Ejemplo n.º 1
0
/* Subroutine */ int dchkhs_(integer *nsizes, integer *nn, integer *ntypes, 
	logical *dotype, integer *iseed, doublereal *thresh, integer *nounit, 
	doublereal *a, integer *lda, doublereal *h__, doublereal *t1, 
	doublereal *t2, doublereal *u, integer *ldu, doublereal *z__, 
	doublereal *uz, doublereal *wr1, doublereal *wi1, doublereal *wr3, 
	doublereal *wi3, doublereal *evectl, doublereal *evectr, doublereal *
	evecty, doublereal *evectx, doublereal *uu, doublereal *tau, 
	doublereal *work, integer *nwork, integer *iwork, logical *select, 
	doublereal *result, integer *info)
{
    /* Initialized data */

    static integer ktype[21] = { 1,2,3,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,9,9,9 };
    static integer kmagn[21] = { 1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,2,3,1,2,3 };
    static integer kmode[21] = { 0,0,0,4,3,1,4,4,4,3,1,5,4,3,1,5,5,5,4,3,1 };
    static integer kconds[21] = { 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,2,0,0,0 };

    /* Format strings */
    static char fmt_9999[] = "(\002 DCHKHS: \002,a,\002 returned INFO=\002,i"
	    "6,\002.\002,/9x,\002N=\002,i6,\002, JTYPE=\002,i6,\002, ISEED="
	    "(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9998[] = "(\002 DCHKHS: \002,a,\002 Eigenvectors from"
	    " \002,a,\002 incorrectly \002,\002normalized.\002,/\002 Bits of "
	    "error=\002,0p,g10.3,\002,\002,9x,\002N=\002,i6,\002, JTYPE=\002,"
	    "i6,\002, ISEED=(\002,3(i5,\002,\002),i5,\002)\002)";
    static char fmt_9997[] = "(\002 DCHKHS: Selected \002,a,\002 Eigenvector"
	    "s from \002,a,\002 do not match other eigenvectors \002,9x,\002N="
	    "\002,i6,\002, JTYPE=\002,i6,\002, ISEED=(\002,3(i5,\002,\002),i5,"
	    "\002)\002)";

    /* System generated locals */
    integer a_dim1, a_offset, evectl_dim1, evectl_offset, evectr_dim1, 
	    evectr_offset, evectx_dim1, evectx_offset, evecty_dim1, 
	    evecty_offset, h_dim1, h_offset, t1_dim1, t1_offset, t2_dim1, 
	    t2_offset, u_dim1, u_offset, uu_dim1, uu_offset, uz_dim1, 
	    uz_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
    doublereal d__1, d__2, d__3, d__4, d__5, d__6;

    /* Builtin functions */
    double sqrt(doublereal);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    static doublereal cond;
    static integer jcol, nmax;
    static doublereal unfl, ovfl, temp1, temp2;
    static integer i__, j, k, n;
    static logical badnn;
    extern /* Subroutine */ int dget10_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *), 
	    dget22_(char *, char *, char *, integer *, doublereal *, integer *
	    , doublereal *, integer *, doublereal *, doublereal *, doublereal 
	    *, doublereal *), dgemm_(char *, char *, 
	    integer *, integer *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *);
    static logical match;
    static integer imode;
    static doublereal dumma[6];
    static integer iinfo, nselc;
    static doublereal conds;
    extern /* Subroutine */ int dhst01_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *);
    static doublereal aninv, anorm;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    static integer nmats, nselr, jsize, nerrs, itype, jtype, ntest, n1;
    static doublereal rtulp;
    extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
    static integer jj, in;
    extern doublereal dlamch_(char *);
    extern /* Subroutine */ int dgehrd_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *);
    static char adumma[1*1];
    extern /* Subroutine */ int dlatme_(integer *, char *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, char *, char 
	    *, char *, char *, doublereal *, integer *, doublereal *, integer 
	    *, integer *, doublereal *, doublereal *, integer *, doublereal *,
	     integer *), dhsein_(char 
	    *, char *, char *, logical *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *, doublereal *,
	     integer *, integer *, integer *, doublereal *, integer *, 
	    integer *, integer *);
    static integer idumma[1];
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *);
    static integer ioldsd[4];
    extern /* Subroutine */ int dlafts_(char *, integer *, integer *, integer 
	    *, integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *), dlaset_(char *, integer *, integer *, 
	    doublereal *, doublereal *, doublereal *, integer *), 
	    dlasum_(char *, integer *, integer *, integer *), dhseqr_(
	    char *, char *, integer *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *, 
	    doublereal *, integer *, integer *), dlatmr_(
	    integer *, integer *, char *, integer *, char *, doublereal *, 
	    integer *, doublereal *, doublereal *, char *, char *, doublereal 
	    *, integer *, doublereal *, doublereal *, integer *, doublereal *,
	     char *, integer *, integer *, integer *, doublereal *, 
	    doublereal *, char *, doublereal *, integer *, integer *, integer 
	    *), dlatms_(
	    integer *, integer *, char *, integer *, char *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *, char 
	    *, doublereal *, integer *, doublereal *, integer *), dorghr_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), dormhr_(char *, char *, integer *, integer *, integer 
	    *, integer *, doublereal *, integer *, doublereal *, doublereal *,
	     integer *, doublereal *, integer *, integer *), 
	    dtrevc_(char *, char *, logical *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *, integer *, doublereal *, integer *), 
	    xerbla_(char *, integer *);
    static doublereal rtunfl, rtovfl, rtulpi, ulpinv;
    static integer mtypes, ntestt, ihi, ilo;
    static doublereal ulp;

    /* Fortran I/O blocks */
    static cilist io___36 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___39 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___41 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___42 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___43 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___50 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___51 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___52 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___56 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___57 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___58 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___59 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___60 = { 0, 0, 0, fmt_9997, 0 };
    static cilist io___61 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___62 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___63 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___64 = { 0, 0, 0, fmt_9998, 0 };
    static cilist io___65 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___66 = { 0, 0, 0, fmt_9999, 0 };



#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define h___ref(a_1,a_2) h__[(a_2)*h_dim1 + a_1]
#define u_ref(a_1,a_2) u[(a_2)*u_dim1 + a_1]
#define uu_ref(a_1,a_2) uu[(a_2)*uu_dim1 + a_1]
#define evectl_ref(a_1,a_2) evectl[(a_2)*evectl_dim1 + a_1]
#define evectr_ref(a_1,a_2) evectr[(a_2)*evectr_dim1 + a_1]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1999   


    Purpose   
    =======   

       DCHKHS  checks the nonsymmetric eigenvalue problem routines.   

               DGEHRD factors A as  U H U' , where ' means transpose,   
               H is hessenberg, and U is an orthogonal matrix.   

               DORGHR generates the orthogonal matrix U.   

               DORMHR multiplies a matrix by the orthogonal matrix U.   

               DHSEQR factors H as  Z T Z' , where Z is orthogonal and   
               T is "quasi-triangular", and the eigenvalue vector W.   

               DTREVC computes the left and right eigenvector matrices   
               L and R for T.   

               DHSEIN computes the left and right eigenvector matrices   
               Y and X for H, using inverse iteration.   

