/* Subroutine */ int dsygvx_(integer *itype, char *jobz, char *range, char * uplo, integer *n, doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *vl, doublereal *vu, integer *il, integer *iu, doublereal *abstol, integer *m, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, integer *lwork, integer *iwork, integer *ifail, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, z_dim1, z_offset, i__1, i__2; /* Local variables */ integer nb; extern logical lsame_(char *, char *); extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); char trans[1]; extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *); logical upper, wantz, alleig, indeig, valeig; extern /* Subroutine */ int xerbla_(char *, integer *); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *); extern /* Subroutine */ int dpotrf_(char *, integer *, doublereal *, integer *, integer *); integer lwkmin; extern /* Subroutine */ int dsygst_(integer *, char *, integer *, doublereal *, integer *, doublereal *, integer *, integer *); integer lwkopt; logical lquery; extern /* Subroutine */ int dsyevx_(char *, char *, char *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *); /* -- LAPACK driver routine (version 3.4.0) -- */ /* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ /* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ /* November 2011 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --iwork; --ifail; /* Function Body */ upper = lsame_(uplo, "U"); wantz = lsame_(jobz, "V"); alleig = lsame_(range, "A"); valeig = lsame_(range, "V"); indeig = lsame_(range, "I"); lquery = *lwork == -1; *info = 0; if (*itype < 1 || *itype > 3) { *info = -1; } else if (! (wantz || lsame_(jobz, "N"))) { *info = -2; } else if (! (alleig || valeig || indeig)) { *info = -3; } else if (! (upper || lsame_(uplo, "L"))) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*n)) { *info = -7; } else if (*ldb < max(1,*n)) { *info = -9; } else { if (valeig) { if (*n > 0 && *vu <= *vl) { *info = -11; } } else if (indeig) { if (*il < 1 || *il > max(1,*n)) { *info = -12; } else if (*iu < min(*n,*il) || *iu > *n) { *info = -13; } } } if (*info == 0) { if (*ldz < 1 || wantz && *ldz < *n) { *info = -18; } } if (*info == 0) { /* Computing MAX */ i__1 = 1; i__2 = *n << 3; // , expr subst lwkmin = max(i__1,i__2); nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1); /* Computing MAX */ i__1 = lwkmin; i__2 = (nb + 3) * *n; // , expr subst lwkopt = max(i__1,i__2); work[1] = (doublereal) lwkopt; if (*lwork < lwkmin && ! lquery) { *info = -20; } } if (*info != 0) { i__1 = -(*info); xerbla_("DSYGVX", &i__1); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ *m = 0; if (*n == 0) { return 0; } /* Form a Cholesky factorization of B. */ dpotrf_(uplo, n, &b[b_offset], ldb, info); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem and solve. */ dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info); dsyevx_(jobz, range, uplo, n, &a[a_offset], lda, vl, vu, il, iu, abstol, m, &w[1], &z__[z_offset], ldz, &work[1], lwork, &iwork[1], &ifail[ 1], info); if (wantz) { /* Backtransform eigenvectors to the original problem. */ if (*info > 0) { *m = *info - 1; } if (*itype == 1 || *itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */ /* backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y */ if (upper) { *(unsigned char *)trans = 'N'; } else { *(unsigned char *)trans = 'T'; } dtrsm_("Left", uplo, trans, "Non-unit", n, m, &c_b19, &b[b_offset] , ldb, &z__[z_offset], ldz); } else if (*itype == 3) { /* For B*A*x=(lambda)*x; */ /* backtransform eigenvectors: x = L*y or U**T*y */ if (upper) { *(unsigned char *)trans = 'T'; } else { *(unsigned char *)trans = 'N'; } dtrmm_("Left", uplo, trans, "Non-unit", n, m, &c_b19, &b[b_offset] , ldb, &z__[z_offset], ldz); } } /* Set WORK(1) to optimal workspace size. */ work[1] = (doublereal) lwkopt; return 0; /* End of DSYGVX */ }
