Ejemplo n.º 1
0
/* Subroutine */ int dspsvx_(char *fact, char *uplo, integer *n, integer *
	nrhs, doublereal *ap, doublereal *afp, integer *ipiv, doublereal *b, 
	integer *ldb, doublereal *x, integer *ldx, doublereal *rcond, 
	doublereal *ferr, doublereal *berr, doublereal *work, integer *iwork, 
	integer *info)
{
    /* System generated locals */
    integer b_dim1, b_offset, x_dim1, x_offset, i__1;

    /* Local variables */
    extern logical lsame_(char *, char *);
    doublereal anorm;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    extern doublereal dlamch_(char *);
    logical nofact;
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    xerbla_(char *, integer *);
    extern doublereal dlansp_(char *, char *, integer *, doublereal *, 
	    doublereal *);
    extern /* Subroutine */ int dspcon_(char *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *, 
	    integer *), dsprfs_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
	     integer *, integer *), dsptrf_(char *, integer *, 
	    doublereal *, integer *, integer *), dsptrs_(char *, 
	    integer *, integer *, doublereal *, integer *, doublereal *, 
	    integer *, integer *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSPSVX uses the diagonal pivoting factorization A = U*D*U**T or */
/*  A = L*D*L**T to compute the solution to a real system of linear */
/*  equations A * X = B, where A is an N-by-N symmetric matrix stored */
/*  in packed format and X and B are N-by-NRHS matrices. */

/*  Error bounds on the solution and a condition estimate are also */
/*  provided. */

/*  Description */
/*  =========== */

/*  The following steps are performed: */

/*  1. If FACT = 'N', the diagonal pivoting method is used to factor A as */
/*        A = U * D * U**T,  if UPLO = 'U', or */
/*        A = L * D * L**T,  if UPLO = 'L', */
/*     where U (or L) is a product of permutation and unit upper (lower) */
/*     triangular matrices and D is symmetric and block diagonal with */
/*     1-by-1 and 2-by-2 diagonal blocks. */

/*  2. If some D(i,i)=0, so that D is exactly singular, then the routine */
/*     returns with INFO = i. Otherwise, the factored form of A is used */
/*     to estimate the condition number of the matrix A.  If the */
/*     reciprocal of the condition number is less than machine precision, */
/*     INFO = N+1 is returned as a warning, but the routine still goes on */
/*     to solve for X and compute error bounds as described below. */

/*  3. The system of equations is solved for X using the factored form */
/*     of A. */

/*  4. Iterative refinement is applied to improve the computed solution */
/*     matrix and calculate error bounds and backward error estimates */
/*     for it. */

/*  Arguments */
/*  ========= */

/*  FACT    (input) CHARACTER*1 */
/*          Specifies whether or not the factored form of A has been */
/*          supplied on entry. */
/*          = 'F':  On entry, AFP and IPIV contain the factored form of */
/*                  A.  AP, AFP and IPIV will not be modified. */
/*          = 'N':  The matrix A will be copied to AFP and factored. */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The number of linear equations, i.e., the order of the */
/*          matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrices B and X.  NRHS >= 0. */

/*  AP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
/*          The upper or lower triangle of the symmetric matrix A, packed */
/*          columnwise in a linear array.  The j-th column of A is stored */
/*          in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
/*          See below for further details. */

/*  AFP     (input or output) DOUBLE PRECISION array, dimension */
/*                            (N*(N+1)/2) */
/*          If FACT = 'F', then AFP is an input argument and on entry */
/*          contains the block diagonal matrix D and the multipliers used */
/*          to obtain the factor U or L from the factorization */
/*          A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as */
/*          a packed triangular matrix in the same storage format as A. */

/*          If FACT = 'N', then AFP is an output argument and on exit */
/*          contains the block diagonal matrix D and the multipliers used */
/*          to obtain the factor U or L from the factorization */
/*          A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as */
/*          a packed triangular matrix in the same storage format as A. */

/*  IPIV    (input or output) INTEGER array, dimension (N) */
/*          If FACT = 'F', then IPIV is an input argument and on entry */
/*          contains details of the interchanges and the block structure */
/*          of D, as determined by DSPTRF. */
/*          If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
/*          interchanged and D(k,k) is a 1-by-1 diagonal block. */
/*          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
/*          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
/*          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) = */
/*          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
/*          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */

/*          If FACT = 'N', then IPIV is an output argument and on exit */
/*          contains details of the interchanges and the block structure */
/*          of D, as determined by DSPTRF. */

/*  B       (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*          The N-by-NRHS right hand side matrix B. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  X       (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
/*          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X. */

/*  LDX     (input) INTEGER */
/*          The leading dimension of the array X.  LDX >= max(1,N). */

/*  RCOND   (output) DOUBLE PRECISION */
/*          The estimate of the reciprocal condition number of the matrix */
/*          A.  If RCOND is less than the machine precision (in */
/*          particular, if RCOND = 0), the matrix is singular to working */
/*          precision.  This condition is indicated by a return code of */
/*          INFO > 0. */

/*  FERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
/*          The estimated forward error bound for each solution vector */
/*          X(j) (the j-th column of the solution matrix X). */
/*          If XTRUE is the true solution corresponding to X(j), FERR(j) */
/*          is an estimated upper bound for the magnitude of the largest */
/*          element in (X(j) - XTRUE) divided by the magnitude of the */
/*          largest element in X(j).  The estimate is as reliable as */
/*          the estimate for RCOND, and is almost always a slight */
/*          overestimate of the true error. */

/*  BERR    (output) DOUBLE PRECISION array, dimension (NRHS) */
/*          The componentwise relative backward error of each solution */
/*          vector X(j) (i.e., the smallest relative change in */
/*          any element of A or B that makes X(j) an exact solution). */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension (3*N) */

/*  IWORK   (workspace) INTEGER array, dimension (N) */

/*  INFO    (output) INTEGER */
/*          = 0: successful exit */
/*          < 0: if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, and i is */
/*                <= N:  D(i,i) is exactly zero.  The factorization */
/*                       has been completed but the factor D is exactly */
/*                       singular, so the solution and error bounds could */
/*                       not be computed. RCOND = 0 is returned. */
/*                = N+1: D is nonsingular, but RCOND is less than machine */
/*                       precision, meaning that the matrix is singular */
/*                       to working precision.  Nevertheless, the */
/*                       solution and error bounds are computed because */
/*                       there are a number of situations where the */
/*                       computed solution can be more accurate than the */
/*                       value of RCOND would suggest. */

