Ejemplo n.º 1
0
double MC_Condition_Number(double **X, int dim, int expl)
{
	int i = 0, j = 0, row = 0, column = 0; 
	double xn = 0;
	DenseVector *x = new DenseVector [dim];

	for (i = 0; i < expl; i++)
		x[i].absorb(X[i], dim, false);

	for (i = 0; i < expl; i++) {
		xn = x[i].norm();
		for (j = 0; j < dim; j++) {
			x[i].setAt(j, x[i].getValue(j) / sqrt(xn));
		}
	}

	// use CLAPACK to compute the largest and the smallest eigenvalues
	// use dspev_

	char jobz = 'N', uplo = 'U';
	long int n = expl;
	long int ldz = expl, lwork = 3 * expl, info = 0;
	double *a = new double [expl * (expl + 1) / 2];
	double *s = new double [expl];
	double *z = NULL;
	double *work = new double [lwork];
	for (row = 0; row < expl; row++) {
		for (column = row + 1; column < expl; column++)
			a[row + column * (column + 1) / 2] = x[row].product(x[column]);
			a[row + row * (row + 1) / 2] = x[row].norm();
	}

// use __WXMAC__ to call vecLib
//#ifdef WORDS_BIGENDIAN
#ifdef __WXMAC__MMM
	dspev_(&jobz, &uplo, &n, a, s, z, &ldz, work, &info);
#else
	dspev_(&jobz, &uplo, (integer*)&n, (doublereal*)a, (doublereal*)s, (doublereal*)z, (integer*)&ldz, (doublereal*)work, (integer*)&info);
#endif

	if (!info) {
		double max = s[expl - 1], min = s[0];
		return sqrt(max / min);
	} else {
	//	cerr << "error in computing eigenvalues" << endl;
		wxMessageBox("error in computing eigenvalues");
		return -999;
	}
}
Ejemplo n.º 2
0
int local_dspev(const int* n, double* A, double* W, double* Z, const int *ldz, double* work){
	//extern void dspev_(const char* jobz, const char* uplo, 
	//	const int* n, double * A, double* W, double* Z, const int* ldz, double* work, long* info);
	int info;
	dspev_(&V, &Upper, n, A, W, Z, ldz, work, &info);
	return info;
}
Ejemplo n.º 3
0
void 
dspev(char jobz, char uplo, int n, double *dap,  double *w, 
		double *dz, int ldz, int *info) 
{
    double *work ; 
    allot ( double *, work, 3*n ) ; 
    dspev_ ( &jobz, &uplo, &n, dap, w, dz, &ldz, work, info );
    free(work) ;
}
Ejemplo n.º 4
0
/// Solve symmetric eigenvalue problem using CLAPACK routines.
void quantfin::interfaceCLAPACK::SymmetricEigenvalueProblem(
                                   const Array<double,2>& A,      ///< Symmetric Array to be decomposed.
                                   Array<double,1>& eigval,       ///< Array (vector) containing all non-zero eigenvalues.
                                   Array<double,2>& eigvec,       ///< Array of eigenvectors (Array, each column is an eigenvector)
                                   double eps                     ///< Threshold for comparison to zero, default 1e-12
                                   )
{
  int i,j;
  long int n = A.rows();
  if (n!=A.columns()) throw(std::logic_error("Array must be square"));
  double* ap  = new double[(n*(n+1))/2];
  double* pos = ap;
  for (i=0;i<n;i++) {
    for (j=0;j<=i;j++) *pos++ = A(j,i); }
  double* w = new double[n];
  double* z = new double[n*n];
  double* work = new double[3*n];
  long int ldz  = n;
  long int info = 0;
  char jobz = 'V';
  char uplo = 'U';
  dspev_(&jobz,&uplo,&n,ap,w,z,&ldz,work,&info);
  if (!info) {
    int k = n;
    for (i=0;i<n;i++) {
      if (my_abs(w[i])<=eps) k--; }
    Array<double,1> val(k);
    Array<double,2> vec(n,k);
    int l = 0;
    pos = z;
    for (i=0;i<n;i++) {
      if (my_abs(w[i])>eps) {
        val(l) = w[i];
        for (j=0;j<n;j++) vec(j,l) = *pos++;
        l++; }
      else pos += n; }
    eigval.resize(k);
    eigvec.resize(n,k);
    eigval = val;
    eigvec = vec; }
  delete[] ap;
  delete[] w;
  delete[] z;
  delete[] work;
  if (info) throw(std::logic_error("Eigenvalue decomposition failed"));
}
Ejemplo n.º 5
0
void Eigensystem( char* jobz, char* uplo, int* n, double* ap, double* w, int* ldz)
{

