main() { double ans, a, b, c; a = 2.0; b = -5.0; c = 7.0; printf( "\n\n Test of utility routines." ); printf( "\n\n" ); ans = dsqr( a ); printf( "\n a = %lf ans = dsqr( a ) = %lf", a, ans ); ans = dcub( a ); printf( "\n a = %lf ans = dcub( a ) = %lf", a, ans ); ans = dpow4( a ); printf( "\n a = %lf ans = dpow4( a ) = %lf", a, ans ); ans = dpow5( a ); printf( "\n a = %lf ans = dpow5( a ) = %lf", a, ans ); ans = dsgn( a ); printf( "\n a = %lf ans = dsgn( a ) = %lf", a, ans ); ans = dsgn( b ); printf( "\n b = %lf ans = dsgn( b ) = %lf", b, ans ); ans = dsign( a, b ); printf( "\n a = %lf, b = %lf, ans = sign( a, b ) = %lf", a, b, ans ); ans = dpythag( a, b ); printf( "\n a = %lf, b = %lf, ans = pythag( a, b ) = %lf", a, b, ans ); ans = dmin( a, b ); printf( "\n a = %lf, b = %lf, ans = dmin( a, b ) = %lf", a, b, ans ); ans = dmax( a, b ); printf( "\n a = %lf, b = %lf, ans = dmax( a, b ) = %lf", a, b, ans ); ans = dmin3( a, b, c ); printf( "\n a = %lf, b = %lf, c = %lf, ans = dmin3( a, b, c ) = %lf", a, b, c, ans ); ans = dmax3( a, b, c ); printf( "\n a = %lf, b = %lf, c = %lf, ans = dmax3( a, b, c ) = %lf", a, b, c, ans ); printf( "\n\n" ); }
/* Given a matrix a[1..m][1..n], this routine computes its singular value decomposition, A = U.W.transpose(V). The matrix U replaces a on output. The diagonal matrix of singular values W is output as a vector w[1..n]. The matrix V (not its transpose) is output as v[1..n][1..n]. The matrix a must exist prior to calling this function (obviously), and so too must w and v. */ void dsvdcmp(double **a, int m, int n, double w[], double **v) { int flag,i,its,j,jj,k,l=0,nm=0; double anorm,c,f,g,h,s,scale,x,y,z,*rv1; rv1=dvector(1,n); g=scale=anorm=0.0; for (i=1;i<=n;i++) { l=i+1; rv1[i]=scale*g; g=s=scale=0.0; if (i <= m) { for (k=i;k<=m;k++) scale += fabs(a[k][i]); if (scale) { for (k=i;k<=m;k++) { a[k][i] /= scale; s += a[k][i]*a[k][i]; } f=a[i][i]; g = -SIGN(sqrt(s),f); h=f*g-s; a[i][i]=f-g; for (j=l;j<=n;j++) { for (s=0.0,k=i;k<=m;k++) s += a[k][i]*a[k][j]; f=s/h; for (k=i;k<=m;k++) a[k][j] += f*a[k][i]; } for (k=i;k<=m;k++) a[k][i] *= scale; } } w[i]=scale *g; g=s=scale=0.0; if (i <= m && i != n) { for (k=l;k<=n;k++) scale += fabs(a[i][k]); if (scale) { for (k=l;k<=n;k++) { a[i][k] /= scale; s += a[i][k]*a[i][k]; } f=a[i][l]; g = -SIGN(sqrt(s),f); h=f*g-s; a[i][l]=f-g; for (k=l;k<=n;k++) rv1[k]=a[i][k]/h; for (j=l;j<=m;j++) { for (s=0.0,k=l;k<=n;k++) s += a[j][k]*a[i][k]; for (k=l;k<=n;k++) a[j][k] += s*rv1[k]; } for (k=l;k<=n;k++) a[i][k] *= scale; } } anorm=MAX(anorm,(fabs(w[i])+fabs(rv1[i]))); } for (i=n;i>=1;i--) { if (i < n) { if (g) { for (j=l;j<=n;j++) v[j][i]=(a[i][j]/a[i][l])/g; for (j=l;j<=n;j++) { for (s=0.0,k=l;k<=n;k++) s += a[i][k]*v[k][j]; for (k=l;k<=n;k++) v[k][j] += s*v[k][i]; } } for (j=l;j<=n;j++) v[i][j]=v[j][i]=0.0; } v[i][i]=1.0; g=rv1[i]; l=i; } for (i=MIN(m,n);i>=1;i--) { l=i+1; g=w[i]; for (j=l;j<=n;j++) a[i][j]=0.0; if (g) { g=1.0/g; for (j=l;j<=n;j++) { for (s=0.0,k=l;k<=m;k++) s += a[k][i]*a[k][j]; f=(s/a[i][i])*g; for (k=i;k<=m;k++) a[k][j] += f*a[k][i]; } for (j=i;j<=m;j++) a[j][i] *= g; } else for (j=i;j<=m;j++) a[j][i]=0.0; ++a[i][i]; } for (k=n;k>=1;k--) { for (its=1;its<=30;its++) { flag=1; for (l=k;l>=1;l--) { nm=l-1; if ((double)(fabs(rv1[l])+anorm) == anorm) { flag=0; break; } if ((double)(fabs(w[nm])+anorm) == anorm) break; } if (flag) { c=0.0; s=1.0; for (i=l;i<=k;i++) { f=s*rv1[i]; rv1[i]=c*rv1[i]; if ((double)(fabs(f)+anorm) == anorm) break; g=w[i]; h=dpythag(f,g); w[i]=h; h=1.0/h; c=g*h; s = -f*h; for (j=1;j<=m;j++) { y=a[j][nm]; z=a[j][i]; a[j][nm]=y*c+z*s; a[j][i]=z*c-y*s; } } } z=w[k]; if (l == k) { if (z < 0.0) { w[k] = -z; for (j=1;j<=n;j++) v[j][k] = -v[j][k]; } break; } if (its == 30) quit_error((char*)"no convergence in 30 dsvdcmp iterations"); x=w[l]; nm=k-1; y=w[nm]; g=rv1[nm]; h=rv1[k]; f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y); g=dpythag(f,1.0); f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x; c=s=1.0; for (j=l;j<=nm;j++) { i=j+1; g=rv1[i]; y=w[i]; h=s*g; g=c*g; z=dpythag(f,h); rv1[j]=z; c=f/z; s=h/z; f=x*c+g*s; g = g*c-x*s; h=y*s; y *= c; for (jj=1;jj<=n;jj++) { x=v[jj][j]; z=v[jj][i]; v[jj][j]=x*c+z*s; v[jj][i]=z*c-x*s; } z=dpythag(f,h); w[j]=z; if (z) { z=1.0/z; c=f*z; s=h*z; } f=c*g+s*y; x=c*y-s*g; for (jj=1;jj<=m;jj++) { y=a[jj][j]; z=a[jj][i]; a[jj][j]=y*c+z*s; a[jj][i]=z*c-y*s; } } rv1[l]=0.0; rv1[k]=f; w[k]=x; } } free_dvector(rv1,1,n); return; }
/************************************************************************** Does singular value decomposition on m x n matrix a, returning m x n matrix u in a, n x n matrices v, and in w the n diagonal elements of an n x n diagonal matrix wm, such that a = u . wm . vT -and- uT.u = 1 -and- vT.v = 1 */ static int svdcmp(double **a, int m, int n) { double *rv1 ; double anorm,c,f,g,h,s,scale,x,y,z ; int flag,i,its,j,jj,k,l,nm; const char *me = "svdcmp" ; if (!