2] = status;

		status = dm355evm_msp_read(DM355EVM_MSP_RTC_3);
		if (status < 0)
			return status;
		if (tries && time.bytes[3] == status)
			break;
		time.bytes[3] = status;

	} while (++tries < 5);

	dev_dbg(dev, "read timestamp %08x\n", time.value);

	rtc_time64_to_tm(le32_to_cpu(time.value), tm);
	return 0;
}
static int dm355evm_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
	union evm_time	time;
	int		status;
	int		tries = 0;

	do {
		status = dm355evm_msp_read(DM355EVM_MSP_RTC_0);
		if (status < 0)
			return status;
		if (tries && time.bytes[0] == status)
			break;
		time.bytes[0] = status;

		status = dm355evm_msp_read(DM355EVM_MSP_RTC_1);
		if (status < 0)
			return status;
		if (tries && time.bytes[1] == status)
			break;
		time.bytes[1] = status;

		status = dm355evm_msp_read(DM355EVM_MSP_RTC_2);
		if (status < 0)
			return status;
		if (tries && time.bytes[2] == status)
			break;
		time.bytes[2] = status;

		status = dm355evm_msp_read(DM355EVM_MSP_RTC_3);
		if (status < 0)
			return status;
		if (tries && time.bytes[3] == status)
			break;
		time.bytes[3] = status;

	} while (++tries < 5);

	dev_dbg(dev, "read timestamp %08x\n", time.value);

	rtc_time_to_tm(le32_to_cpu(time.value), tm);
	return 0;
}
Ejemplo n.º 3
0
static int msp_gpio_get(struct gpio_chip *chip, unsigned offset)
{
    int reg, status;

    reg = MSP_GPIO_REG(offset);
    status = dm355evm_msp_read(reg);
    if (status < 0)
        return status;
    if (reg == DM355EVM_MSP_LED)
        msp_led_cache = status;
    return status & MSP_GPIO_MASK(offset);
}
Ejemplo n.º 4
0
static int __devinit dm355evm_keys_probe(struct platform_device *pdev)
{
	struct dm355evm_keys	*keys;
	struct input_dev	*input;
	int			status;

	/* allocate instance struct and input dev */
	keys = kzalloc(sizeof *keys, GFP_KERNEL);
	input = input_allocate_device();
	if (!keys || !input) {
		status = -ENOMEM;
		goto fail1;
	}

	keys->dev = &pdev->dev;
	keys->input = input;

	/* set up "threaded IRQ handler" */
	status = platform_get_irq(pdev, 0);
	if (status < 0)
		goto fail1;
	keys->irq = status;

	input_set_drvdata(input, keys);

	input->name = "DM355 EVM Controls";
	input->phys = "dm355evm/input0";
	input->dev.parent = &pdev->dev;

	input->id.bustype = BUS_I2C;
	input->id.product = 0x0355;
	input->id.version = dm355evm_msp_read(DM355EVM_MSP_FIRMREV);

	status = sparse_keymap_setup(input, dm355evm_keys, NULL);
	if (status)
		goto fail1;

	/* REVISIT:  flush the event queue? */

	status = request_threaded_irq(keys->irq, NULL, dm355evm_keys_irq,
				      IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
				      dev_name(&pdev->dev), keys);
	if (status < 0)
		goto fail2;

	/* register */
	status = input_register_device(input);
	if (status < 0)
		goto fail3;

	platform_set_drvdata(pdev, keys);

	return 0;

fail3:
	free_irq(keys->irq, keys);
fail2:
	sparse_keymap_free(input);
fail1:
	input_free_device(input);
	kfree(keys);
	dev_err(&pdev->dev, "can't register, err %d\n", status);

	return status;
}
Ejemplo n.º 5
0
/*
 * Because we communicate with the MSP430 using I2C, and all I2C calls
 * in Linux sleep, we use a threaded IRQ handler.  The IRQ itself is
 * active low, but we go through the GPIO controller so we can trigger
 * on falling edges and not worry about enabling/disabling the IRQ in
 * the keypress handling path.
 */
static irqreturn_t dm355evm_keys_irq(int irq, void *_keys)
{
	static u16 last_event;
	struct dm355evm_keys *keys = _keys;
	const struct key_entry *ke;
	unsigned int keycode;
	int status;
	u16 event;