       When DCHKHS is called, a number of matrix "sizes" ("n's") and a   
       number of matrix "types" are specified.  For each size ("n")   
       and each type of matrix, one matrix will be generated and used   
       to test the nonsymmetric eigenroutines.  For each matrix, 14   
       tests will be performed:   

       (1)     | A - U H U**T | / ( |A| n ulp )   

       (2)     | I - UU**T | / ( n ulp )   

       (3)     | H - Z T Z**T | / ( |H| n ulp )   

       (4)     | I - ZZ**T | / ( n ulp )   

       (5)     | A - UZ H (UZ)**T | / ( |A| n ulp )   

       (6)     | I - UZ (UZ)**T | / ( n ulp )   

       (7)     | T(Z computed) - T(Z not computed) | / ( |T| ulp )   

       (8)     | W(Z computed) - W(Z not computed) | / ( |W| ulp )   

       (9)     | TR - RW | / ( |T| |R| ulp )   

       (10)    | L**H T - W**H L | / ( |T| |L| ulp )   

       (11)    | HX - XW | / ( |H| |X| ulp )   

       (12)    | Y**H H - W**H Y | / ( |H| |Y| ulp )   

       (13)    | AX - XW | / ( |A| |X| ulp )   

       (14)    | Y**H A - W**H Y | / ( |A| |Y| ulp )   

       The "sizes" are specified by an array NN(1:NSIZES); the value of   
       each element NN(j) specifies one size.   
       The "types" are specified by a logical array DOTYPE( 1:NTYPES );   
       if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.   
       Currently, the list of possible types is:   

       (1)  The zero matrix.   
       (2)  The identity matrix.   
       (3)  A (transposed) Jordan block, with 1's on the diagonal.   

       (4)  A diagonal matrix with evenly spaced entries   
            1, ..., ULP  and random signs.   
            (ULP = (first number larger than 1) - 1 )   
       (5)  A diagonal matrix with geometrically spaced entries   
            1, ..., ULP  and random signs.   
       (6)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP   
            and random signs.   

       (7)  Same as (4), but multiplied by SQRT( overflow threshold )   
       (8)  Same as (4), but multiplied by SQRT( underflow threshold )   

       (9)  A matrix of the form  U' T U, where U is orthogonal and   
            T has evenly spaced entries 1, ..., ULP with random signs   
            on the diagonal and random O(1) entries in the upper   
            triangle.   

       (10) A matrix of the form  U' T U, where U is orthogonal and   
            T has geometrically spaced entries 1, ..., ULP with random   
            signs on the diagonal and random O(1) entries in the upper   
            triangle.   

       (11) A matrix of the form  U' T U, where U is orthogonal and   
            T has "clustered" entries 1, ULP,..., ULP with random   
            signs on the diagonal and random O(1) entries in the upper   
            triangle.   

       (12) A matrix of the form  U' T U, where U is orthogonal and   
            T has real or complex conjugate paired eigenvalues randomly   
            chosen from ( ULP, 1 ) and random O(1) entries in the upper   
            triangle.   

       (13) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP   
            with random signs on the diagonal and random O(1) entries   
            in the upper triangle.   

       (14) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has geometrically spaced entries   
            1, ..., ULP with random signs on the diagonal and random   
            O(1) entries in the upper triangle.   

       (15) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP   
            with random signs on the diagonal and random O(1) entries   
            in the upper triangle.   

       (16) A matrix of the form  X' T X, where X has condition   
            SQRT( ULP ) and T has real or complex conjugate paired   
            eigenvalues randomly chosen from ( ULP, 1 ) and random   
            O(1) entries in the upper triangle.   

       (17) Same as (16), but multiplied by SQRT( overflow threshold )   
       (18) Same as (16), but multiplied by SQRT( underflow threshold )   

       (19) Nonsymmetric matrix with random entries chosen from (-1,1).   
       (20) Same as (19), but multiplied by SQRT( overflow threshold )   
       (21) Same as (19), but multiplied by SQRT( underflow threshold )   

    Arguments   
    ==========   

    NSIZES - INTEGER   
             The number of sizes of matrices to use.  If it is zero,   
             DCHKHS does nothing.  It must be at least zero.   
             Not modified.   

    NN     - INTEGER array, dimension (NSIZES)   
             An array containing the sizes to be used for the matrices.   
             Zero values will be skipped.  The values must be at least   
             zero.   
             Not modified.   

    NTYPES - INTEGER   
             The number of elements in DOTYPE.   If it is zero, DCHKHS   
             does nothing.  It must be at least zero.  If it is MAXTYP+1   
             and NSIZES is 1, then an additional type, MAXTYP+1 is   
             defined, which is to use whatever matrix is in A.  This   
             is only useful if DOTYPE(1:MAXTYP) is .FALSE. and   
             DOTYPE(MAXTYP+1) is .TRUE. .   
             Not modified.   

    DOTYPE - LOGICAL array, dimension (NTYPES)   
             If DOTYPE(j) is .TRUE., then for each size in NN a   
             matrix of that size and of type j will be generated.   
             If NTYPES is smaller than the maximum number of types   
             defined (PARAMETER MAXTYP), then types NTYPES+1 through   
             MAXTYP will not be generated.  If NTYPES is larger   
             than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)   
             will be ignored.   
             Not modified.   

    ISEED  - INTEGER array, dimension (4)   
             On entry ISEED specifies the seed of the random number   
             generator. The array elements should be between 0 and 4095;   
             if not they will be reduced mod 4096.  Also, ISEED(4) must   
             be odd.  The random number generator uses a linear   
             congruential sequence limited to small integers, and so   
             should produce machine independent random numbers. The   
             values of ISEED are changed on exit, and can be used in the   
             next call to DCHKHS to continue the same random number   
             sequence.   
             Modified.   

    THRESH - DOUBLE PRECISION   
             A test will count as "failed" if the "error", computed as   
             described above, exceeds THRESH.  Note that the error   
             is scaled to be O(1), so THRESH should be a reasonably   
             small multiple of 1, e.g., 10 or 100.  In particular,   
             it should not depend on the precision (single vs. double)   
             or the size of the matrix.  It must be at least zero.   
             Not modified.   

    NOUNIT - INTEGER   
             The FORTRAN unit number for printing out error messages   
             (e.g., if a routine returns IINFO not equal to 0.)   
             Not modified.   

    A      - DOUBLE PRECISION array, dimension (LDA,max(NN))   
             Used to hold the matrix whose eigenvalues are to be   
             computed.  On exit, A contains the last matrix actually   
             used.   
             Modified.   

    LDA    - INTEGER   
             The leading dimension of A, H, T1 and T2.  It must be at   
             least 1 and at least max( NN ).   
             Not modified.   

    H      - DOUBLE PRECISION array, dimension (LDA,max(NN))   
             The upper hessenberg matrix computed by DGEHRD.  On exit,   
             H contains the Hessenberg form of the matrix in A.   
             Modified.   

    T1     - DOUBLE PRECISION array, dimension (LDA,max(NN))   
             The Schur (="quasi-triangular") matrix computed by DHSEQR   
             if Z is computed.  On exit, T1 contains the Schur form of   
             the matrix in A.   
             Modified.   