/*  Further Details */
/*  =============== */

/*  The packed storage scheme is illustrated by the following example */
/*  when N = 4, UPLO = 'U': */

/*  Two-dimensional storage of the symmetric matrix A: */

/*     a11 a12 a13 a14 */
/*         a22 a23 a24 */
/*             a33 a34     (aij = aji) */
/*                 a44 */

/*  Packed storage of the upper triangle of A: */

/*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --afp;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;
    x_dim1 = *ldx;
    x_offset = 1 + x_dim1;
    x -= x_offset;
    --ferr;
    --berr;
    --work;
    --iwork;

    /* Function Body */
    *info = 0;
    nofact = lsame_(fact, "N");
    if (! nofact && ! lsame_(fact, "F")) {
	*info = -1;
    } else if (! lsame_(uplo, "U") && ! lsame_(uplo, 
	    "L")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*nrhs < 0) {
	*info = -4;
    } else if (*ldb < max(1,*n)) {
	*info = -9;
    } else if (*ldx < max(1,*n)) {
	*info = -11;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSPSVX", &i__1);
	return 0;
    }

    if (nofact) {

/*        Compute the factorization A = U*D*U' or A = L*D*L'. */

	i__1 = *n * (*n + 1) / 2;
	dcopy_(&i__1, &ap[1], &c__1, &afp[1], &c__1);
	dsptrf_(uplo, n, &afp[1], &ipiv[1], info);

/*        Return if INFO is non-zero. */

	if (*info > 0) {
	    *rcond = 0.;
	    return 0;
	}
    }

/*     Compute the norm of the matrix A. */

    anorm = dlansp_("I", uplo, n, &ap[1], &work[1]);

/*     Compute the reciprocal of the condition number of A. */

    dspcon_(uplo, n, &afp[1], &ipiv[1], &anorm, rcond, &work[1], &iwork[1], 
	    info);

/*     Compute the solution vectors X. */

    dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
    dsptrs_(uplo, n, nrhs, &afp[1], &ipiv[1], &x[x_offset], ldx, info);

/*     Use iterative refinement to improve the computed solutions and */
/*     compute error bounds and backward error estimates for them. */

    dsprfs_(uplo, n, nrhs, &ap[1], &afp[1], &ipiv[1], &b[b_offset], ldb, &x[
	    x_offset], ldx, &ferr[1], &berr[1], &work[1], &iwork[1], info);

/*     Set INFO = N+1 if the matrix is singular to working precision. */

    if (*rcond < dlamch_("Epsilon")) {
	*info = *n + 1;
    }

    return 0;

/*     End of DSPSVX */

} /* dspsvx_ */
Ejemplo n.º 2
0
/* Subroutine */ int derrsy_(char *path, integer *nunit)
{
    /* Builtin functions */
    integer s_wsle(cilist *), e_wsle(void);
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);

    /* Local variables */
    static integer info;
    static doublereal anrm, a[16]	/* was [4][4] */, b[4];
    static integer i__, j;
    static doublereal w[12], x[4], rcond;
    static char c2[2];
    static doublereal r1[4], r2[4], af[16]	/* was [4][4] */;
    extern /* Subroutine */ int dsytf2_(char *, integer *, doublereal *, 
	    integer *, integer *, integer *);
    static integer ip[4], iw[4];
    extern /* Subroutine */ int alaesm_(char *, logical *, integer *);
    extern logical lsamen_(integer *, char *, char *);
    extern /* Subroutine */ int chkxer_(char *, integer *, integer *, logical 
	    *, logical *), dspcon_(char *, integer *, doublereal *, 
	    integer *, doublereal *, doublereal *, doublereal *, integer *, 
	    integer *), dsycon_(char *, integer *, doublereal *, 
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    integer *, integer *), dsprfs_(char *, integer *, integer 
	    *, doublereal *, doublereal *, integer *, doublereal *, integer *,
	     doublereal *, integer *, doublereal *, doublereal *, doublereal *
	    , integer *, integer *), dsptrf_(char *, integer *, 
	    doublereal *, integer *, integer *), dsptri_(char *, 
	    integer *, doublereal *, integer *, doublereal *, integer *), dsyrfs_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, integer *), dsytrf_(char *, 
	    integer *, doublereal *, integer *, integer *, doublereal *, 
	    integer *, integer *), dsytri_(char *, integer *, 
	    doublereal *, integer *, integer *, doublereal *, integer *), dsptrs_(char *, integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, integer *), dsytrs_(
	    char *, integer *, integer *, doublereal *, integer *, integer *, 
	    doublereal *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___1 = { 0, 0, 0, 0, 0 };



#define a_ref(a_1,a_2) a[(a_2)*4 + a_1 - 5]
#define af_ref(a_1,a_2) af[(a_2)*4 + a_1 - 5]


/*  -- LAPACK test routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    DERRSY tests the error exits for the DOUBLE PRECISION routines   
    for symmetric indefinite matrices.   

    Arguments   
    =========   

    PATH    (input) CHARACTER*3   
            The LAPACK path name for the routines to be tested.   

    NUNIT   (input) INTEGER   
            The unit number for output.   

    ===================================================================== */


    infoc_1.nout = *nunit;
    io___1.ciunit = infoc_1.nout;
    s_wsle(&io___1);
    e_wsle();
    s_copy(c2, path + 1, (ftnlen)2, (ftnlen)2);

/*     Set the variables to innocuous values. */

    for (j = 1; j <= 4; ++j) {
	for (i__ = 1; i__ <= 4; ++i__) {
	    a_ref(i__, j) = 1. / (doublereal) (i__ + j);
	    af_ref(i__, j) = 1. / (doublereal) (i__ + j);
/* L10: */
	}
	b[j - 1] = 0.;
	r1[j - 1] = 0.;
	r2[j - 1] = 0.;
	w[j - 1] = 0.;
	x[j - 1] = 0.;
	ip[j - 1] = j;
	iw[j - 1] = j;
/* L20: */
    }
    anrm = 1.;
    rcond = 1.;
    infoc_1.ok = TRUE_;

    if (lsamen_(&c__2, c2, "SY")) {

/*        Test error exits of the routines that use the Bunch-Kaufman   
          factorization of a symmetric indefinite matrix.   