	/* For simplicity we ignore INPUT_COUNT and just read
	 * events until we get the "queue empty" indicator.
	 * Reading INPUT_LOW decrements the count.
	 */
	for (;;) {
		status = dm355evm_msp_read(DM355EVM_MSP_INPUT_HIGH);
		if (status < 0) {
			dev_dbg(keys->dev, "input high err %d\n",
					status);
			break;
		}
		event = status << 8;

		status = dm355evm_msp_read(DM355EVM_MSP_INPUT_LOW);
		if (status < 0) {
			dev_dbg(keys->dev, "input low err %d\n",
					status);
			break;
		}
		event |= status;
		if (event == 0xdead)
			break;

		/* Press and release a button:  two events, same code.
		 * Press and hold (autorepeat), then release: N events
		 * (N > 2), same code.  For RC5 buttons the toggle bits
		 * distinguish (for example) "1-autorepeat" from "1 1";
		 * but PCB buttons don't support that bit.
		 *
		 * So we must synthesize release events.  We do that by
		 * mapping events to a press/release event pair; then
		 * to avoid adding extra events, skip the second event
		 * of each pair.
		 */
		if (event == last_event) {
			last_event = 0;
			continue;
		}
		last_event = event;

		/* ignore the RC5 toggle bit */
		event &= ~0x0800;

		/* find the key, or report it as unknown */
		ke = sparse_keymap_entry_from_scancode(keys->input, event);
		keycode = ke ? ke->keycode : KEY_UNKNOWN;
		dev_dbg(keys->dev,
			"input event 0x%04x--> keycode %d\n",
			event, keycode);

		/* report press + release */
		input_report_key(keys->input, keycode, 1);
		input_sync(keys->input);
		input_report_key(keys->input, keycode, 0);
		input_sync(keys->input);
	}

	return IRQ_HANDLED;
}
Ejemplo n.º 6
0
static int __devinit dm355evm_keys_probe(struct platform_device *pdev)
{
	struct dm355evm_keys	*keys;
	struct input_dev	*input;
	int			status;
	int			i;

	/* allocate instance struct and input dev */
	keys = kzalloc(sizeof *keys, GFP_KERNEL);
	input = input_allocate_device();
	if (!keys || !input) {
		status = -ENOMEM;
		goto fail1;
	}

	keys->dev = &pdev->dev;
	keys->input = input;

	/* set up "threaded IRQ handler" */
	status = platform_get_irq(pdev, 0);
	if (status < 0)
		goto fail1;
	keys->irq = status;

	input_set_drvdata(input, keys);

	input->name = "DM355 EVM Controls";
	input->phys = "dm355evm/input0";
	input->dev.parent = &pdev->dev;

	input->id.bustype = BUS_I2C;
	input->id.product = 0x0355;
	input->id.version = dm355evm_msp_read(DM355EVM_MSP_FIRMREV);

	input->evbit[0] = BIT(EV_KEY);
	for (i = 0; i < ARRAY_SIZE(dm355evm_keys); i++)
		__set_bit(dm355evm_keys[i].keycode, input->keybit);

	input->setkeycode = dm355evm_setkeycode;
	input->getkeycode = dm355evm_getkeycode;

	/* REVISIT:  flush the event queue? */

	status = request_threaded_irq(keys->irq,
			dm355evm_keys_hardirq, dm355evm_keys_irq,
			IRQF_TRIGGER_FALLING,
			dev_name(&pdev->dev), keys);
	if (status < 0)
		goto fail1;

	/* register */
	status = input_register_device(input);
	if (status < 0)
		goto fail2;

	platform_set_drvdata(pdev, keys);

	return 0;

fail2:
	free_irq(keys->irq, keys);
fail1:
	input_free_device(input);
	kfree(keys);
	dev_err(&pdev->dev, "can't register, err %d\n", status);

	return status;
}