    T2     - DOUBLE PRECISION array, dimension (LDA,max(NN))   
             The Schur matrix computed by DHSEQR when Z is not computed.   
             This should be identical to T1.   
             Modified.   

    LDU    - INTEGER   
             The leading dimension of U, Z, UZ and UU.  It must be at   
             least 1 and at least max( NN ).   
             Not modified.   

    U      - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             The orthogonal matrix computed by DGEHRD.   
             Modified.   

    Z      - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             The orthogonal matrix computed by DHSEQR.   
             Modified.   

    UZ     - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             The product of U times Z.   
             Modified.   

    WR1    - DOUBLE PRECISION array, dimension (max(NN))   
    WI1    - DOUBLE PRECISION array, dimension (max(NN))   
             The real and imaginary parts of the eigenvalues of A,   
             as computed when Z is computed.   
             On exit, WR1 + WI1*i are the eigenvalues of the matrix in A.   
             Modified.   

    WR3    - DOUBLE PRECISION array, dimension (max(NN))   
    WI3    - DOUBLE PRECISION array, dimension (max(NN))   
             Like WR1, WI1, these arrays contain the eigenvalues of A,   
             but those computed when DHSEQR only computes the   
             eigenvalues, i.e., not the Schur vectors and no more of the   
             Schur form than is necessary for computing the   
             eigenvalues.   
             Modified.   

    EVECTL - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             The (upper triangular) left eigenvector matrix for the   
             matrix in T1.  For complex conjugate pairs, the real part   
             is stored in one row and the imaginary part in the next.   
             Modified.   

    EVEZTR - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             The (upper triangular) right eigenvector matrix for the   
             matrix in T1.  For complex conjugate pairs, the real part   
             is stored in one column and the imaginary part in the next.   
             Modified.   

    EVECTY - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             The left eigenvector matrix for the   
             matrix in H.  For complex conjugate pairs, the real part   
             is stored in one row and the imaginary part in the next.   
             Modified.   

    EVECTX - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             The right eigenvector matrix for the   
             matrix in H.  For complex conjugate pairs, the real part   
             is stored in one column and the imaginary part in the next.   
             Modified.   

    UU     - DOUBLE PRECISION array, dimension (LDU,max(NN))   
             Details of the orthogonal matrix computed by DGEHRD.   
             Modified.   

    TAU    - DOUBLE PRECISION array, dimension(max(NN))   
             Further details of the orthogonal matrix computed by DGEHRD.   
             Modified.   

    WORK   - DOUBLE PRECISION array, dimension (NWORK)   
             Workspace.   
             Modified.   

    NWORK  - INTEGER   
             The number of entries in WORK.  NWORK >= 4*NN(j)*NN(j) + 2.   

    IWORK  - INTEGER array, dimension (max(NN))   
             Workspace.   
             Modified.   

    SELECT - LOGICAL array, dimension (max(NN))   
             Workspace.   
             Modified.   

    RESULT - DOUBLE PRECISION array, dimension (14)   
             The values computed by the fourteen tests described above.   
             The values are currently limited to 1/ulp, to avoid   
             overflow.   
             Modified.   

    INFO   - INTEGER   
             If 0, then everything ran OK.   
              -1: NSIZES < 0   
              -2: Some NN(j) < 0   
              -3: NTYPES < 0   
              -6: THRESH < 0   
              -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).   
             -14: LDU < 1 or LDU < NMAX.   
             -28: NWORK too small.   
             If  DLATMR, SLATMS, or SLATME returns an error code, the   
                 absolute value of it is returned.   
             If 1, then DHSEQR could not find all the shifts.   
             If 2, then the EISPACK code (for small blocks) failed.   
             If >2, then 30*N iterations were not enough to find an   
                 eigenvalue or to decompose the problem.   
             Modified.   

   -----------------------------------------------------------------------   

       Some Local Variables and Parameters:   
       ---- ----- --------- --- ----------   

       ZERO, ONE       Real 0 and 1.   
       MAXTYP          The number of types defined.   
       MTEST           The number of tests defined: care must be taken   
                       that (1) the size of RESULT, (2) the number of   
                       tests actually performed, and (3) MTEST agree.   
       NTEST           The number of tests performed on this matrix   
                       so far.  This should be less than MTEST, and   
                       equal to it by the last test.  It will be less   
                       if any of the routines being tested indicates   
                       that it could not compute the matrices that   
                       would be tested.   
       NMAX            Largest value in NN.   
       NMATS           The number of matrices generated so far.   
       NERRS           The number of tests which have exceeded THRESH   
                       so far (computed by DLAFTS).   
       COND, CONDS,   
       IMODE           Values to be passed to the matrix generators.   
       ANORM           Norm of A; passed to matrix generators.   

       OVFL, UNFL      Overflow and underflow thresholds.   
       ULP, ULPINV     Finest relative precision and its inverse.   
       RTOVFL, RTUNFL,   
       RTULP, RTULPI   Square roots of the previous 4 values.   

               The following four arrays decode JTYPE:   
       KTYPE(j)        The general type (1-10) for type "j".   
       KMODE(j)        The MODE value to be passed to the matrix   
                       generator for type "j".   
       KMAGN(j)        The order of magnitude ( O(1),   
                       O(overflow^(1/2) ), O(underflow^(1/2) )   
       KCONDS(j)       Selects whether CONDS is to be 1 or   
                       1/sqrt(ulp).  (0 means irrelevant.)   

    =====================================================================   

       Parameter adjustments */
    --nn;
    --dotype;
    --iseed;
    t2_dim1 = *lda;
    t2_offset = 1 + t2_dim1 * 1;
    t2 -= t2_offset;
    t1_dim1 = *lda;
    t1_offset = 1 + t1_dim1 * 1;
    t1 -= t1_offset;
    h_dim1 = *lda;
    h_offset = 1 + h_dim1 * 1;
    h__ -= h_offset;
    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    uu_dim1 = *ldu;
    uu_offset = 1 + uu_dim1 * 1;
    uu -= uu_offset;
    evectx_dim1 = *ldu;
    evectx_offset = 1 + evectx_dim1 * 1;
    evectx -= evectx_offset;
    evecty_dim1 = *ldu;
    evecty_offset = 1 + evecty_dim1 * 1;
    evecty -= evecty_offset;
    evectr_dim1 = *ldu;
    evectr_offset = 1 + evectr_dim1 * 1;
    evectr -= evectr_offset;
    evectl_dim1 = *ldu;
    evectl_offset = 1 + evectl_dim1 * 1;
    evectl -= evectl_offset;
    uz_dim1 = *ldu;
    uz_offset = 1 + uz_dim1 * 1;
    uz -= uz_offset;
    z_dim1 = *ldu;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    u_dim1 = *ldu;
    u_offset = 1 + u_dim1 * 1;
    u -= u_offset;
    --wr1;
    --wi1;
    --wr3;
    --wi3;
    --tau;
    --work;
    --iwork;
    --select;
    --result;

    /* Function Body   

       Check for errors */

    ntestt = 0;
    *info = 0;

    badnn = FALSE_;
    nmax = 0;
    i__1 = *nsizes;
    for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	i__2 = nmax, i__3 = nn[j];
	nmax = max(i__2,i__3);
	if (nn[j] < 0) {
	    badnn = TRUE_;
	}
/* L10: */
    }