          DSYTRF */

	s_copy(srnamc_1.srnamt, "DSYTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	dsytrf_("/", &c__0, a, &c__1, ip, w, &c__1, &info);
	chkxer_("DSYTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dsytrf_("U", &c_n1, a, &c__1, ip, w, &c__1, &info);
	chkxer_("DSYTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dsytrf_("U", &c__2, a, &c__1, ip, w, &c__4, &info);
	chkxer_("DSYTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DSYTF2 */

	s_copy(srnamc_1.srnamt, "DSYTF2", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	dsytf2_("/", &c__0, a, &c__1, ip, &info);
	chkxer_("DSYTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dsytf2_("U", &c_n1, a, &c__1, ip, &info);
	chkxer_("DSYTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dsytf2_("U", &c__2, a, &c__1, ip, &info);
	chkxer_("DSYTF2", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DSYTRI */

	s_copy(srnamc_1.srnamt, "DSYTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	dsytri_("/", &c__0, a, &c__1, ip, w, &info);
	chkxer_("DSYTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dsytri_("U", &c_n1, a, &c__1, ip, w, &info);
	chkxer_("DSYTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dsytri_("U", &c__2, a, &c__1, ip, w, &info);
	chkxer_("DSYTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DSYTRS */

	s_copy(srnamc_1.srnamt, "DSYTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	dsytrs_("/", &c__0, &c__0, a, &c__1, ip, b, &c__1, &info);
	chkxer_("DSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dsytrs_("U", &c_n1, &c__0, a, &c__1, ip, b, &c__1, &info);
	chkxer_("DSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dsytrs_("U", &c__0, &c_n1, a, &c__1, ip, b, &c__1, &info);
	chkxer_("DSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dsytrs_("U", &c__2, &c__1, a, &c__1, ip, b, &c__2, &info);
	chkxer_("DSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	dsytrs_("U", &c__2, &c__1, a, &c__2, ip, b, &c__1, &info);
	chkxer_("DSYTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DSYRFS */

	s_copy(srnamc_1.srnamt, "DSYRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	dsyrfs_("/", &c__0, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("DSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dsyrfs_("U", &c_n1, &c__0, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("DSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dsyrfs_("U", &c__0, &c_n1, a, &c__1, af, &c__1, ip, b, &c__1, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("DSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dsyrfs_("U", &c__2, &c__1, a, &c__1, af, &c__2, ip, b, &c__2, x, &
		c__2, r1, r2, w, iw, &info);
	chkxer_("DSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	dsyrfs_("U", &c__2, &c__1, a, &c__2, af, &c__1, ip, b, &c__2, x, &
		c__2, r1, r2, w, iw, &info);
	chkxer_("DSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	dsyrfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__1, x, &
		c__2, r1, r2, w, iw, &info);
	chkxer_("DSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 12;
	dsyrfs_("U", &c__2, &c__1, a, &c__2, af, &c__2, ip, b, &c__2, x, &
		c__1, r1, r2, w, iw, &info);
	chkxer_("DSYRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DSYCON */

	s_copy(srnamc_1.srnamt, "DSYCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	dsycon_("/", &c__0, a, &c__1, ip, &anrm, &rcond, w, iw, &info);
	chkxer_("DSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dsycon_("U", &c_n1, a, &c__1, ip, &anrm, &rcond, w, iw, &info);
	chkxer_("DSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 4;
	dsycon_("U", &c__2, a, &c__1, ip, &anrm, &rcond, w, iw, &info);
	chkxer_("DSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 6;
	dsycon_("U", &c__1, a, &c__1, ip, &c_b152, &rcond, w, iw, &info);
	chkxer_("DSYCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

    } else if (lsamen_(&c__2, c2, "SP")) {

/*        Test error exits of the routines that use the Bunch-Kaufman   
          factorization of a symmetric indefinite packed matrix.   

          DSPTRF */

	s_copy(srnamc_1.srnamt, "DSPTRF", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	dsptrf_("/", &c__0, a, ip, &info);
	chkxer_("DSPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dsptrf_("U", &c_n1, a, ip, &info);
	chkxer_("DSPTRF", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DSPTRI */

	s_copy(srnamc_1.srnamt, "DSPTRI", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	dsptri_("/", &c__0, a, ip, w, &info);
	chkxer_("DSPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dsptri_("U", &c_n1, a, ip, w, &info);
	chkxer_("DSPTRI", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DSPTRS */

	s_copy(srnamc_1.srnamt, "DSPTRS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	dsptrs_("/", &c__0, &c__0, a, ip, b, &c__1, &info);
	chkxer_("DSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dsptrs_("U", &c_n1, &c__0, a, ip, b, &c__1, &info);
	chkxer_("DSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dsptrs_("U", &c__0, &c_n1, a, ip, b, &c__1, &info);
	chkxer_("DSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 7;
	dsptrs_("U", &c__2, &c__1, a, ip, b, &c__1, &info);
	chkxer_("DSPTRS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DSPRFS */

	s_copy(srnamc_1.srnamt, "DSPRFS", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	dsprfs_("/", &c__0, &c__0, a, af, ip, b, &c__1, x, &c__1, r1, r2, w, 
		iw, &info);
	chkxer_("DSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dsprfs_("U", &c_n1, &c__0, a, af, ip, b, &c__1, x, &c__1, r1, r2, w, 
		iw, &info);
	chkxer_("DSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 3;
	dsprfs_("U", &c__0, &c_n1, a, af, ip, b, &c__1, x, &c__1, r1, r2, w, 
		iw, &info);
	chkxer_("DSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 8;
	dsprfs_("U", &c__2, &c__1, a, af, ip, b, &c__1, x, &c__2, r1, r2, w, 
		iw, &info);
	chkxer_("DSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 10;
	dsprfs_("U", &c__2, &c__1, a, af, ip, b, &c__2, x, &c__1, r1, r2, w, 
		iw, &info);
	chkxer_("DSPRFS", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);

/*        DSPCON */

	s_copy(srnamc_1.srnamt, "DSPCON", (ftnlen)6, (ftnlen)6);
	infoc_1.infot = 1;
	dspcon_("/", &c__0, a, ip, &anrm, &rcond, w, iw, &info);
	chkxer_("DSPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 2;
	dspcon_("U", &c_n1, a, ip, &anrm, &rcond, w, iw, &info);
	chkxer_("DSPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
	infoc_1.infot = 5;
	dspcon_("U", &c__1, a, ip, &c_b152, &rcond, w, iw, &info);
	chkxer_("DSPCON", &infoc_1.infot, &infoc_1.nout, &infoc_1.lerr, &
		infoc_1.ok);
    }

/*     Print a summary line. */

    alaesm_(path, &infoc_1.ok, &infoc_1.nout);

    return 0;

/*     End of DERRSY */

} /* derrsy_ */
Ejemplo n.º 3
0
/* Subroutine */ int dspsv_(char *uplo, integer *n, integer *nrhs, doublereal 
	*ap, integer *ipiv, doublereal *b, integer *ldb, integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    DSPSV computes the solution to a real system of linear equations   
       A * X = B,   
    where A is an N-by-N symmetric matrix stored in packed format and X   
    and B are N-by-NRHS matrices.   

