Ejemplo n.º 1
0
main()
{
  int i, j;

  my_init(MEMORY_SIZE, PHYSICAL_MEM_LIMIT);
	/* The MEMORY SIZE is in megabytes */
	/* PHYSICAL MEMORY SIZE is in number of system pages */
	/* The page size on Sparc 4 and Sparc 5 is 4Kb */

  dump_out();
  for (i = 0; i < NUM_BUFS; i++)
    {
      sbuf[i] = (char *)my_malloc(SMALL_BUF_SIZE);
      lbuf[i] = (char *)my_malloc(LARGE_BUF_SIZE);
      printf("The buffer small pointers is %x and large pointer is %x.\n",(unsigned)sbuf[i],(unsigned)lbuf[i] );
      dump_out();
    }
 
  for (i = 0; i < NUM_BUFS; i++)
    {
      memset(temp_buffer, 'A'+i, LARGE_BUF_SIZE);
      my_write(sbuf[i], SMALL_BUF_SIZE, temp_buffer);
      my_write(lbuf[i], LARGE_BUF_SIZE, temp_buffer);
      my_read(lbuf[i], LARGE_BUF_SIZE, temp_buffer);
    }

  read_start();

  my_read(lbuf[NUM_BUFS-1], LARGE_BUF_SIZE, temp_buffer);
  my_write(lbuf[0], LARGE_BUF_SIZE, temp_buffer);

  my_read(lbuf[NUM_BUFS - 1], LARGE_BUF_SIZE, temp_buffer);
  my_write(lbuf[1]+5, 3, temp_buffer);

  my_read(sbuf[NUM_BUFS-1], SMALL_BUF_SIZE, temp_buffer);
  my_write(sbuf[0], SMALL_BUF_SIZE, temp_buffer);

  my_read(sbuf[NUM_BUFS - 1], SMALL_BUF_SIZE, temp_buffer);
  my_write(sbuf[1]+5, 3, temp_buffer);

  read_start();

  for (i = 0; i < NUM_BUFS; i++)
    {
      memset(temp_buffer, 'Z'-i, LARGE_BUF_SIZE);
      my_write(sbuf[i] + 5, SMALL_BUF_SIZE - 5, temp_buffer);
      my_read(sbuf[i], SMALL_BUF_SIZE, temp_buffer);
      my_write(lbuf[i] + 5, LARGE_BUF_SIZE - 5, temp_buffer);
    }

  read_start();

  for (i = 0; i < NUM_BUFS; i++) {
    my_free((void *) sbuf[i]);
    my_free((void *) lbuf[i]);
  }
  dump_out();

  my_terminate();
}
Ejemplo n.º 2
0
main()
{
  int i, j;

  my_init(MEMORY_SIZE, PHYSICAL_MEM_LIMIT);
  dump_out();
  for (i = 0; i < NUM_BUFS; i++) {
    sbuf[i] = (char *)my_malloc(SMALL_BUF_SIZE);
    lbuf[i] = (char *)my_malloc(LARGE_BUF_SIZE);
    printf("The buffer small pointers is %x, and large pointer is %x\n", (unsigned)sbuf[i], (unsigned)lbuf[i]);
  }
  dump_out();
  
  for (i = 0; i < NUM_BUFS; i++) {
    my_free((void *) sbuf[i]);
    my_free((void *) lbuf[i]);
  }
  dump_out();

  my_terminate();
}
Ejemplo n.º 3
0
void THandler::verifyDeductionWithExternalTool( Enode * imp )
{
  assert( imp->isDeduced( ) );

  // First stage: print declarations
  const char * name = "/tmp/verifydeduction.smt2";
  std::ofstream dump_out( name );

  core_solver.dumpHeaderToFile( dump_out );

  dump_out << "(assert" << endl;
  dump_out << "(and" << endl;
  for ( int j = 0 ; j < trail.size( ) ; j ++ )
  {
    Var v = var( trail[ j ] );

    if ( v == var_True || v == var_False )
      continue;

    Enode * e = varToEnode( v );
    assert( e );

    if ( !e->isTAtom( ) )
      continue;

    bool negated = sign( trail[ j ] );
    if ( negated )
      dump_out << "(not ";
    e->print( dump_out );
    if ( negated )
      dump_out << ")";

    dump_out << endl;
  }

  if ( imp->getDeduced( ) == l_True )
    dump_out << "(not " << imp << ")" << endl;
  else
    dump_out << imp << endl;

  dump_out << "))" << endl;
  dump_out << "(check-sat)" << endl;
  dump_out << "(exit)" << endl;
  dump_out.close( );

  // Second stage, check the formula
  const bool tool_res = callCertifyingSolver( name );

  if ( tool_res )
    opensmt_error2( config.certifying_solver, " says this is not a valid deduction" );
}
Ejemplo n.º 4
0
void THandler::verifyCallWithExternalTool( bool res, size_t trail_size )
{
  // First stage: print declarations
  const char * name = "/tmp/verifycall.smt2";
  std::ofstream dump_out( name );

  core_solver.dumpHeaderToFile( dump_out );

  dump_out << "(assert" << endl;
  dump_out << "(and" << endl;
  for ( size_t j = 0 ; j <= trail_size ; j ++ )
  {
    Var v = var( trail[ j ] );

    if ( v == var_True || v == var_False )
      continue;

    // Enode * e = var_to_enode[ v ];
    Enode * e = varToEnode( v );
    assert( e );

    if ( !e->isTAtom( ) )
      continue;

    bool negated = sign( trail[ j ] );
    if ( negated )
      dump_out << "(not ";
    e->print( dump_out );
    if ( negated )
      dump_out << ")";

    dump_out << endl;
  }
  dump_out << "))" << endl;
  dump_out << "(check-sat)" << endl;
  dump_out << "(exit)" << endl;
  dump_out.close( );