/*     Check for errors */

    if (*nsizes < 0) {
	*info = -1;
    } else if (badnn) {
	*info = -2;
    } else if (*ntypes < 0) {
	*info = -3;
    } else if (*thresh < 0.) {
	*info = -6;
    } else if (*lda <= 1 || *lda < nmax) {
	*info = -9;
    } else if (*ldu <= 1 || *ldu < nmax) {
	*info = -14;
    } else if ((nmax << 2) * nmax + 2 > *nwork) {
	*info = -28;
    }

    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DCHKHS", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*nsizes == 0 || *ntypes == 0) {
	return 0;
    }

/*     More important constants */

    unfl = dlamch_("Safe minimum");
    ovfl = dlamch_("Overflow");
    dlabad_(&unfl, &ovfl);
    ulp = dlamch_("Epsilon") * dlamch_("Base");
    ulpinv = 1. / ulp;
    rtunfl = sqrt(unfl);
    rtovfl = sqrt(ovfl);
    rtulp = sqrt(ulp);
    rtulpi = 1. / rtulp;

/*     Loop over sizes, types */

    nerrs = 0;
    nmats = 0;

    i__1 = *nsizes;
    for (jsize = 1; jsize <= i__1; ++jsize) {
	n = nn[jsize];
	if (n == 0) {
	    goto L270;
	}
	n1 = max(1,n);
	aninv = 1. / (doublereal) n1;

	if (*nsizes != 1) {
	    mtypes = min(21,*ntypes);
	} else {
	    mtypes = min(22,*ntypes);
	}

	i__2 = mtypes;
	for (jtype = 1; jtype <= i__2; ++jtype) {
	    if (! dotype[jtype]) {
		goto L260;
	    }
	    ++nmats;
	    ntest = 0;

/*           Save ISEED in case of an error. */

	    for (j = 1; j <= 4; ++j) {
		ioldsd[j - 1] = iseed[j];
/* L20: */
	    }

/*           Initialize RESULT */

	    for (j = 1; j <= 14; ++j) {
		result[j] = 0.;
/* L30: */
	    }

/*           Compute "A"   

             Control parameters:   

             KMAGN  KCONDS  KMODE        KTYPE   
         =1  O(1)   1       clustered 1  zero   
         =2  large  large   clustered 2  identity   
         =3  small          exponential  Jordan   
         =4                 arithmetic   diagonal, (w/ eigenvalues)   
         =5                 random log   symmetric, w/ eigenvalues   
         =6                 random       general, w/ eigenvalues   
         =7                              random diagonal   
         =8                              random symmetric   
         =9                              random general   
         =10                             random triangular */

	    if (mtypes > 21) {
		goto L100;
	    }

	    itype = ktype[jtype - 1];
	    imode = kmode[jtype - 1];

/*           Compute norm */

	    switch (kmagn[jtype - 1]) {
		case 1:  goto L40;
		case 2:  goto L50;
		case 3:  goto L60;
	    }

L40:
	    anorm = 1.;
	    goto L70;

L50:
	    anorm = rtovfl * ulp * aninv;
	    goto L70;

L60:
	    anorm = rtunfl * n * ulpinv;
	    goto L70;

L70:

	    dlaset_("Full", lda, &n, &c_b18, &c_b18, &a[a_offset], lda);
	    iinfo = 0;
	    cond = ulpinv;

/*           Special Matrices */

	    if (itype == 1) {

/*              Zero */

		iinfo = 0;

	    } else if (itype == 2) {

/*              Identity */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a_ref(jcol, jcol) = anorm;
/* L80: */
		}

	    } else if (itype == 3) {

/*              Jordan Block */

		i__3 = n;
		for (jcol = 1; jcol <= i__3; ++jcol) {
		    a_ref(jcol, jcol) = anorm;
		    if (jcol > 1) {
			a_ref(jcol, jcol - 1) = 1.;
		    }
/* L90: */
		}

	    } else if (itype == 4) {

/*              Diagonal Matrix, [Eigen]values Specified */

		dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &c__0, &c__0, "N", &a[a_offset], lda, &work[n 
			+ 1], &iinfo);

	    } else if (itype == 5) {

/*              Symmetric, eigenvalues specified */

		dlatms_(&n, &n, "S", &iseed[1], "S", &work[1], &imode, &cond, 
			&anorm, &n, &n, "N", &a[a_offset], lda, &work[n + 1], 
			&iinfo);

	    } else if (itype == 6) {

/*              General, eigenvalues specified */

		if (kconds[jtype - 1] == 1) {
		    conds = 1.;
		} else if (kconds[jtype - 1] == 2) {
		    conds = rtulpi;
		} else {
		    conds = 0.;
		}

		*(unsigned char *)&adumma[0] = ' ';
		dlatme_(&n, "S", &iseed[1], &work[1], &imode, &cond, &c_b32, 
			adumma, "T", "T", "T", &work[n + 1], &c__4, &conds, &
			n, &n, &anorm, &a[a_offset], lda, &work[(n << 1) + 1],
			 &iinfo);

	    } else if (itype == 7) {

/*              Diagonal, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &c__0, &
			c__0, &c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[
			1], &iinfo);

	    } else if (itype == 8) {

/*              Symmetric, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "S", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 9) {

/*              General, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &n, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else if (itype == 10) {

/*              Triangular, random eigenvalues */

		dlatmr_(&n, &n, "S", &iseed[1], "N", &work[1], &c__6, &c_b32, 
			&c_b32, "T", "N", &work[n + 1], &c__1, &c_b32, &work[(
			n << 1) + 1], &c__1, &c_b32, "N", idumma, &n, &c__0, &
			c_b18, &anorm, "NO", &a[a_offset], lda, &iwork[1], &
			iinfo);

	    } else {

		iinfo = 1;
	    }

	    if (iinfo != 0) {
		io___36.ciunit = *nounit;
		s_wsfe(&io___36);
		do_fio(&c__1, "Generator", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		return 0;
	    }

L100:

/*           Call DGEHRD to compute H and U, do tests. */

	    dlacpy_(" ", &n, &n, &a[a_offset], lda, &h__[h_offset], lda);

	    ntest = 1;

	    ilo = 1;
	    ihi = n;

	    i__3 = *nwork - n;
	    dgehrd_(&n, &ilo, &ihi, &h__[h_offset], lda, &work[1], &work[n + 
		    1], &i__3, &iinfo);

	    if (iinfo != 0) {
		result[1] = ulpinv;
		io___39.ciunit = *nounit;
		s_wsfe(&io___39);
		do_fio(&c__1, "DGEHRD", (ftnlen)6);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L250;
	    }

	    i__3 = n - 1;
	    for (j = 1; j <= i__3; ++j) {
		uu_ref(j + 1, j) = 0.;
		i__4 = n;
		for (i__ = j + 2; i__ <= i__4; ++i__) {
		    u_ref(i__, j) = h___ref(i__, j);
		    uu_ref(i__, j) = h___ref(i__, j);
		    h___ref(i__, j) = 0.;
/* L110: */
		}
/* L120: */
	    }
	    dcopy_(&n, &work[1], &c__1, &tau[1], &c__1);
	    i__3 = *nwork - n;
	    dorghr_(&n, &ilo, &ihi, &u[u_offset], ldu, &work[1], &work[n + 1],
		     &i__3, &iinfo);
	    ntest = 2;

	    dhst01_(&n, &ilo, &ihi, &a[a_offset], lda, &h__[h_offset], lda, &
		    u[u_offset], ldu, &work[1], nwork, &result[1]);

/*           Call DHSEQR to compute T1, T2 and Z, do tests.   