(rv1 = (double *)malloc(n*sizeof(double)))) return(punt(__LINE__,me,"can\'t allocate buffer.")) ; g=scale=anorm=0.0; for(i=0;i<n;i++) { l=i+1; rv1[i]=scale*g; g=s=scale=0.0; if (i<m) { for (k=0;k<m;k++) scale += fabs(a[k][i]); if (scale) { for (k=i;k<m;k++) { a[k][i] /= scale; s += a[k][i]*a[k][i]; } f=a[i][i]; g = -SIGN(sqrt(s),f); h=f*g-s; a[i][i]=f-g; for (j=l;j<n;j++) { for (s=0.0,k=i;k<m;k++) s += a[k][i]*a[k][j]; f=s/h; for (k=i;k<m;k++) a[k][j] += f*a[k][i]; } for (k=i;k<m;k++) a[k][i] *= scale; } } w[i]=scale*g; g=s=scale=0.0; if (i < m && i < n) { for (k=l;k<n;k++) scale += fabs(a[i][k]); if (scale) { for (k=l;k<n;k++) { a[i][k] /= scale; s += a[i][k]*a[i][k]; } f=a[i][l]; g = -SIGN(sqrt(s),f); h=f*g-s; /* hmm */ a[i][l]=f-g; for (k=l;k<n;k++) rv1[k]=a[i][k]/h; for (j=l;j<m;j++) { for (s=0.0,k=l;k<n;k++) s += a[j][k]*a[i][k]; for (k=l;k<n;k++) a[j][k] += s*rv1[k]; } for (k=l;k<n;k++) a[i][k] *= scale; } } anorm=MAX(anorm,(fabs(w[i])+fabs(rv1[i]))); } for (i=n-1;i>=0;i--) { if (i < n-1) { if (g) { for (j=l;j<n;j++) v[j][i]=(a[i][j]/a[i][l])/g; for (j=l;j<n;j++) { for (s=0.0,k=l;k<n;k++) s += a[i][k]*v[k][j]; for (k=l;k<n;k++) v[k][j] += s*v[k][i]; } } for (j=l;j<n;j++) v[i][j]=v[j][i]=0.0; } v[i][i]=1.0; g=rv1[i]; l=i; } for (i=MIN(m,n)-1;i>=0;i--) { l=i+1; g=w[i]; for (j=l;j<n;j++) a[i][j]=0.0; if (g) { g=1.0/g; for (j=l;j<n;j++) { for (s=0.0,k=l;k<m;k++) s += a[k][i]*a[k][j]; f=(s/a[i][i])*g; for (k=i;k<m;k++) a[k][j] += f*a[k][i]; } for (j=i;j<m;j++) a[j][i] *= g; } else for (j=i;j<m;j++) a[j][i]=0.0; ++a[i][i]; } for (k=n-1;k>=0;k--) { for (its=0;its<30;its++) { flag=1; for (l=k;l>=0;l--) { nm=l-1; if ((double)(fabs(rv1[l])+anorm) == anorm) { flag=0; break; } if ((double)(fabs(w[nm])+anorm) == anorm) break; } if (flag) { c=0.0; s=1.0; for (i=l;i<=k;i++) { f=s*rv1[i]; rv1[i]=c*rv1[i]; if ((double)(fabs(f)+anorm) == anorm) break; g=w[i]; h=dpythag(f,g); w[i]=h; h=1.0/h; c=g*h; s = -f*h; for (j=0;j<m;j++) { y=a[j][nm]; z=a[j][i]; a[j][nm]=y*c+z*s; a[j][i]=z*c-y*s; } } } z=w[k]; if (l == k) { if (z < 0.0) { w[k] = -z; for (j=0;j<n;j++) v[j][k] = -v[j][k]; } break; } if (its == 29) return(punt(__LINE__,me,"no convergence in 30 iterations")) ; x=w[l]; nm=k-1; y=w[nm]; g=rv1[nm]; h=rv1[k]; f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y); g=dpythag(f,1.0); f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x; c=s=1.0; for (j=l;j<=nm;j++) { i=j+1; g=rv1[i]; y=w[i]; h=s*g; g=c*g; z=dpythag(f,h); rv1[j]=z; c=f/z; s=h/z; f=x*c+g*s; g = g*c-x*s; h=y*s; y *= c; for (jj=0;jj<n;jj++) { x=v[jj][j]; z=v[jj][i]; v[jj][j]=x*c+z*s; v[jj][i]=z*c-x*s; } z=dpythag(f,h); w[j]=z; if (z) { z=1.0/z; c=f*z; s=h*z; } f=c*g+s*y; x=c*y-s*g; for (jj=0;jj<m;jj++) { y=a[jj][j]; z=a[jj][i]; a[jj][j]=y*c+z*s; a[jj][i]=z*c-y*s; } } rv1[l]=0.0; rv1[k]=f; w[k]=x; } } free(rv1) ; return(OK) ; }