    The diagonal pivoting method is used to factor A as   
       A = U * D * U**T,  if UPLO = 'U', or   
       A = L * D * L**T,  if UPLO = 'L',   
    where U (or L) is a product of permutation and unit upper (lower)   
    triangular matrices, D is symmetric and block diagonal with 1-by-1   
    and 2-by-2 diagonal blocks.  The factored form of A is then used to   
    solve the system of equations A * X = B.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The number of linear equations, i.e., the order of the   
            matrix A.  N >= 0.   

    NRHS    (input) INTEGER   
            The number of right hand sides, i.e., the number of columns   
            of the matrix B.  NRHS >= 0.   

    AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangle of the symmetric matrix   
            A, packed columnwise in a linear array.  The j-th column of A   
            is stored in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.   
            See below for further details.   

            On exit, the block diagonal matrix D and the multipliers used   
            to obtain the factor U or L from the factorization   
            A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as   
            a packed triangular matrix in the same storage format as A.   

    IPIV    (output) INTEGER array, dimension (N)   
            Details of the interchanges and the block structure of D, as   
            determined by DSPTRF.  If IPIV(k) > 0, then rows and columns   
            k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1   
            diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,   
            then rows and columns k-1 and -IPIV(k) were interchanged and   
            D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and   
            IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and   
            -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2   
            diagonal block.   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)   
            On entry, the N-by-NRHS right hand side matrix B.   
            On exit, if INFO = 0, the N-by-NRHS solution matrix X.   

    LDB     (input) INTEGER   
            The leading dimension of the array B.  LDB >= max(1,N).   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization   
                  has been completed, but the block diagonal matrix D is   
                  exactly singular, so the solution could not be   
                  computed.   

    Further Details   
    ===============   

    The packed storage scheme is illustrated by the following example   
    when N = 4, UPLO = 'U':   

    Two-dimensional storage of the symmetric matrix A:   

       a11 a12 a13 a14   
           a22 a23 a24   
               a33 a34     (aij = aji)   
                   a44   

    Packed storage of the upper triangle of A:   

    AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* System generated locals */
    integer b_dim1, b_offset, i__1;
    /* Local variables */
    extern logical lsame_(char *, char *);
    extern /* Subroutine */ int xerbla_(char *, integer *), dsptrf_(
	    char *, integer *, doublereal *, integer *, integer *), 
	    dsptrs_(char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, integer *);

    --ap;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < max(1,*n)) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSPSV ", &i__1);
	return 0;
    }

/*     Compute the factorization A = U*D*U' or A = L*D*L'. */

    dsptrf_(uplo, n, &ap[1], &ipiv[1], info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	dsptrs_(uplo, n, nrhs, &ap[1], &ipiv[1], &b[b_offset], ldb, info);

    }
    return 0;

/*     End of DSPSV */

} /* dspsv_ */
Ejemplo n.º 4
0
 int dspsv_(char *uplo, int *n, int *nrhs, double 
	*ap, int *ipiv, double *b, int *ldb, int *info)
{
    /* System generated locals */
    int b_dim1, b_offset, i__1;

    /* Local variables */
    extern int lsame_(char *, char *);
    extern  int xerbla_(char *, int *), dsptrf_(
	    char *, int *, double *, int *, int *), 
	    dsptrs_(char *, int *, int *, double *, int *, 
	    double *, int *, int *);


/*  -- LAPACK driver routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DSPSV computes the solution to a float system of linear equations */
/*     A * X = B, */
/*  where A is an N-by-N symmetric matrix stored in packed format and X */
/*  and B are N-by-NRHS matrices. */

/*  The diagonal pivoting method is used to factor A as */
/*     A = U * D * U**T,  if UPLO = 'U', or */
/*     A = L * D * L**T,  if UPLO = 'L', */
/*  where U (or L) is a product of permutation and unit upper (lower) */
/*  triangular matrices, D is symmetric and block diagonal with 1-by-1 */
/*  and 2-by-2 diagonal blocks.  The factored form of A is then used to */
/*  solve the system of equations A * X = B. */

/*  Arguments */
/*  ========= */

/*  UPLO    (input) CHARACTER*1 */
/*          = 'U':  Upper triangle of A is stored; */
/*          = 'L':  Lower triangle of A is stored. */

/*  N       (input) INTEGER */
/*          The number of linear equations, i.e., the order of the */
/*          matrix A.  N >= 0. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
/*          On entry, the upper or lower triangle of the symmetric matrix */
/*          A, packed columnwise in a linear array.  The j-th column of A */
/*          is stored in the array AP as follows: */
/*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/*          See below for further details. */

/*          On exit, the block diagonal matrix D and the multipliers used */
/*          to obtain the factor U or L from the factorization */
/*          A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as */
/*          a packed triangular matrix in the same storage format as A. */

/*  IPIV    (output) INTEGER array, dimension (N) */
/*          Details of the interchanges and the block structure of D, as */
/*          determined by DSPTRF.  If IPIV(k) > 0, then rows and columns */
/*          k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 */
/*          diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, */
/*          then rows and columns k-1 and -IPIV(k) were interchanged and */
/*          D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and */
/*          IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and */
/*          -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 */
/*          diagonal block. */

/*  B       (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/*          On entry, the N-by-NRHS right hand side matrix B. */
/*          On exit, if INFO = 0, the N-by-NRHS solution matrix X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= MAX(1,N). */

/*  INFO    (output) INTEGER */
/*          = 0:  successful exit */
/*          < 0:  if INFO = -i, the i-th argument had an illegal value */
/*          > 0:  if INFO = i, D(i,i) is exactly zero.  The factorization */
/*                has been completed, but the block diagonal matrix D is */
/*                exactly singular, so the solution could not be */
/*                computed. */