  if( *jobz =='V' ) { printf( "Sorry sucka! I'm too lazy to do this.\n" ); exit(1); }

  /* Query and allocate the optimal workspace */
  int info=0;

  double* work = (double*)malloc( 3 * (*n) * sizeof(double) );

  /* Solve eigenproblem */
  double* z; // Dummy
  dspev_( jobz, uplo, n, ap, w, z, ldz, work, &info );

  /* Check for convergence */
  if( info != 0 ) { printf( "The algorithm failed to compute eigenvalues.\n" ); exit( 1 ); }

  /* Free workspace */
  free( (void*)work );

}
Ejemplo n.º 6
0
/* Subroutine */ int dspgv_(integer *itype, char *jobz, char *uplo, integer *
	n, doublereal *ap, doublereal *bp, doublereal *w, doublereal *z__, 
	integer *ldz, doublereal *work, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    DSPGV computes all the eigenvalues and, optionally, the eigenvectors   
    of a real generalized symmetric-definite eigenproblem, of the form   
    A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.   
    Here A and B are assumed to be symmetric, stored in packed format,   
    and B is also positive definite.   

    Arguments   
    =========   

    ITYPE   (input) INTEGER   
            Specifies the problem type to be solved:   
            = 1:  A*x = (lambda)*B*x   
            = 2:  A*B*x = (lambda)*x   
            = 3:  B*A*x = (lambda)*x   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangles of A and B are stored;   
            = 'L':  Lower triangles of A and B are stored.   

    N       (input) INTEGER   
            The order of the matrices A and B.  N >= 0.   

    AP      (input/output) DOUBLE PRECISION array, dimension   
                              (N*(N+1)/2)   
            On entry, the upper or lower triangle of the symmetric matrix   
            A, packed columnwise in a linear array.  The j-th column of A   
            is stored in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.   

            On exit, the contents of AP are destroyed.   

    BP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangle of the symmetric matrix   
            B, packed columnwise in a linear array.  The j-th column of B   
            is stored in the array BP as follows:   
            if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;   
            if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.   

            On exit, the triangular factor U or L from the Cholesky   
            factorization B = U**T*U or B = L*L**T, in the same storage   
            format as B.   

    W       (output) DOUBLE PRECISION array, dimension (N)   
            If INFO = 0, the eigenvalues in ascending order.   

    Z       (output) DOUBLE PRECISION array, dimension (LDZ, N)   
            If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of   
            eigenvectors.  The eigenvectors are normalized as follows:   
            if ITYPE = 1 or 2, Z**T*B*Z = I;   
            if ITYPE = 3, Z**T*inv(B)*Z = I.   
            If JOBZ = 'N', then Z is not referenced.   

    LDZ     (input) INTEGER   
            The leading dimension of the array Z.  LDZ >= 1, and if   
            JOBZ = 'V', LDZ >= max(1,N).   