void symeigx(double a[], int n, double d[], double v[], int ell, int *fl) { int itype = 1; char jobz = 'v'; char range = 'i'; char uplo = 'l'; char trans = 't'; char side = 'l'; char diag = 'n'; char under = 'u'; int nfound; int *ifail; int info; int neig; double abstol = 2.0 * DLAMCH(under); double one = 1.0; double zero = 0.0; #ifdef CBLAS double *work; int lwork; int *iwork; char *dsytrd = "DSYTRD"; int monei = -1; /* int nell = n-ell+1; int n1 = n;*/ int nell = 1; int n1 = ell ; #else /*int nell = n-ell; int n1 = n-1;*/ int nell = 0; int n1 = ell-1; #endif ifail = (int *) malloc(sizeof(int) * n); #ifdef CBLAS lwork = ilaenv_(&itype, dsytrd, &uplo, &n, &monei, &monei, &monei, 6L, 1L); lwork = (lwork+3)*n; if (lwork < 8*n) lwork = 8*n; iwork = (int *) malloc(sizeof(int) * n * 5); work = (double *) malloc(sizeof(double) * lwork); dsyevx_(&jobz,&range,&uplo,&n,a,&n,&zero,&zero,&nell,&n1, &abstol,&nfound,d,v,&n,work,&lwork,iwork,ifail,&info); free(iwork); free(work); #else dsyevx(jobz, range, uplo, n, a, n, zero, zero, nell, n1, abstol, &nfound, d, v, n, ifail, &info); #endif neig = ell; if (info > 0) neig = info - 1; free(ifail); printf("%i\n", nfound) ; *fl = 1; if (info < 0) { fprintf(stderr, "sygvx: Illegal argument %i.\n", info); *fl = -1; } else if ((info > 0) && (info <= n)) { fprintf(stderr, "sygvx: Convergence failure.\n"); *fl = -1; } else if (info > n) { fprintf(stderr, "sygvx: Leading minor of order %i of B not pos. def.\n", info-n); *fl = -1; } return; }
bool eigen_lapack(int n, vector_t & A, vector_t & S, matrix_t & V) { // Use eigenvalue decomposition instead of SVD // Get only the highest eigen-values, (par::cluster_mds_dim) int i1 = n - par::cluster_mds_dim + 1; int i2 = n; double z = -1; // Integer workspace size, 5N vector<int> iwork(5*n,0); double optim_lwork; int lwork = -1; int out_m; vector_t out_w( par::cluster_mds_dim , 0 ); vector_t out_z( n * par::cluster_mds_dim ,0 ); int ldz = n; vector<int> ifail(n,0); int info=0; double nz = 0; // Get workspace dsyevx_("V" , // get eigenvalues and eigenvectors "I" , // get interval of selected eigenvalues "L" , // data stored as upper triangular &n , // order of matrix &A[0] , // input matrix &n , // LDA &nz , // Vlower &nz , // Vupper &i1, // from 1st ... &i2, // ... to nth eigenvalue &z , // 0 for ABSTOL &out_m, // # of eigenvalues found &out_w[0], // first M entries contain sorted eigen-values &out_z[0], // array (can be mxm? nxn) &ldz, // make n at first &optim_lwork, // Get optimal workspace &lwork, // size of workspace &iwork[0], // int workspace &ifail[0], // output: failed to converge &info ); // Assign workspace lwork = (int) optim_lwork; vector_t work( lwork, 0 ); dsyevx_("V" , // get eigenvalues and eigenvectors "I" , // get interval of selected eigenvalues "L" , // data stored as upper triangular &n , // order of matrix &A[0] , // input matrix &n , // LDA &nz , // Vlower &nz , // Vupper &i1, // from 1st ... &i2, // ... to nth eigenvalue &z , // 0 for ABSTOL &out_m, // # of eigenvalues found &out_w[0], // first M entries contain sorted eigen-values &out_z[0], // array (can be mxm? nxn) &ldz, // make n at first &work[0], // Workspace &lwork, // size of workspace &iwork[0], // int workspace &ifail[0], // output: failed to converge &info ); // Get eigenvalues, vectors for (int i=0; i< par::cluster_mds_dim; i++) S[i] = out_w[i]; for (int i=0; i<n; i++) for (int j=0;j<par::cluster_mds_dim; j++) V[i][j] = out_z[ i + j*n ]; return true; }