             Eigenvalues only (WR3,WI3) */

	    dlacpy_(" ", &n, &n, &h__[h_offset], lda, &t2[t2_offset], lda);
	    ntest = 3;
	    result[3] = ulpinv;

	    dhseqr_("E", "N", &n, &ilo, &ihi, &t2[t2_offset], lda, &wr3[1], &
		    wi3[1], &uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0) {
		io___41.ciunit = *nounit;
		s_wsfe(&io___41);
		do_fio(&c__1, "DHSEQR(E)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		if (iinfo <= n + 2) {
		    *info = abs(iinfo);
		    goto L250;
		}
	    }

/*           Eigenvalues (WR1,WI1) and Full Schur Form (T2) */

	    dlacpy_(" ", &n, &n, &h__[h_offset], lda, &t2[t2_offset], lda);

	    dhseqr_("S", "N", &n, &ilo, &ihi, &t2[t2_offset], lda, &wr1[1], &
		    wi1[1], &uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0 && iinfo <= n + 2) {
		io___42.ciunit = *nounit;
		s_wsfe(&io___42);
		do_fio(&c__1, "DHSEQR(S)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L250;
	    }

/*           Eigenvalues (WR1,WI1), Schur Form (T1), and Schur vectors   
             (UZ) */

	    dlacpy_(" ", &n, &n, &h__[h_offset], lda, &t1[t1_offset], lda);
	    dlacpy_(" ", &n, &n, &u[u_offset], ldu, &uz[uz_offset], lda);

	    dhseqr_("S", "V", &n, &ilo, &ihi, &t1[t1_offset], lda, &wr1[1], &
		    wi1[1], &uz[uz_offset], ldu, &work[1], nwork, &iinfo);
	    if (iinfo != 0 && iinfo <= n + 2) {
		io___43.ciunit = *nounit;
		s_wsfe(&io___43);
		do_fio(&c__1, "DHSEQR(V)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L250;
	    }

/*           Compute Z = U' UZ */

	    dgemm_("T", "N", &n, &n, &n, &c_b32, &u[u_offset], ldu, &uz[
		    uz_offset], ldu, &c_b18, &z__[z_offset], ldu);
	    ntest = 8;

/*           Do Tests 3: | H - Z T Z' | / ( |H| n ulp )   
                  and 4: | I - Z Z' | / ( n ulp ) */

	    dhst01_(&n, &ilo, &ihi, &h__[h_offset], lda, &t1[t1_offset], lda, 
		    &z__[z_offset], ldu, &work[1], nwork, &result[3]);

/*           Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp )   
                  and 6: | I - UZ (UZ)' | / ( n ulp ) */

	    dhst01_(&n, &ilo, &ihi, &a[a_offset], lda, &t1[t1_offset], lda, &
		    uz[uz_offset], ldu, &work[1], nwork, &result[5]);

/*           Do Test 7: | T2 - T1 | / ( |T| n ulp ) */

	    dget10_(&n, &n, &t2[t2_offset], lda, &t1[t1_offset], lda, &work[1]
		    , &result[7]);

/*           Do Test 8: | W3 - W1 | / ( max(|W1|,|W3|) ulp ) */

	    temp1 = 0.;
	    temp2 = 0.;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
/* Computing MAX */
		d__5 = temp1, d__6 = (d__1 = wr1[j], abs(d__1)) + (d__2 = wi1[
			j], abs(d__2)), d__5 = max(d__5,d__6), d__6 = (d__3 = 
			wr3[j], abs(d__3)) + (d__4 = wi3[j], abs(d__4));
		temp1 = max(d__5,d__6);
/* Computing MAX */
		d__3 = temp2, d__4 = (d__1 = wr1[j] - wr3[j], abs(d__1)) + (
			d__2 = wr1[j] - wr3[j], abs(d__2));
		temp2 = max(d__3,d__4);
/* L130: */
	    }

/* Computing MAX */
	    d__1 = unfl, d__2 = ulp * max(temp1,temp2);
	    result[8] = temp2 / max(d__1,d__2);

/*           Compute the Left and Right Eigenvectors of T   

             Compute the Right eigenvector Matrix: */

	    ntest = 9;
	    result[9] = ulpinv;

/*           Select last max(N/4,1) real, max(N/4,1) complex eigenvectors */

	    nselc = 0;
	    nselr = 0;
	    j = n;
L140:
	    if (wi1[j] == 0.) {
/* Computing MAX */
		i__3 = n / 4;
		if (nselr < max(i__3,1)) {
		    ++nselr;
		    select[j] = TRUE_;
		} else {
		    select[j] = FALSE_;
		}
		--j;
	    } else {
/* Computing MAX */
		i__3 = n / 4;
		if (nselc < max(i__3,1)) {
		    ++nselc;
		    select[j] = TRUE_;
		    select[j - 1] = FALSE_;
		} else {
		    select[j] = FALSE_;
		    select[j - 1] = FALSE_;
		}
		j += -2;
	    }
	    if (j > 0) {
		goto L140;
	    }

	    dtrevc_("Right", "All", &select[1], &n, &t1[t1_offset], lda, 
		    dumma, ldu, &evectr[evectr_offset], ldu, &n, &in, &work[1]
		    , &iinfo);
	    if (iinfo != 0) {
		io___50.ciunit = *nounit;
		s_wsfe(&io___50);
		do_fio(&c__1, "DTREVC(R,A)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L250;
	    }

/*           Test 9:  | TR - RW | / ( |T| |R| ulp ) */

	    dget22_("N", "N", "N", &n, &t1[t1_offset], lda, &evectr[
		    evectr_offset], ldu, &wr1[1], &wi1[1], &work[1], dumma);
	    result[9] = dumma[0];
	    if (dumma[1] > *thresh) {
		io___51.ciunit = *nounit;
		s_wsfe(&io___51);
		do_fio(&c__1, "Right", (ftnlen)5);
		do_fio(&c__1, "DTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(doublereal));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute selected right eigenvectors and confirm that   
             they agree with previous right eigenvectors */

	    dtrevc_("Right", "Some", &select[1], &n, &t1[t1_offset], lda, 
		    dumma, ldu, &evectl[evectl_offset], ldu, &n, &in, &work[1]
		    , &iinfo);
	    if (iinfo != 0) {
		io___52.ciunit = *nounit;
		s_wsfe(&io___52);
		do_fio(&c__1, "DTREVC(R,S)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L250;
	    }

	    k = 1;
	    match = TRUE_;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		if (select[j] && wi1[j] == 0.) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			if (evectr_ref(jj, j) != evectl_ref(jj, k)) {
			    match = FALSE_;
			    goto L180;
			}
/* L150: */
		    }
		    ++k;
		} else if (select[j] && wi1[j] != 0.) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			if (evectr_ref(jj, j) != evectl_ref(jj, k) || 
				evectr_ref(jj, j + 1) != evectl_ref(jj, k + 1)
				) {
			    match = FALSE_;
			    goto L180;
			}
/* L160: */
		    }
		    k += 2;
		}
/* L170: */
	    }
L180:
	    if (! match) {
		io___56.ciunit = *nounit;
		s_wsfe(&io___56);
		do_fio(&c__1, "Right", (ftnlen)5);
		do_fio(&c__1, "DTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute the Left eigenvector Matrix: */

	    ntest = 10;
	    result[10] = ulpinv;
	    dtrevc_("Left", "All", &select[1], &n, &t1[t1_offset], lda, &
		    evectl[evectl_offset], ldu, dumma, ldu, &n, &in, &work[1],
		     &iinfo);
	    if (iinfo != 0) {
		io___57.ciunit = *nounit;
		s_wsfe(&io___57);
		do_fio(&c__1, "DTREVC(L,A)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L250;
	    }