/*  Further Details */
/*  =============== */

/*  The packed storage scheme is illustrated by the following example */
/*  when N = 4, UPLO = 'U': */

/*  Two-dimensional storage of the symmetric matrix A: */

/*     a11 a12 a13 a14 */
/*         a22 a23 a24 */
/*             a33 a34     (aij = aji) */
/*                 a44 */

/*  Packed storage of the upper triangle of A: */

/*  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */

/*  ===================================================================== */

/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --ap;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    *info = 0;
    if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*nrhs < 0) {
	*info = -3;
    } else if (*ldb < MAX(1,*n)) {
	*info = -7;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DSPSV ", &i__1);
	return 0;
    }

/*     Compute the factorization A = U*D*U' or A = L*D*L'. */

    dsptrf_(uplo, n, &ap[1], &ipiv[1], info);
    if (*info == 0) {

/*        Solve the system A*X = B, overwriting B with X. */

	dsptrs_(uplo, n, nrhs, &ap[1], &ipiv[1], &b[b_offset], ldb, info);

    }
    return 0;

/*     End of DSPSV */

} /* dspsv_ */
Ejemplo n.º 5
0
/* Subroutine */ int ddrvsp_(logical *dotype, integer *nn, integer *nval, 
	integer *nrhs, doublereal *thresh, logical *tsterr, integer *nmax, 
	doublereal *a, doublereal *afac, doublereal *ainv, doublereal *b, 
	doublereal *x, doublereal *xact, doublereal *work, doublereal *rwork, 
	integer *iwork, integer *nout)
{
    /* Initialized data */

    static integer iseedy[4] = { 1988,1989,1990,1991 };
    static char facts[1*2] = "F" "N";

    /* Format strings */
    static char fmt_9999[] = "(1x,a6,\002, UPLO='\002,a1,\002', N =\002,i5"
	    ",\002, type \002,i2,\002, test \002,i2,\002, ratio =\002,g12.5)";
    static char fmt_9998[] = "(1x,a6,\002, FACT='\002,a1,\002', UPLO='\002,a"
	    "1,\002', N =\002,i5,\002, type \002,i2,\002, test \002,i2,\002, "
	    "ratio =\002,g12.5)";

    /* System generated locals */
    address a__1[2];
    integer i__1, i__2, i__3, i__4, i__5[2];
    char ch__1[2];

    /* Builtin functions */
    /* Subroutine */ int s_copy(char *, char *, ftnlen, ftnlen);
    integer s_wsfe(cilist *), do_fio(integer *, char *, ftnlen), e_wsfe(void);
    /* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);

    /* Local variables */
    integer i__, j, k, n, i1, i2, k1, in, kl, ku, nt, lda, npp;
    char fact[1];
    integer ioff, mode, imat, info;
    char path[3], dist[1], uplo[1], type__[1];
    integer nrun, ifact;
    extern /* Subroutine */ int dget04_(integer *, integer *, doublereal *, 
	    integer *, doublereal *, integer *, doublereal *, doublereal *);
    integer nfail, iseed[4];
    extern doublereal dget06_(doublereal *, doublereal *);
    doublereal rcond;
    integer nimat;
    extern /* Subroutine */ int dppt02_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *), dspt01_(char *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, doublereal *);
    doublereal anorm;
    extern /* Subroutine */ int dppt05_(char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *), dcopy_(integer *, doublereal *, integer *, doublereal *, 
	     integer *);
    integer iuplo, izero, nerrs, lwork;
    extern /* Subroutine */ int dspsv_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *);
    logical zerot;
    char xtype[1];
    extern /* Subroutine */ int dlatb4_(char *, integer *, integer *, integer 
	    *, char *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, char *), aladhd_(integer *, 
	    char *), alaerh_(char *, char *, integer *, integer *, 
	    char *, integer *, integer *, integer *, integer *, integer *, 
	    integer *, integer *, integer *, integer *);
    doublereal rcondc;
    char packit[1];
    extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    dlarhs_(char *, char *, char *, char *, integer *, integer *, 
	    integer *, integer *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, integer *, integer *, 
	    integer *), dlaset_(char *, 
	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
	    integer *);
    extern doublereal dlansp_(char *, char *, integer *, doublereal *, 
	    doublereal *);
    extern /* Subroutine */ int alasvm_(char *, integer *, integer *, integer 
	    *, integer *);
    doublereal cndnum;
    extern /* Subroutine */ int dlatms_(integer *, integer *, char *, integer 
	    *, char *, doublereal *, integer *, doublereal *, doublereal *, 
	    integer *, integer *, char *, doublereal *, integer *, doublereal 
	    *, integer *);
    doublereal ainvnm;
    extern /* Subroutine */ int dsptrf_(char *, integer *, doublereal *, 
	    integer *, integer *), dsptri_(char *, integer *, 
	    doublereal *, integer *, doublereal *, integer *), 
	    derrvx_(char *, integer *);
    doublereal result[6];
    extern /* Subroutine */ int dspsvx_(char *, char *, integer *, integer *, 
	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
	     doublereal *, integer *, integer *);

    /* Fortran I/O blocks */
    static cilist io___41 = { 0, 0, 0, fmt_9999, 0 };
    static cilist io___44 = { 0, 0, 0, fmt_9998, 0 };



/*  -- LAPACK test routine (version 3.1) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DDRVSP tests the driver routines DSPSV and -SVX. */

/*  Arguments */
/*  ========= */

/*  DOTYPE  (input) LOGICAL array, dimension (NTYPES) */
/*          The matrix types to be used for testing.  Matrices of type j */
/*          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = */
/*          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. */

/*  NN      (input) INTEGER */
/*          The number of values of N contained in the vector NVAL. */

/*  NVAL    (input) INTEGER array, dimension (NN) */
/*          The values of the matrix dimension N. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand side vectors to be generated for */
/*          each linear system. */

/*  THRESH  (input) DOUBLE PRECISION */
/*          The threshold value for the test ratios.  A result is */
/*          included in the output file if RESULT >= THRESH.  To have */
/*          every test ratio printed, use THRESH = 0. */

/*  TSTERR  (input) LOGICAL */
/*          Flag that indicates whether error exits are to be tested. */

/*  NMAX    (input) INTEGER */
/*          The maximum value permitted for N, used in dimensioning the */
/*          work arrays. */