/* Subroutine */ int dsygvx_(integer *itype, char *jobz, char *range, char * uplo, integer *n, doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *vl, doublereal *vu, integer *il, integer *iu, doublereal *abstol, integer *m, doublereal *w, doublereal *z__, integer *ldz, doublereal *work, integer *lwork, integer *iwork, integer *ifail, integer *info, ftnlen jobz_len, ftnlen range_len, ftnlen uplo_len) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, z_dim1, z_offset, i__1, i__2; /* Local variables */ static integer nb, lopt; extern logical lsame_(char *, char *, ftnlen, ftnlen); extern /* Subroutine */ int dtrmm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen); static char trans[1]; extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen); static logical upper, wantz, alleig, indeig, valeig; extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); extern integer ilaenv_(integer *, char *, char *, integer *, integer *, integer *, integer *, ftnlen, ftnlen); extern /* Subroutine */ int dpotrf_(char *, integer *, doublereal *, integer *, integer *, ftnlen), dsygst_(integer *, char *, integer *, doublereal *, integer *, doublereal *, integer *, integer *, ftnlen); static integer lwkopt; static logical lquery; extern /* Subroutine */ int dsyevx_(char *, char *, char *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, integer *, integer *, integer *, ftnlen, ftnlen, ftnlen); /* -- LAPACK driver routine (version 3.0) -- */ /* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., */ /* Courant Institute, Argonne National Lab, and Rice University */ /* June 30, 1999 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSYGVX computes selected eigenvalues, and optionally, eigenvectors */ /* of a real generalized symmetric-definite eigenproblem, of the form */ /* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A */ /* and B are assumed to be symmetric and B is also positive definite. */ /* Eigenvalues and eigenvectors can be selected by specifying either a */ /* range of values or a range of indices for the desired eigenvalues. */ /* Arguments */ /* ========= */ /* ITYPE (input) INTEGER */ /* Specifies the problem type to be solved: */ /* = 1: A*x = (lambda)*B*x */ /* = 2: A*B*x = (lambda)*x */ /* = 3: B*A*x = (lambda)*x */ /* JOBZ (input) CHARACTER*1 */ /* = 'N': Compute eigenvalues only; */ /* = 'V': Compute eigenvalues and eigenvectors. */ /* RANGE (input) CHARACTER*1 */ /* = 'A': all eigenvalues will be found. */ /* = 'V': all eigenvalues in the half-open interval (VL,VU] */ /* will be found. */ /* = 'I': the IL-th through IU-th eigenvalues will be found. */ /* UPLO (input) CHARACTER*1 */ /* = 'U': Upper triangle of A and B are stored; */ /* = 'L': Lower triangle of A and B are stored. */ /* N (input) INTEGER */ /* The order of the matrix pencil (A,B). N >= 0. */ /* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */ /* On entry, the symmetric matrix A. If UPLO = 'U', the */ /* leading N-by-N upper triangular part of A contains the */ /* upper triangular part of the matrix A. If UPLO = 'L', */ /* the leading N-by-N lower triangular part of A contains */ /* the lower triangular part of the matrix A. */ /* On exit, the lower triangle (if UPLO='L') or the upper */ /* triangle (if UPLO='U') of A, including the diagonal, is */ /* destroyed. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* B (input/output) DOUBLE PRECISION array, dimension (LDA, N) */ /* On entry, the symmetric matrix B. If UPLO = 'U', the */ /* leading N-by-N upper triangular part of B contains the */ /* upper triangular part of the matrix B. If UPLO = 'L', */ /* the leading N-by-N lower triangular part of B contains */ /* the lower triangular part of the matrix B. */ /* On exit, if INFO <= N, the part of B containing the matrix is */ /* overwritten by the triangular factor U or L from the Cholesky */ /* factorization B = U**T*U or B = L*L**T. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* VL (input) DOUBLE PRECISION */ /* VU (input) DOUBLE PRECISION */ /* If RANGE='V', the lower and upper bounds of the interval to */ /* be searched for eigenvalues. VL < VU. */ /* Not referenced if RANGE = 'A' or 'I'. */ /* IL (input) INTEGER */ /* IU (input) INTEGER */ /* If RANGE='I', the indices (in ascending order) of the */ /* smallest and largest eigenvalues to be returned. */ /* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ /* Not referenced if RANGE = 'A' or 'V'. */ /* ABSTOL (input) DOUBLE PRECISION */ /* The absolute error tolerance for the eigenvalues. */ /* An approximate eigenvalue is accepted as converged */ /* when it is determined to lie in an interval [a,b] */ /* of width less than or equal to */ /* ABSTOL + EPS * max( |a|,|b| ) , */ /* where EPS is the machine precision. If ABSTOL is less than */ /* or equal to zero, then EPS*|T| will be used in its place, */ /* where |T| is the 1-norm of the tridiagonal matrix obtained */ /* by reducing A to tridiagonal form. */ /* Eigenvalues will be computed most accurately when ABSTOL is */ /* set to twice the underflow threshold 2*DLAMCH('S'), not zero. */ /* If this routine returns with INFO>0, indicating that some */ /* eigenvectors did not converge, try setting ABSTOL to */ /* 2*DLAMCH('S'). */ /* M (output) INTEGER */ /* The total number of eigenvalues found. 0 <= M <= N. */ /* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ /* W (output) DOUBLE PRECISION array, dimension (N) */ /* On normal exit, the first M elements contain the selected */ /* eigenvalues in ascending order. */ /* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M)) */ /* If JOBZ = 'N', then Z is not referenced. */ /* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ /* contain the orthonormal eigenvectors of the matrix A */ /* corresponding to the selected eigenvalues, with the i-th */ /* column of Z holding the eigenvector associated with W(i). */ /* The eigenvectors are normalized as follows: */ /* if ITYPE = 1 or 2, Z**T*B*Z = I; */ /* if ITYPE = 3, Z**T*inv(B)*Z = I. */ /* If an eigenvector fails to converge, then that column of Z */ /* contains the latest approximation to the eigenvector, and the */ /* index of the eigenvector is returned in IFAIL. */ /* Note: the user must ensure that at least max(1,M) columns are */ /* supplied in the array Z; if RANGE = 'V', the exact value of M */ /* is not known in advance and an upper bound must be used. */ /* LDZ (input) INTEGER */ /* The leading dimension of the array Z. LDZ >= 1, and if */ /* JOBZ = 'V', LDZ >= max(1,N). */ /* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */ /* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ /* LWORK (input) INTEGER */ /* The length of the array WORK. LWORK >= max(1,8*N). */ /* For optimal efficiency, LWORK >= (NB+3)*N, */ /* where NB is the blocksize for DSYTRD returned by ILAENV. */ /* If LWORK = -1, then a workspace query is assumed; the routine */ /* only calculates the optimal size of the WORK array, returns */ /* this value as the first entry of the WORK array, and no error */ /* message related to LWORK is issued by XERBLA. */ /* IWORK (workspace) INTEGER array, dimension (5*N) */ /* IFAIL (output) INTEGER array, dimension (N) */ /* If JOBZ = 'V', then if INFO = 0, the first M elements of */ /* IFAIL are zero. If INFO > 0, then IFAIL contains the */ /* indices of the eigenvectors that failed to converge. */ /* If JOBZ = 'N', then IFAIL is not referenced. */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* > 0: DPOTRF or DSYEVX returned an error code: */ /* <= N: if INFO = i, DSYEVX failed to converge; */ /* i eigenvectors failed to converge. Their indices */ /* are stored in array IFAIL. */ /* > N: if INFO = N + i, for 1 <= i <= N, then the leading */ /* minor of order i of B is not positive definite. */ /* The factorization of B could not be completed and */ /* no eigenvalues or eigenvectors were computed. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; --w; z_dim1 = *ldz; z_offset = 1 + z_dim1; z__ -= z_offset; --work; --iwork; --ifail; /* Function Body */ upper = lsame_(uplo, "U", (ftnlen)1, (ftnlen)1); wantz = lsame_(jobz, "V", (ftnlen)1, (ftnlen)1); alleig = lsame_(range, "A", (ftnlen)1, (ftnlen)1); valeig = lsame_(range, "V", (ftnlen)1, (ftnlen)1); indeig = lsame_(range, "I", (ftnlen)1, (ftnlen)1); lquery = *lwork == -1; *info = 0; if (*itype < 0 || *itype > 3) { *info = -1; } else if (! (wantz || lsame_(jobz, "N", (ftnlen)1, (ftnlen)1))) { *info = -2; } else if (! (alleig || valeig || indeig)) { *info = -3; } else if (! (upper || lsame_(uplo, "L", (ftnlen)1, (ftnlen)1))) { *info = -4; } else if (*n < 0) { *info = -5; } else if (*lda < max(1,*n)) { *info = -7; } else if (*ldb < max(1,*n)) { *info = -9; } else if (valeig && *n > 0) { if (*vu <= *vl) { *info = -11; } } else if (indeig && *il < 1) { *info = -12; } else if (indeig && (*iu < min(*n,*il) || *iu > *n)) { *info = -13; } else if (*ldz < 1 || wantz && *ldz < *n) { *info = -18; } else /* if(complicated condition) */ { /* Computing MAX */ i__1 = 1, i__2 = *n << 3; if (*lwork < max(i__1,i__2) && ! lquery) { *info = -20; } } if (*info == 0) { nb = ilaenv_(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (ftnlen)1); lwkopt = (nb + 3) * *n; work[1] = (doublereal) lwkopt; } if (*info != 0) { i__1 = -(*info); xerbla_("DSYGVX", &i__1, (ftnlen)6); return 0; } else if (lquery) { return 0; } /* Quick return if possible */ *m = 0; if (*n == 0) { work[1] = 1.; return 0; } /* Form a Cholesky factorization of B. */ dpotrf_(uplo, n, &b[b_offset], ldb, info, (ftnlen)1); if (*info != 0) { *info = *n + *info; return 0; } /* Transform problem to standard eigenvalue problem and solve. */ dsygst_(itype, uplo, n, &a[a_offset], lda, &b[b_offset], ldb, info, ( ftnlen)1); dsyevx_(jobz, range, uplo, n, &a[a_offset], lda, vl, vu, il, iu, abstol, m, &w[1], &z__[z_offset], ldz, &work[1], lwork, &iwork[1], &ifail[ 1], info, (ftnlen)1, (ftnlen)1, (ftnlen)1); lopt = (integer) work[1]; if (wantz) { /* Backtransform eigenvectors to the original problem. */ if (*info > 0) { *m = *info - 1; } if (*itype == 1 || *itype == 