    WORK    (workspace) DOUBLE PRECISION array, dimension (3*N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  DPPTRF or DSPEV returned an error code:   
               <= N:  if INFO = i, DSPEV failed to converge;   
                      i off-diagonal elements of an intermediate   
                      tridiagonal form did not converge to zero.   
               > N:   if INFO = n + i, for 1 <= i <= n, then the leading   
                      minor of order i of B is not positive definite.   
                      The factorization of B could not be completed and   
                      no eigenvalues or eigenvectors were computed.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
    static integer c__1 = 1;
    
    /* System generated locals */
    integer z_dim1, z_offset, i__1;
    /* Local variables */
    static integer neig, j;
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int dspev_(char *, char *, integer *, doublereal *
	    , doublereal *, doublereal *, integer *, doublereal *, integer *);
    static char trans[1];
    static logical upper;
    extern /* Subroutine */ int dtpmv_(char *, char *, char *, integer *, 
	    doublereal *, doublereal *, integer *), 
	    dtpsv_(char *, char *, char *, integer *, doublereal *, 
	    doublereal *, integer *);
    static logical wantz;
    extern /* Subroutine */ int xerbla_(char *, integer *), dpptrf_(
	    char *, integer *, doublereal *, integer *), dspgst_(
	    integer *, char *, integer *, doublereal *, doublereal *, integer 
	    *);
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]


    --ap;
    --bp;
    --w;
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1 * 1;
    z__ -= z_offset;
    --work;

    /* Function Body */
    wantz = lsame_(jobz, "V");
    upper = lsame_(uplo, "U");

    *info = 0;
    if (*itype < 0 || *itype > 3) {
	*info = -1;
    } else if (! (wantz || lsame_(jobz, "N"))) {
	*info = -2;
    } else if (! (upper || lsame_(uplo, "L"))) {
	*info = -3;
    } else if (*n < 0) {
	*info = -4;
    } else if (*ldz < 1 || wantz && *ldz < *n) {
	*info = -9;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSPGV ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Form a Cholesky factorization of B. */

    dpptrf_(uplo, n, &bp[1], info);
    if (*info != 0) {
	*info = *n + *info;
	return 0;
    }

/*     Transform problem to standard eigenvalue problem and solve. */

    dspgst_(itype, uplo, n, &ap[1], &bp[1], info);
    dspev_(jobz, uplo, n, &ap[1], &w[1], &z__[z_offset], ldz, &work[1], info);

    if (wantz) {

/*        Backtransform eigenvectors to the original problem. */

	neig = *n;
	if (*info > 0) {
	    neig = *info - 1;
	}
	if (*itype == 1 || *itype == 2) {

/*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;   
             backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */

	    if (upper) {
		*(unsigned char *)trans = 'N';
	    } else {
		*(unsigned char *)trans = 'T';
	    }

	    i__1 = neig;
	    for (j = 1; j <= i__1; ++j) {
		dtpsv_(uplo, trans, "Non-unit", n, &bp[1], &z___ref(1, j), &
			c__1);
/* L10: */
	    }

	} else if (*itype == 3) {

/*           For B*A*x=(lambda)*x;   
             backtransform eigenvectors: x = L*y or U'*y */

	    if (upper) {
		*(unsigned char *)trans = 'T';
	    } else {
		*(unsigned char *)trans = 'N';
	    }

	    i__1 = neig;
	    for (j = 1; j <= i__1; ++j) {
		dtpmv_(uplo, trans, "Non-unit", n, &bp[1], &z___ref(1, j), &
			c__1);
/* L20: */
	    }
	}
    }
    return 0;