/*  A       (workspace) DOUBLE PRECISION array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AFAC    (workspace) DOUBLE PRECISION array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  AINV    (workspace) DOUBLE PRECISION array, dimension */
/*                      (NMAX*(NMAX+1)/2) */

/*  B       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  X       (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  XACT    (workspace) DOUBLE PRECISION array, dimension (NMAX*NRHS) */

/*  WORK    (workspace) DOUBLE PRECISION array, dimension */
/*                      (NMAX*max(2,NRHS)) */

/*  RWORK   (workspace) DOUBLE PRECISION array, dimension (NMAX+2*NRHS) */

/*  IWORK   (workspace) INTEGER array, dimension (2*NMAX) */

/*  NOUT    (input) INTEGER */
/*          The unit number for output. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Scalars in Common .. */
/*     .. */
/*     .. Common blocks .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Data statements .. */
    /* Parameter adjustments */
    --iwork;
    --rwork;
    --work;
    --xact;
    --x;
    --b;
    --ainv;
    --afac;
    --a;
    --nval;
    --dotype;

    /* Function Body */
/*     .. */
/*     .. Executable Statements .. */

/*     Initialize constants and the random number seed. */

    s_copy(path, "Double precision", (ftnlen)1, (ftnlen)16);
    s_copy(path + 1, "SP", (ftnlen)2, (ftnlen)2);
    nrun = 0;
    nfail = 0;
    nerrs = 0;
    for (i__ = 1; i__ <= 4; ++i__) {
	iseed[i__ - 1] = iseedy[i__ - 1];
/* L10: */
    }
/* Computing MAX */
    i__1 = *nmax << 1, i__2 = *nmax * *nrhs;
    lwork = max(i__1,i__2);

/*     Test the error exits */

    if (*tsterr) {
	derrvx_(path, nout);
    }
    infoc_1.infot = 0;

/*     Do for each value of N in NVAL */

    i__1 = *nn;
    for (in = 1; in <= i__1; ++in) {
	n = nval[in];
	lda = max(n,1);
	npp = n * (n + 1) / 2;
	*(unsigned char *)xtype = 'N';
	nimat = 10;
	if (n <= 0) {
	    nimat = 1;
	}

	i__2 = nimat;
	for (imat = 1; imat <= i__2; ++imat) {

/*           Do the tests only if DOTYPE( IMAT ) is true. */

	    if (! dotype[imat]) {
		goto L170;
	    }

/*           Skip types 3, 4, 5, or 6 if the matrix size is too small. */

	    zerot = imat >= 3 && imat <= 6;
	    if (zerot && n < imat - 2) {
		goto L170;
	    }

/*           Do first for UPLO = 'U', then for UPLO = 'L' */

	    for (iuplo = 1; iuplo <= 2; ++iuplo) {
		if (iuplo == 1) {
		    *(unsigned char *)uplo = 'U';
		    *(unsigned char *)packit = 'C';
		} else {
		    *(unsigned char *)uplo = 'L';
		    *(unsigned char *)packit = 'R';
		}

/*              Set up parameters with DLATB4 and generate a test matrix */
/*              with DLATMS. */

		dlatb4_(path, &imat, &n, &n, type__, &kl, &ku, &anorm, &mode, 
			&cndnum, dist);

		s_copy(srnamc_1.srnamt, "DLATMS", (ftnlen)6, (ftnlen)6);
		dlatms_(&n, &n, dist, iseed, type__, &rwork[1], &mode, &
			cndnum, &anorm, &kl, &ku, packit, &a[1], &lda, &work[
			1], &info);

/*              Check error code from DLATMS. */

		if (info != 0) {
		    alaerh_(path, "DLATMS", &info, &c__0, uplo, &n, &n, &c_n1, 
			     &c_n1, &c_n1, &imat, &nfail, &nerrs, nout);
		    goto L160;
		}

/*              For types 3-6, zero one or more rows and columns of the */
/*              matrix to test that INFO is returned correctly. */

		if (zerot) {
		    if (imat == 3) {
			izero = 1;
		    } else if (imat == 4) {
			izero = n;
		    } else {
			izero = n / 2 + 1;
		    }

		    if (imat < 6) {

/*                    Set row and column IZERO to zero. */

			if (iuplo == 1) {
			    ioff = (izero - 1) * izero / 2;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				a[ioff + i__] = 0.;
/* L20: */
			    }
			    ioff += izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				a[ioff] = 0.;
				ioff += i__;
/* L30: */
			    }
			} else {
			    ioff = izero;
			    i__3 = izero - 1;
			    for (i__ = 1; i__ <= i__3; ++i__) {
				a[ioff] = 0.;
				ioff = ioff + n - i__;
/* L40: */
			    }
			    ioff -= izero;
			    i__3 = n;
			    for (i__ = izero; i__ <= i__3; ++i__) {
				a[ioff + i__] = 0.;
/* L50: */
			    }
			}
		    } else {
			ioff = 0;
			if (iuplo == 1) {

/*                       Set the first IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i2 = min(j,izero);
				i__4 = i2;
				for (i__ = 1; i__ <= i__4; ++i__) {
				    a[ioff + i__] = 0.;
/* L60: */
				}
				ioff += j;
/* L70: */
			    }
			} else {

/*                       Set the last IZERO rows and columns to zero. */

			    i__3 = n;
			    for (j = 1; j <= i__3; ++j) {
				i1 = max(j,izero);
				i__4 = n;
				for (i__ = i1; i__ <= i__4; ++i__) {
				    a[ioff + i__] = 0.;
/* L80: */
				}
				ioff = ioff + n - j;
/* L90: */
			    }
			}
		    }
		} else {
		    izero = 0;
		}

		for (ifact = 1; ifact <= 2; ++ifact) {

/*                 Do first for FACT = 'F', then for other values. */

		    *(unsigned char *)fact = *(unsigned char *)&facts[ifact - 
			    1];

/*                 Compute the condition number for comparison with */
/*                 the value returned by DSPSVX. */

		    if (zerot) {
			if (ifact == 1) {
			    goto L150;
			}
			rcondc = 0.;

		    } else if (ifact == 1) {

/*                    Compute the 1-norm of A. */

			anorm = dlansp_("1", uplo, &n, &a[1], &rwork[1]);

/*                    Factor the matrix A. */

			dcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			dsptrf_(uplo, &n, &afac[1], &iwork[1], &info);