/*           Test 10:  | LT - WL | / ( |T| |L| ulp ) */

	    dget22_("Trans", "N", "Conj", &n, &t1[t1_offset], lda, &evectl[
		    evectl_offset], ldu, &wr1[1], &wi1[1], &work[1], &dumma[2]
		    );
	    result[10] = dumma[2];
	    if (dumma[3] > *thresh) {
		io___58.ciunit = *nounit;
		s_wsfe(&io___58);
		do_fio(&c__1, "Left", (ftnlen)4);
		do_fio(&c__1, "DTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&dumma[3], (ftnlen)sizeof(doublereal));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Compute selected left eigenvectors and confirm that   
             they agree with previous left eigenvectors */

	    dtrevc_("Left", "Some", &select[1], &n, &t1[t1_offset], lda, &
		    evectr[evectr_offset], ldu, dumma, ldu, &n, &in, &work[1],
		     &iinfo);
	    if (iinfo != 0) {
		io___59.ciunit = *nounit;
		s_wsfe(&io___59);
		do_fio(&c__1, "DTREVC(L,S)", (ftnlen)11);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		goto L250;
	    }

	    k = 1;
	    match = TRUE_;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		if (select[j] && wi1[j] == 0.) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			if (evectl_ref(jj, j) != evectr_ref(jj, k)) {
			    match = FALSE_;
			    goto L220;
			}
/* L190: */
		    }
		    ++k;
		} else if (select[j] && wi1[j] != 0.) {
		    i__4 = n;
		    for (jj = 1; jj <= i__4; ++jj) {
			if (evectl_ref(jj, j) != evectr_ref(jj, k) || 
				evectl_ref(jj, j + 1) != evectr_ref(jj, k + 1)
				) {
			    match = FALSE_;
			    goto L220;
			}
/* L200: */
		    }
		    k += 2;
		}
/* L210: */
	    }
L220:
	    if (! match) {
		io___60.ciunit = *nounit;
		s_wsfe(&io___60);
		do_fio(&c__1, "Left", (ftnlen)4);
		do_fio(&c__1, "DTREVC", (ftnlen)6);
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
	    }

/*           Call DHSEIN for Right eigenvectors of H, do test 11 */

	    ntest = 11;
	    result[11] = ulpinv;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		select[j] = TRUE_;
/* L230: */
	    }

	    dhsein_("Right", "Qr", "Ninitv", &select[1], &n, &h__[h_offset], 
		    lda, &wr3[1], &wi3[1], dumma, ldu, &evectx[evectx_offset],
		     ldu, &n1, &in, &work[1], &iwork[1], &iwork[1], &iinfo);
	    if (iinfo != 0) {
		io___61.ciunit = *nounit;
		s_wsfe(&io___61);
		do_fio(&c__1, "DHSEIN(R)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L250;
		}
	    } else {

/*              Test 11:  | HX - XW | / ( |H| |X| ulp )   

                          (from inverse iteration) */

		dget22_("N", "N", "N", &n, &h__[h_offset], lda, &evectx[
			evectx_offset], ldu, &wr3[1], &wi3[1], &work[1], 
			dumma);
		if (dumma[0] < ulpinv) {
		    result[11] = dumma[0] * aninv;
		}
		if (dumma[1] > *thresh) {
		    io___62.ciunit = *nounit;
		    s_wsfe(&io___62);
		    do_fio(&c__1, "Right", (ftnlen)5);
		    do_fio(&c__1, "DHSEIN", (ftnlen)6);
		    do_fio(&c__1, (char *)&dumma[1], (ftnlen)sizeof(
			    doublereal));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		}
	    }

/*           Call DHSEIN for Left eigenvectors of H, do test 12 */

	    ntest = 12;
	    result[12] = ulpinv;
	    i__3 = n;
	    for (j = 1; j <= i__3; ++j) {
		select[j] = TRUE_;
/* L240: */
	    }

	    dhsein_("Left", "Qr", "Ninitv", &select[1], &n, &h__[h_offset], 
		    lda, &wr3[1], &wi3[1], &evecty[evecty_offset], ldu, dumma,
		     ldu, &n1, &in, &work[1], &iwork[1], &iwork[1], &iinfo);
	    if (iinfo != 0) {
		io___63.ciunit = *nounit;
		s_wsfe(&io___63);
		do_fio(&c__1, "DHSEIN(L)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L250;
		}
	    } else {

/*              Test 12:  | YH - WY | / ( |H| |Y| ulp )   

                          (from inverse iteration) */

		dget22_("C", "N", "C", &n, &h__[h_offset], lda, &evecty[
			evecty_offset], ldu, &wr3[1], &wi3[1], &work[1], &
			dumma[2]);
		if (dumma[2] < ulpinv) {
		    result[12] = dumma[2] * aninv;
		}
		if (dumma[3] > *thresh) {
		    io___64.ciunit = *nounit;
		    s_wsfe(&io___64);
		    do_fio(&c__1, "Left", (ftnlen)4);
		    do_fio(&c__1, "DHSEIN", (ftnlen)6);
		    do_fio(&c__1, (char *)&dumma[3], (ftnlen)sizeof(
			    doublereal));
		    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		    do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		    do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer))
			    ;
		    e_wsfe();
		}
	    }

/*           Call DORMHR for Right eigenvectors of A, do test 13 */

	    ntest = 13;
	    result[13] = ulpinv;

	    dormhr_("Left", "No transpose", &n, &n, &ilo, &ihi, &uu[uu_offset]
		    , ldu, &tau[1], &evectx[evectx_offset], ldu, &work[1], 
		    nwork, &iinfo);
	    if (iinfo != 0) {
		io___65.ciunit = *nounit;
		s_wsfe(&io___65);
		do_fio(&c__1, "DORMHR(R)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L250;
		}
	    } else {

/*              Test 13:  | AX - XW | / ( |A| |X| ulp )   

                          (from inverse iteration) */

		dget22_("N", "N", "N", &n, &a[a_offset], lda, &evectx[
			evectx_offset], ldu, &wr3[1], &wi3[1], &work[1], 
			dumma);
		if (dumma[0] < ulpinv) {
		    result[13] = dumma[0] * aninv;
		}
	    }