/*     End of DSPGV */

} /* dspgv_ */
Ejemplo n.º 7
0
/** Get eigenvectors and eigenvalues. They will be stored in descending 
  * order (largest eigenvalue first).
  */
int DataSet_Modes::CalcEigen(DataSet_2D const& mIn, int n_to_calc) {
#ifdef NO_MATHLIB
  mprinterr("Error: modes: Compiled without ARPACK/LAPACK/BLAS routines.\n");
  return 1;
#else
  bool eigenvaluesOnly = false;
  int info = 0;
  if (mIn.MatrixKind() != DataSet_2D::HALF) {
    mprinterr("Error: DataSet_Modes: Eigenvector/value calc only for symmetric matrices.\n");
    return 1;
  }
  // If number to calc is 0, assume we want eigenvalues only
  if (n_to_calc < 1) {
    if (n_to_calc == 0) eigenvaluesOnly = true;
    nmodes_ = (int)mIn.Ncols();
  } else
    nmodes_ = n_to_calc;
  if (nmodes_ > (int)mIn.Ncols()) {
    mprintf("Warning: Specified # of eigenvalues to calc (%i) > matrix dimension (%i).\n",
            nmodes_, mIn.Ncols());
    nmodes_ = mIn.Ncols();
    mprintf("Warning: Only calculating %i eigenvalues.\n", nmodes_);
  }
  if (eigenvaluesOnly)
    mprintf("\tCalculating %i eigenvalues only.\n", nmodes_);
  else
    mprintf("\tCalculating %i eigenvectors and eigenvalues.\n", nmodes_);
  // -----------------------------------------------------------------
  if (nmodes_ == (int)mIn.Ncols()) {
    // Calculate all eigenvalues (and optionally eigenvectors). 
    char jobz = 'V'; // Default: Calc both eigenvectors and eigenvalues
    vecsize_ = mIn.Ncols();
    // Check if only calculating eigenvalues
    if (eigenvaluesOnly) {
      jobz = 'N';
      vecsize_ = 1;
    }
    // Set up space to hold eigenvectors
    if (evectors_ != 0) delete[] evectors_;
    if (!eigenvaluesOnly)
      evectors_ = new double[ nmodes_ * vecsize_ ];
    else
      evectors_ = 0;
    // Set up space to hold eigenvalues
    if (evalues_ != 0) delete[] evalues_;
    evalues_ = new double[ nmodes_ ];
    // Create copy of matrix since call to dspev destroys it
    double* mat = mIn.MatrixArray();
    // Lower triangle; not upper since fortran array layout is inverted w.r.t. C/C++
    char uplo = 'L'; 
    // Allocate temporary workspace
    double* work = new double[ 3 * nmodes_ ];
    // NOTE: The call to dspev is supposed to store eigenvectors in columns. 
    //       However as mentioned above fortran array layout is inverted
    //       w.r.t. C/C++ so eigenvectors end up in rows.
    // NOTE: Eigenvalues/vectors are returned in ascending order.
    dspev_(jobz, uplo, nmodes_, mat, evalues_, evectors_, vecsize_, work, info);
    // If no eigenvectors calcd set vecsize to 0
    if (evectors_==0)
      vecsize_ = 0;
    delete[] work;
    delete[] mat;
    if (info != 0) {
      if (info < 0) {
        mprinterr("Internal Error: from dspev: Argument %i had illegal value.\n", -info);
        mprinterr("Args: %c %c %i matrix %x %x %i work %i\n", jobz, uplo, nmodes_,  
                  evalues_, evectors_, vecsize_, info);
      } else { // info > 0
        mprinterr("Internal Error: from dspev: The algorithm failed to converge.\n");
        mprinterr("%i off-diagonal elements of an intermediate tridiagonal form\n", info);
        mprinterr("did not converge to zero.\n");
      }
      return 1;
    }
  // -----------------------------------------------------------------
  } else {
    // Calculate up to n-1 eigenvalues/vectors using the Implicitly Restarted
    // Arnoldi iteration.
    // FIXME: Eigenvectors obtained with this method appear to have signs
    //        flipped compared to full method - is dot product wrong?
    int nelem = mIn.Ncols(); // Dimension of input matrix (N)
    // Allocate memory to store eigenvectors
    vecsize_ = mIn.Ncols();
    int ncv; // # of columns of the matrix V (evectors_), <= N (mIn.Ncols())
    if (evectors_!=0) delete[] evectors_;
    if (nmodes_*2 <= nelem) 
      ncv = nmodes_*2;
    else 
      ncv = nelem;
    evectors_ = new double[ ncv * nelem ];
    // Temporary storage for eigenvectors to avoid memory overlap in dseupd
    double* eigenvectors = new double[ ncv * nelem ];
    // Allocate memory to store eigenvalues
    if ( evalues_ != 0) delete[] evalues_;
    evalues_ = new double[ nelem ] ; // NOTE: Should this be nmodes?
    // Allocate workspace
    double* workd = new double[ 3 * nelem ];
    int lworkl = ncv * (ncv+8); // NOTE: should this be ncv^2 * (ncv+8)
    double* workl = new double[ lworkl ];
    double* resid = new double[ nelem ];
    // Set parameters for dsaupd (Arnolid)
    int ido = 0; // Reverse comm. flag; 0 = first call
    // The iparam array is used to set parameters for the calc.
    int iparam[11];
    std::fill( iparam, iparam + 11, 0 );
    iparam[0] = 1;   // Method for selecting implicit shifts; 1 = exact
    iparam[2] = 300; // Max # of iterations allowed
    iparam[3] = 1;   // blocksize to be used in the recurrence (code works with only 1).
    iparam[6] = 1;   // Type of eigenproblem being solved; 1: A*x = lambda*x
    double tol = 0;  // Stopping criterion (tolerance); 0 = arpack default 
    char bmat = 'I'; // Type of matrix B that defines semi-inner product; I = identity
    char which[2];   // Which of the Ritz values of OP to compute;
    which[0] = 'L';  // 'LA' = compute the NEV largest eigenvalues
    which[1] = 'A';
    // The ipntr array will hold starting locations in workd and workl arrays
    // for matrices/vectors used by the Lanczos iteration.
    int ipntr[11];
    std::fill( ipntr, ipntr + 11, 0 );
    // Create copy of matrix since it will be modified 
    double* mat = mIn.MatrixArray();
    // LOOP
    bool loop = false;
    do {
      if (loop) {
        // Dot products
        double* target = workd + (ipntr[1] - 1); // -1 since fortran indexing starts at 1
        double* vec    = workd + (ipntr[0] - 1);
        std::fill( target, target + nelem, 0 );
        for(int i = 0; i < nelem; i++) {
          for(int j = i; j < nelem; j++) {
            int ind = nelem * i + j - (i * (i + 1)) / 2;
            target[i] += mat[ind] * vec[j];
            if(i != j)
              target[j] += mat[ind] * vec[i];
          }
        }
      }