/*                    Compute inv(A) and take its norm. */

			dcopy_(&npp, &afac[1], &c__1, &ainv[1], &c__1);
			dsptri_(uplo, &n, &ainv[1], &iwork[1], &work[1], &
				info);
			ainvnm = dlansp_("1", uplo, &n, &ainv[1], &rwork[1]);

/*                    Compute the 1-norm condition number of A. */

			if (anorm <= 0. || ainvnm <= 0.) {
			    rcondc = 1.;
			} else {
			    rcondc = 1. / anorm / ainvnm;
			}
		    }

/*                 Form an exact solution and set the right hand side. */

		    s_copy(srnamc_1.srnamt, "DLARHS", (ftnlen)6, (ftnlen)6);
		    dlarhs_(path, xtype, uplo, " ", &n, &n, &kl, &ku, nrhs, &
			    a[1], &lda, &xact[1], &lda, &b[1], &lda, iseed, &
			    info);
		    *(unsigned char *)xtype = 'C';

/*                 --- Test DSPSV  --- */

		    if (ifact == 2) {
			dcopy_(&npp, &a[1], &c__1, &afac[1], &c__1);
			dlacpy_("Full", &n, nrhs, &b[1], &lda, &x[1], &lda);

/*                    Factor the matrix and solve the system using DSPSV. */

			s_copy(srnamc_1.srnamt, "DSPSV ", (ftnlen)6, (ftnlen)
				6);
			dspsv_(uplo, &n, nrhs, &afac[1], &iwork[1], &x[1], &
				lda, &info);

/*                    Adjust the expected value of INFO to account for */
/*                    pivoting. */

			k = izero;
			if (k > 0) {
L100:
			    if (iwork[k] < 0) {
				if (iwork[k] != -k) {
				    k = -iwork[k];
				    goto L100;
				}
			    } else if (iwork[k] != k) {
				k = iwork[k];
				goto L100;
			    }
			}

/*                    Check error code from DSPSV . */

			if (info != k) {
			    alaerh_(path, "DSPSV ", &info, &k, uplo, &n, &n, &
				    c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				    nout);
			    goto L120;
			} else if (info != 0) {
			    goto L120;
			}

/*                    Reconstruct matrix from factors and compute */
/*                    residual. */

			dspt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &ainv[1]
, &lda, &rwork[1], result);

/*                    Compute residual of the computed solution. */

			dlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			dppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], 
				&lda, &rwork[1], &result[1]);

/*                    Check solution from generated exact solution. */

			dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);
			nt = 3;

/*                    Print information about the tests that did not pass */
/*                    the threshold. */

			i__3 = nt;
			for (k = 1; k <= i__3; ++k) {
			    if (result[k - 1] >= *thresh) {
				if (nfail == 0 && nerrs == 0) {
				    aladhd_(nout, path);
				}
				io___41.ciunit = *nout;
				s_wsfe(&io___41);
				do_fio(&c__1, "DSPSV ", (ftnlen)6);
				do_fio(&c__1, uplo, (ftnlen)1);
				do_fio(&c__1, (char *)&n, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&k, (ftnlen)sizeof(
					integer));
				do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
					sizeof(doublereal));
				e_wsfe();
				++nfail;
			    }
/* L110: */
			}
			nrun += nt;
L120:
			;
		    }

/*                 --- Test DSPSVX --- */

		    if (ifact == 2 && npp > 0) {
			dlaset_("Full", &npp, &c__1, &c_b59, &c_b59, &afac[1], 
				 &npp);
		    }
		    dlaset_("Full", &n, nrhs, &c_b59, &c_b59, &x[1], &lda);

/*                 Solve the system and compute the condition number and */
/*                 error bounds using DSPSVX. */

		    s_copy(srnamc_1.srnamt, "DSPSVX", (ftnlen)6, (ftnlen)6);
		    dspsvx_(fact, uplo, &n, nrhs, &a[1], &afac[1], &iwork[1], 
			    &b[1], &lda, &x[1], &lda, &rcond, &rwork[1], &
			    rwork[*nrhs + 1], &work[1], &iwork[n + 1], &info);

/*                 Adjust the expected value of INFO to account for */
/*                 pivoting. */

		    k = izero;
		    if (k > 0) {
L130:
			if (iwork[k] < 0) {
			    if (iwork[k] != -k) {
				k = -iwork[k];
				goto L130;
			    }
			} else if (iwork[k] != k) {
			    k = iwork[k];
			    goto L130;
			}
		    }

/*                 Check the error code from DSPSVX. */

		    if (info != k) {
/* Writing concatenation */
			i__5[0] = 1, a__1[0] = fact;
			i__5[1] = 1, a__1[1] = uplo;
			s_cat(ch__1, a__1, i__5, &c__2, (ftnlen)2);
			alaerh_(path, "DSPSVX", &info, &k, ch__1, &n, &n, &
				c_n1, &c_n1, nrhs, &imat, &nfail, &nerrs, 
				nout);
			goto L150;
		    }

		    if (info == 0) {
			if (ifact >= 2) {

/*                       Reconstruct matrix from factors and compute */
/*                       residual. */

			    dspt01_(uplo, &n, &a[1], &afac[1], &iwork[1], &
				    ainv[1], &lda, &rwork[(*nrhs << 1) + 1], 
				    result);
			    k1 = 1;
			} else {
			    k1 = 2;
			}

/*                    Compute residual of the computed solution. */

			dlacpy_("Full", &n, nrhs, &b[1], &lda, &work[1], &lda);
			dppt02_(uplo, &n, nrhs, &a[1], &x[1], &lda, &work[1], 
				&lda, &rwork[(*nrhs << 1) + 1], &result[1]);

/*                    Check solution from generated exact solution. */

			dget04_(&n, nrhs, &x[1], &lda, &xact[1], &lda, &
				rcondc, &result[2]);

/*                    Check the error bounds from iterative refinement. */

			dppt05_(uplo, &n, nrhs, &a[1], &b[1], &lda, &x[1], &
				lda, &xact[1], &lda, &rwork[1], &rwork[*nrhs 
				+ 1], &result[3]);
		    } else {
			k1 = 6;
		    }

/*                 Compare RCOND from DSPSVX with the computed value */
/*                 in RCONDC. */

		    result[5] = dget06_(&rcond, &rcondc);