/*           Call DORMHR for Left eigenvectors of A, do test 14 */

	    ntest = 14;
	    result[14] = ulpinv;

	    dormhr_("Left", "No transpose", &n, &n, &ilo, &ihi, &uu[uu_offset]
		    , ldu, &tau[1], &evecty[evecty_offset], ldu, &work[1], 
		    nwork, &iinfo);
	    if (iinfo != 0) {
		io___66.ciunit = *nounit;
		s_wsfe(&io___66);
		do_fio(&c__1, "DORMHR(L)", (ftnlen)9);
		do_fio(&c__1, (char *)&iinfo, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer));
		do_fio(&c__1, (char *)&jtype, (ftnlen)sizeof(integer));
		do_fio(&c__4, (char *)&ioldsd[0], (ftnlen)sizeof(integer));
		e_wsfe();
		*info = abs(iinfo);
		if (iinfo < 0) {
		    goto L250;
		}
	    } else {

/*              Test 14:  | YA - WY | / ( |A| |Y| ulp )   

                          (from inverse iteration) */

		dget22_("C", "N", "C", &n, &a[a_offset], lda, &evecty[
			evecty_offset], ldu, &wr3[1], &wi3[1], &work[1], &
			dumma[2]);
		if (dumma[2] < ulpinv) {
		    result[14] = dumma[2] * aninv;
		}
	    }

/*           End of Loop -- Check for RESULT(j) > THRESH */

L250:

	    ntestt += ntest;
	    dlafts_("DHS", &n, &n, &jtype, &ntest, &result[1], ioldsd, thresh,
		     nounit, &nerrs);

L260:
	    ;
	}
L270:
	;
    }

/*     Summary */

    dlasum_("DHS", nounit, &nerrs, &ntestt);

    return 0;


/*     End of DCHKHS */

} /* dchkhs_ */
Ejemplo n.º 2
0
/* Subroutine */ int derrhs_(char *path, integer *nunit)
{
    /* Format strings */
    static char fmt_9999[] = "(1x,a3,\002 routines passed the tests of the e"
	    "rror exits\002,\002 (\002,i3,\002 tests done)\002)";
    static char fmt_9998[] = "(\002 *** \002,a3,\002 routines failed the tes"
	    "ts of the error \002,\002exits ***\002)";

    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);

    /* Local variables */
    doublereal a[9]	/* was [3][3] */, c__[9]	/* was [3][3] */;
    integer i__, j, m;
    doublereal s[3], w[28];
    char c2[2];
    doublereal wi[3];
    integer nt;
    doublereal vl[9]	/* was [3][3] */, vr[9]	/* was [3][3] */, wr[3];
    integer ihi, ilo;
    logical sel[3];
    doublereal tau[3];
    integer info;
    extern /* Subroutine */ int dgebak_(char *, char *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, integer *, 
	    integer *), dgebal_(char *, integer *, doublereal 
	    *, integer *, integer *, integer *, doublereal *, integer *), dgehrd_(integer *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, integer *, integer *);
    integer ifaill[3], ifailr[3];
    extern /* Subroutine */ int dhsein_(char *, char *, char *, logical *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *, doublereal *, integer *, integer *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), dorghr_(integer *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, integer *, 
	    integer *), dhseqr_(char *, char *, integer *, integer *, integer 
	    *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *, integer *), dtrevc_(char *, char *, logical *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *, integer *, doublereal *, integer *), dormhr_(char *, char *, integer *, integer *, integer *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, doublereal *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };
    static cilist io___22 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___23 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DERRHS tests the error exits for DGEBAK, SGEBAL, SGEHRD, DORGHR, */
/*  DORMHR, DHSEQR, SHSEIN, and DTREVC. */

/*  Arguments */
/*  ========= */

/*  PATH    (input) CHARACTER*3 */
/*          The LAPACK path name for the routines to be tested. */

/*  NUNIT   (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Executable Statements .. */

    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 3; ++j) {
	for (i__ = 1; i__ <= 3; ++i__) {
	    a[i__ + j * 3 - 4] = 1. / (doublereal) (i__ + j);
/* L10: */
	}
	wi[j - 1] = (doublereal) j;
	sel[j - 1] = TRUE_;
/* L20: */
    }
    infoc_1.ok = TRUE_;
    nt = 0;

/*     Test error exits of the nonsymmetric eigenvalue routines. */

    if (lsamen_(&c__2, c2, "HS")) {

/*        DGEBAL */

	s_copy(srnamc_1.srnamt, "DGEBAL", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dgebal_("/", &c__0, a, &c__1, &ilo, &ihi, s, &info);
	chkxer_("DGEBAL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dgebal_("N", &c_n1, a, &c__1, &ilo, &ihi, s, &info);
	chkxer_("DGEBAL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dgebal_("N", &c__2, a, &c__1, &ilo, &ihi, s, &info);
	chkxer_("DGEBAL", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 3;

/*        DGEBAK */

	s_copy(srnamc_1.srnamt, "DGEBAK", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dgebak_("/", "R", &c__0, &c__1, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("DGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dgebak_("N", "/", &c__0, &c__1, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("DGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dgebak_("N", "R", &c_n1, &c__1, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("DGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dgebak_("N", "R", &c__0, &c__0, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("DGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dgebak_("N", "R", &c__0, &c__2, &c__0, s, &c__0, a, &c__1, &info);
	chkxer_("DGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dgebak_("N", "R", &c__2, &c__2, &c__1, s, &c__0, a, &c__2, &info);
	chkxer_("DGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dgebak_("N", "R", &c__0, &c__1, &c__1, s, &c__0, a, &c__1, &info);
	chkxer_("DGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	dgebak_("N", "R", &c__0, &c__1, &c__0, s, &c_n1, a, &c__1, &info);
	chkxer_("DGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 9;
	dgebak_("N", "R", &c__2, &c__1, &c__2, s, &c__0, a, &c__1, &info);
	chkxer_("DGEBAK", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 9;

/*        DGEHRD */

	s_copy(srnamc_1.srnamt, "DGEHRD", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dgehrd_(&c_n1, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("DGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dgehrd_(&c__0, &c__0, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("DGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dgehrd_(&c__0, &c__2, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("DGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dgehrd_(&c__1, &c__1, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("DGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dgehrd_(&c__0, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("DGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dgehrd_(&c__2, &c__1, &c__1, a, &c__1, tau, w, &c__2, &info);
	chkxer_("DGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	dgehrd_(&c__2, &c__1, &c__2, a, &c__2, tau, w, &c__1, &info);
	chkxer_("DGEHRD", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 7;

/*        DORGHR */

	s_copy(srnamc_1.srnamt, "DORGHR", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dorghr_(&c_n1, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("DORGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dorghr_(&c__0, &c__0, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("DORGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dorghr_(&c__0, &c__2, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("DORGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dorghr_(&c__1, &c__1, &c__0, a, &c__1, tau, w, &c__1, &info);
	chkxer_("DORGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dorghr_(&c__0, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("DORGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dorghr_(&c__2, &c__1, &c__1, a, &c__1, tau, w, &c__1, &info);
	chkxer_("DORGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	dorghr_(&c__3, &c__1, &c__3, a, &c__3, tau, w, &c__1, &info);
	chkxer_("DORGHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 7;