      dsaupd_(ido, bmat, nelem, which, nmodes_, tol, resid,
              ncv, eigenvectors, nelem, iparam, ipntr, workd, workl,
              lworkl, info);
      loop = (ido == -1 || ido == 1);
    } while ( loop ); // END LOOP

    if (info != 0) {
      mprinterr("Error: DataSet_Modes: dsaupd returned %i\n",info);
    } else {
      int rvec = 1;
      char howmny = 'A';
      double sigma = 0.0;
      int* select = new int[ ncv ];
      dseupd_(rvec, howmny, select, evalues_, evectors_, nelem, sigma,
              bmat, nelem, which, nmodes_, tol, resid,
              ncv, eigenvectors, nelem, iparam, ipntr, workd, workl,
              lworkl, info);
      delete[] select;
    } 
    delete[] mat;
    delete[] workl;
    delete[] workd;
    delete[] resid;
    delete[] eigenvectors;
    if (info != 0) { 
      mprinterr("Error: DataSet_Modes: dseupd returned %i\n",info);
      return 1;
    }
  }
  // Eigenvalues and eigenvectors are in ascending order. Resort so that
  // they are in descending order (i.e. largest eigenvalue first).
  int pivot = nmodes_ / 2;
  int nmode = nmodes_ - 1;
  double* vtmp = 0;
  if (evectors_ != 0) 
    vtmp = new double[ vecsize_ ];
  for (int mode = 0; mode < pivot; ++mode) {
    // Swap eigenvalue
    double eval = evalues_[mode];
    evalues_[mode] = evalues_[nmode];
    evalues_[nmode] = eval;
    // Swap eigenvector
    if (vtmp != 0) {
      double* Vec0 = evectors_ + (mode  * vecsize_);
      double* Vec1 = evectors_ + (nmode * vecsize_);
      std::copy( Vec0, Vec0 + vecsize_, vtmp );
      std::copy( Vec1, Vec1 + vecsize_, Vec0 );
      std::copy( vtmp, vtmp + vecsize_, Vec1 );
    }
    --nmode;
  }
  if (vtmp != 0) delete[] vtmp;

  return 0;
#endif
}