/*                 Print information about the tests that did not pass */
/*                 the threshold. */

		    for (k = k1; k <= 6; ++k) {
			if (result[k - 1] >= *thresh) {
			    if (nfail == 0 && nerrs == 0) {
				aladhd_(nout, path);
			    }
			    io___44.ciunit = *nout;
			    s_wsfe(&io___44);
			    do_fio(&c__1, "DSPSVX", (ftnlen)6);
			    do_fio(&c__1, fact, (ftnlen)1);
			    do_fio(&c__1, uplo, (ftnlen)1);
			    do_fio(&c__1, (char *)&n, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&imat, (ftnlen)sizeof(
				    integer));
			    do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer))
				    ;
			    do_fio(&c__1, (char *)&result[k - 1], (ftnlen)
				    sizeof(doublereal));
			    e_wsfe();
			    ++nfail;
			}
/* L140: */
		    }
		    nrun = nrun + 7 - k1;

L150:
		    ;
		}

L160:
		;
	    }
L170:
	    ;
	}
/* L180: */
    }

/*     Print a summary of the results. */

    alasvm_(path, nout, &nfail, &nrun, &nerrs);

    return 0;

/*     End of DDRVSP */

} /* ddrvsp_ */
Ejemplo n.º 6
0
int main(void)
{
    /* Local scalars */
    char uplo, uplo_i;
    lapack_int n, n_i;
    lapack_int info, info_i;
    lapack_int i;
    int failed;

    /* Local arrays */
    double *ap = NULL, *ap_i = NULL;
    lapack_int *ipiv = NULL, *ipiv_i = NULL;
    double *ap_save = NULL;
    lapack_int *ipiv_save = NULL;
    double *ap_r = NULL;

    /* Iniitialize the scalar parameters */
    init_scalars_dsptrf( &uplo, &n );
    uplo_i = uplo;
    n_i = n;

    /* Allocate memory for the LAPACK routine arrays */
    ap = (double *)LAPACKE_malloc( ((n*(n+1)/2)) * sizeof(double) );
    ipiv = (lapack_int *)LAPACKE_malloc( n * sizeof(lapack_int) );

    /* Allocate memory for the C interface function arrays */
    ap_i = (double *)LAPACKE_malloc( ((n*(n+1)/2)) * sizeof(double) );
    ipiv_i = (lapack_int *)LAPACKE_malloc( n * sizeof(lapack_int) );

    /* Allocate memory for the backup arrays */
    ap_save = (double *)LAPACKE_malloc( ((n*(n+1)/2)) * sizeof(double) );
    ipiv_save = (lapack_int *)LAPACKE_malloc( n * sizeof(lapack_int) );

    /* Allocate memory for the row-major arrays */
    ap_r = (double *)LAPACKE_malloc( n*(n+1)/2 * sizeof(double) );

    /* Initialize input arrays */
    init_ap( (n*(n+1)/2), ap );
    init_ipiv( n, ipiv );

    /* Backup the ouptut arrays */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_save[i] = ap[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_save[i] = ipiv[i];
    }

    /* Call the LAPACK routine */
    dsptrf_( &uplo, &n, ap, ipiv, &info );

    /* Initialize input data, call the column-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap_save[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv_save[i];
    }
    info_i = LAPACKE_dsptrf_work( LAPACK_COL_MAJOR, uplo_i, n_i, ap_i, ipiv_i );

    failed = compare_dsptrf( ap, ap_i, ipiv, ipiv_i, info, info_i, n );
    if( failed == 0 ) {
        printf( "PASSED: column-major middle-level interface to dsptrf\n" );
    } else {
        printf( "FAILED: column-major middle-level interface to dsptrf\n" );
    }

    /* Initialize input data, call the column-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap_save[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv_save[i];
    }
    info_i = LAPACKE_dsptrf( LAPACK_COL_MAJOR, uplo_i, n_i, ap_i, ipiv_i );

    failed = compare_dsptrf( ap, ap_i, ipiv, ipiv_i, info, info_i, n );
    if( failed == 0 ) {
        printf( "PASSED: column-major high-level interface to dsptrf\n" );
    } else {
        printf( "FAILED: column-major high-level interface to dsptrf\n" );
    }

    /* Initialize input data, call the row-major middle-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap_save[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv_save[i];
    }

    LAPACKE_dpp_trans( LAPACK_COL_MAJOR, uplo, n, ap_i, ap_r );
    info_i = LAPACKE_dsptrf_work( LAPACK_ROW_MAJOR, uplo_i, n_i, ap_r, ipiv_i );

    LAPACKE_dpp_trans( LAPACK_ROW_MAJOR, uplo, n, ap_r, ap_i );

    failed = compare_dsptrf( ap, ap_i, ipiv, ipiv_i, info, info_i, n );
    if( failed == 0 ) {
        printf( "PASSED: row-major middle-level interface to dsptrf\n" );
    } else {
        printf( "FAILED: row-major middle-level interface to dsptrf\n" );
    }

    /* Initialize input data, call the row-major high-level
     * interface to LAPACK routine and check the results */
    for( i = 0; i < (n*(n+1)/2); i++ ) {
        ap_i[i] = ap_save[i];
    }
    for( i = 0; i < n; i++ ) {
        ipiv_i[i] = ipiv_save[i];
    }

    /* Init row_major arrays */
    LAPACKE_dpp_trans( LAPACK_COL_MAJOR, uplo, n, ap_i, ap_r );
    info_i = LAPACKE_dsptrf( LAPACK_ROW_MAJOR, uplo_i, n_i, ap_r, ipiv_i );

    LAPACKE_dpp_trans( LAPACK_ROW_MAJOR, uplo, n, ap_r, ap_i );

    failed = compare_dsptrf( ap, ap_i, ipiv, ipiv_i, info, info_i, n );
    if( failed == 0 ) {
        printf( "PASSED: row-major high-level interface to dsptrf\n" );
    } else {
        printf( "FAILED: row-major high-level interface to dsptrf\n" );
    }

    /* Release memory */
    if( ap != NULL ) {
        LAPACKE_free( ap );
    }
    if( ap_i != NULL ) {
        LAPACKE_free( ap_i );
    }
    if( ap_r != NULL ) {
        LAPACKE_free( ap_r );
    }
    if( ap_save != NULL ) {
        LAPACKE_free( ap_save );
    }
    if( ipiv != NULL ) {
        LAPACKE_free( ipiv );
    }
    if( ipiv_i != NULL ) {
        LAPACKE_free( ipiv_i );
    }
    if( ipiv_save != NULL ) {
        LAPACKE_free( ipiv_save );
    }

    return 0;
}