2) { /* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */ /* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */ if (upper) { *(unsigned char *)trans = 'N'; } else { *(unsigned char *)trans = 'T'; } dtrsm_("Left", uplo, trans, "Non-unit", n, m, &c_b19, &b[b_offset] , ldb, &z__[z_offset], ldz, (ftnlen)4, (ftnlen)1, (ftnlen) 1, (ftnlen)8); } else if (*itype == 3) { /* For B*A*x=(lambda)*x; */ /* backtransform eigenvectors: x = L*y or U'*y */ if (upper) { *(unsigned char *)trans = 'T'; } else { *(unsigned char *)trans = 'N'; } dtrmm_("Left", uplo, trans, "Non-unit", n, m, &c_b19, &b[b_offset] , ldb, &z__[z_offset], ldz, (ftnlen)4, (ftnlen)1, (ftnlen) 1, (ftnlen)8); } } /* Set WORK(1) to optimal workspace size. */ work[1] = (doublereal) lwkopt; return 0; /* End of DSYGVX */ } /* dsygvx_ */
int matrix_dsyevx(bool compute_eig_vectors , dsyevx_eig_enum which_values , /* DSYEVX | DSYEVX_VALUE_INTERVAL | DSYEVX_INDEX_INTERVAL */ dsyevx_uplo_enum uplo, matrix_type * A , /* The input matrix - is modified by the dsyevx() function. */ double VL , /* Lower limit when using DSYEVX_VALUE_INTERVAL */ double VU , /* Upper limit when using DSYEVX_VALUE_INTERVAL */ int IL , /* Lower index when using DSYEVX_INDEX_INTERVAL */ int IU , /* Upper index when using DSYEVX_INDEX_INTERVAL */ double *eig_values , /* The calcualated eigenvalues */ matrix_type * Z ) { /* The eigenvectors as columns vectors */ int lda = matrix_get_column_stride( A ); int n = matrix_get_rows( A ); char jobz; char range; char uplo_c; if (compute_eig_vectors) jobz = 'V'; else jobz = 'N'; switch(which_values) { case(DSYEVX_ALL): range = 'A'; break; case(DSYEVX_VALUE_INTERVAL): range = 'V'; break; case(DSYEVX_INDEX_INTERVAL): range = 'I'; break; default: util_abort("%s: internal error \n",__func__); } if (uplo == DSYEVX_AUPPER) uplo_c = 'U'; else if (uplo == DSYEVX_ALOWER) uplo_c = 'L'; else util_abort("%s: internal error \n",__func__); if (!matrix_is_quadratic( A )) util_abort("%s: matrix A must be quadratic \n",__func__); { int num_eigenvalues , ldz, info , worksize; int * ifail = util_calloc( n , sizeof * ifail ); int * iwork = util_calloc( 5 * n , sizeof * iwork ); double * work = util_calloc( 1 , sizeof * work ); double * z_data; double abstol = 0.0; /* SHopuld */ if (compute_eig_vectors) { ldz = matrix_get_column_stride( Z ); z_data = matrix_get_data( Z ); } else { /* In this case we can accept that Z == NULL */ ldz = 1; z_data = NULL; } /* First call to determine optimal worksize. */ worksize = -1; info = 0; dsyevx_( &jobz, /* 1 */ &range, /* 2 */ &uplo_c, /* 3 */ &n, /* 4 */ matrix_get_data( A ), /* 5 */ &lda , /* 6 */ &VL , /* 7 */ &VU , /* 8 */ &IL , /* 9 */ &IU , /* 10 */ &abstol , /* 11 */ &num_eigenvalues , /* 12 */ eig_values , /* 13 */ z_data , /* 14 */ &ldz , /* 15 */ work , /* 16 */ &worksize , /* 17 */ iwork , /* 18 */ ifail , /* 19 */ &info); /* 20 */ worksize = (int) work[0]; { double * tmp = realloc(work , sizeof * work * worksize ); if (tmp == NULL) { /* OK - we could not get the optimal worksize, try again with the minimum. */ worksize = 8 * n; work = util_realloc(work , sizeof * work * worksize ); } else work = tmp; /* The request for optimal worksize succeeded */ } /* Second call: do the job */ info = 0; dsyevx_( &jobz, &range, &uplo_c, &n, matrix_get_data( A ), &lda , &VL , &VU , &IL , &IU , &abstol , &num_eigenvalues , eig_values , z_data , &ldz , work , &worksize , iwork , ifail , &info); free( ifail ); free( work ); free( iwork ); return num_eigenvalues; } }