/*        DORMHR */

	s_copy(srnamc_1.srnamt, "DORMHR", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dormhr_("/", "N", &c__0, &c__0, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dormhr_("L", "/", &c__0, &c__0, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dormhr_("L", "N", &c_n1, &c__0, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dormhr_("L", "N", &c__0, &c_n1, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dormhr_("L", "N", &c__0, &c__0, &c__0, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dormhr_("L", "N", &c__0, &c__0, &c__2, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dormhr_("L", "N", &c__1, &c__2, &c__2, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__2, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dormhr_("R", "N", &c__2, &c__1, &c__2, &c__1, a, &c__1, tau, c__, &
		c__2, w, &c__2, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	dormhr_("L", "N", &c__1, &c__1, &c__1, &c__0, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	dormhr_("L", "N", &c__0, &c__1, &c__1, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	dormhr_("R", "N", &c__1, &c__0, &c__1, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	dormhr_("L", "N", &c__2, &c__1, &c__1, &c__1, a, &c__1, tau, c__, &
		c__2, w, &c__1, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	dormhr_("R", "N", &c__1, &c__2, &c__1, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	dormhr_("L", "N", &c__2, &c__1, &c__1, &c__1, a, &c__2, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 13;
	dormhr_("L", "N", &c__1, &c__2, &c__1, &c__1, a, &c__1, tau, c__, &
		c__1, w, &c__1, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 13;
	dormhr_("R", "N", &c__2, &c__1, &c__1, &c__1, a, &c__1, tau, c__, &
		c__2, w, &c__1, &info);
	chkxer_("DORMHR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 16;

/*        DHSEQR */

	s_copy(srnamc_1.srnamt, "DHSEQR", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dhseqr_("/", "N", &c__0, &c__1, &c__0, a, &c__1, wr, wi, c__, &c__1, 
		w, &c__1, &info);
	chkxer_("DHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dhseqr_("E", "/", &c__0, &c__1, &c__0, a, &c__1, wr, wi, c__, &c__1, 
		w, &c__1, &info);
	chkxer_("DHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dhseqr_("E", "N", &c_n1, &c__1, &c__0, a, &c__1, wr, wi, c__, &c__1, 
		w, &c__1, &info);
	chkxer_("DHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dhseqr_("E", "N", &c__0, &c__0, &c__0, a, &c__1, wr, wi, c__, &c__1, 
		w, &c__1, &info);
	chkxer_("DHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dhseqr_("E", "N", &c__0, &c__2, &c__0, a, &c__1, wr, wi, c__, &c__1, 
		w, &c__1, &info);
	chkxer_("DHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dhseqr_("E", "N", &c__1, &c__1, &c__0, a, &c__1, wr, wi, c__, &c__1, 
		w, &c__1, &info);
	chkxer_("DHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dhseqr_("E", "N", &c__1, &c__1, &c__2, a, &c__1, wr, wi, c__, &c__1, 
		w, &c__1, &info);
	chkxer_("DHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	dhseqr_("E", "N", &c__2, &c__1, &c__2, a, &c__1, wr, wi, c__, &c__2, 
		w, &c__1, &info);
	chkxer_("DHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	dhseqr_("E", "V", &c__2, &c__1, &c__2, a, &c__2, wr, wi, c__, &c__1, 
		w, &c__1, &info);
	chkxer_("DHSEQR", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 9;

/*        DHSEIN */

	s_copy(srnamc_1.srnamt, "DHSEIN", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dhsein_("/", "N", "N", sel, &c__0, a, &c__1, wr, wi, vl, &c__1, vr, &
		c__1, &c__0, &m, w, ifaill, ifailr, &info);
	chkxer_("DHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dhsein_("R", "/", "N", sel, &c__0, a, &c__1, wr, wi, vl, &c__1, vr, &
		c__1, &c__0, &m, w, ifaill, ifailr, &info);
	chkxer_("DHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dhsein_("R", "N", "/", sel, &c__0, a, &c__1, wr, wi, vl, &c__1, vr, &
		c__1, &c__0, &m, w, ifaill, ifailr, &info);
	chkxer_("DHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dhsein_("R", "N", "N", sel, &c_n1, a, &c__1, wr, wi, vl, &c__1, vr, &
		c__1, &c__0, &m, w, ifaill, ifailr, &info);
	chkxer_("DHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	dhsein_("R", "N", "N", sel, &c__2, a, &c__1, wr, wi, vl, &c__1, vr, &
		c__2, &c__4, &m, w, ifaill, ifailr, &info);
	chkxer_("DHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	dhsein_("L", "N", "N", sel, &c__2, a, &c__2, wr, wi, vl, &c__1, vr, &
		c__1, &c__4, &m, w, ifaill, ifailr, &info);
	chkxer_("DHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 13;
	dhsein_("R", "N", "N", sel, &c__2, a, &c__2, wr, wi, vl, &c__1, vr, &
		c__1, &c__4, &m, w, ifaill, ifailr, &info);
	chkxer_("DHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 14;
	dhsein_("R", "N", "N", sel, &c__2, a, &c__2, wr, wi, vl, &c__1, vr, &
		c__2, &c__1, &m, w, ifaill, ifailr, &info);
	chkxer_("DHSEIN", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 8;

/*        DTREVC */

	s_copy(srnamc_1.srnamt, "DTREVC", (ftnlen)32, (ftnlen)6);
	infoc_1.infot = 1;
	dtrevc_("/", "A", sel, &c__0, a, &c__1, vl, &c__1, vr, &c__1, &c__0, &
		m, w, &info);
	chkxer_("DTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dtrevc_("L", "/", sel, &c__0, a, &c__1, vl, &c__1, vr, &c__1, &c__0, &
		m, w, &info);
	chkxer_("DTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dtrevc_("L", "A", sel, &c_n1, a, &c__1, vl, &c__1, vr, &c__1, &c__0, &
		m, w, &info);
	chkxer_("DTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	dtrevc_("L", "A", sel, &c__2, a, &c__1, vl, &c__2, vr, &c__1, &c__4, &
		m, w, &info);
	chkxer_("DTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	dtrevc_("L", "A", sel, &c__2, a, &c__2, vl, &c__1, vr, &c__1, &c__4, &
		m, w, &info);
	chkxer_("DTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	dtrevc_("R", "A", sel, &c__2, a, &c__2, vl, &c__1, vr, &c__1, &c__4, &
		m, w, &info);
	chkxer_("DTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 11;
	dtrevc_("L", "A", sel, &c__2, a, &c__2, vl, &c__2, vr, &c__1, &c__1, &
		m, w, &info);
	chkxer_("DTREVC", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	nt += 7;
    }

/*     Print a summary line. */

    if (infoc_1.ok) {
	io___22.ciunit = infoc_1.nout;
	s_wsfe(&io___22);
	do_fio(&c__1, path, (ftnlen)3);
	do_fio(&c__1, (char *)&nt, (ftnlen)sizeof(integer));
	e_wsfe();
    } else {
	io___23.ciunit = infoc_1.nout;
	s_wsfe(&io___23);
	do_fio(&c__1, path, (ftnlen)3);
	e_wsfe();
    }


    return 0;

/*     End of DERRHS */

} /* derrhs_ */