  // Second stage, check the formula
  const bool tool_res = callCertifyingSolver( name );

  if ( res == false && tool_res == true )
    opensmt_error2( config.certifying_solver, " says SAT stack, but we say UNSAT" );

  if ( res == true && tool_res == false )
    opensmt_error2( config.certifying_solver, " says UNSAT stack, but we say SAT" );
}
Ejemplo n.º 5
0
void CoreSMTSolver::dumpCNF( )
{
  const char * name = "cnf.smt2";
  std::ofstream dump_out( name );
  egraph.dumpHeaderToFile( dump_out );
  dump_out << "(assert" << endl;
  dump_out << "(and" << endl;

  for ( int i = 0 ; i < clauses.size( ) ; i ++ )
  {
    Clause & c = *clauses[ i ];

    if ( c.mark( ) == 1 )
      continue;

    printSMTClause( dump_out, c );
    dump_out << endl;
  }

  //
  // Also dump the trail which contains clauses of size 1
  //
  for ( int i = 0 ; i < trail.size( ) ; i ++ )
  {
    Var v = var(trail[i]);
    if ( v <= 1 ) continue;
    Enode * e = theory_handler->varToEnode( v );
    dump_out << (sign(trail[i])?"(not ":" ") << e << (sign(trail[i])?") ":" ") << endl;
  }

  dump_out << "))" << endl;
  dump_out << "(check-sat)" << endl;
  dump_out << "(exit)" << endl;
  dump_out.close( );
  cerr << "[Dumped " << name << "]" << endl;
}
Ejemplo n.º 6
0
void THandler::verifyExplanationWithExternalTool( vector< Enode * > & expl )
{
  // First stage: print declarations
  const char * name = "/tmp/verifyexp.smt2";
  std::ofstream dump_out( name );

  core_solver.dumpHeaderToFile( dump_out );

  dump_out << "(assert " << endl;
  dump_out << "(and" << endl;

  for ( size_t j = 0 ; j < expl.size( ) ; j ++ )
  {
    Enode * e = expl[ j ];
    assert( e->isTAtom( ) );
    assert( e->getPolarity( ) != l_Undef );
    bool negated = e->getPolarity( ) == l_False;
    if ( negated )
      dump_out << "(not ";
    e->print( dump_out );
    if ( negated )
      dump_out << ")";

    dump_out << endl;
  }

  dump_out << "))" << endl;
  dump_out << "(check-sat)" << endl;
  dump_out << "(exit)" << endl;
  dump_out.close( );
  // Third stage, check the formula
  const bool tool_res = callCertifyingSolver( name );

  if ( tool_res == true )
    opensmt_error2( config.certifying_solver, " says this is not an explanation" );
}
Ejemplo n.º 7
0
int process(char *fname, int components, int z_lookup, unsigned char *startbuf, unsigned char *endbuf, int z_draw, int x_draw, int y_draw, struct graphics *gc, int mapbits, int metabits, int dump, int gps, struct color_range *colors, int xoff, int yoff) {
	int bytes = bytesfor(mapbits, metabits, components, z_lookup);
	int ret = 0;

	char fn[strlen(fname) + 1 + 5 + 1 + 5 + 1];

	struct tilecontext tc;
	tc.z = z_draw;
	tc.x = x_draw;
	tc.y = y_draw;
	tc.xoff = xoff;
	tc.yoff = yoff;

	if (components == 1) {
		sprintf(fn, "%s/1,0", fname);
	} else {
		sprintf(fn, "%s/%d,%d", fname, components, z_lookup);
	}

	int fd = open(fn, O_RDONLY);
	if (fd < 0) {
		// perror(fn);
		return ret;
	}

	struct stat st;
	if (fstat(fd, &st) < 0) {
		perror("stat");
		exit(EXIT_FAILURE);
	}

	unsigned char *map = mmap(NULL, st.st_size, PROT_READ, MAP_SHARED, fd, 0);
	if (map == MAP_FAILED) {
		perror("mmap");
		exit(EXIT_FAILURE);
	}

	gSortBytes = bytes;
	unsigned char *start = search(startbuf, map, st.st_size / bytes, bytes, bufcmp);
	unsigned char *end = search(endbuf, map, st.st_size / bytes, bytes, bufcmp);

	end += bytes; // points to the last value in range; need the one after that

	if (memcmp(start, startbuf, bytes) < 0) {
		start += bytes; // if not exact match, points to element before match
	}

	int step = 1;
	double brush = 1;
	double thick = line_thick;
	double bright1;
	if (components == 1) {
		bright1 = dot_bright;

		if (z_draw > dot_base) {
			step = 1;
			brush = exp(log(2.0) * (z_draw - dot_base));
			bright1 *= exp(log(dot_ramp) * (z_draw - dot_base));
		} else {
			step = floor(exp(log(exponent) * (dot_base - z_draw)) + .5);
			bright1 *= exp(log(dot_ramp) * (z_draw - dot_base));
			bright1 = bright1 * step / (1 << (dot_base - z_draw));
		}

		bright1 /= point_size;
		brush *= point_size;
	} else {
		bright1 = dot_bright * line_per_dot / line_thick;

		if (line_ramp >= 1) {
			thick *= exp(log(line_ramp) * (z_draw - dot_base));
			bright1 *= exp(log(dot_ramp / line_ramp) * (z_draw - dot_base));
		} else {
			bright1 *= exp(log(dot_ramp) * (z_draw - dot_base));
		}
	}

	if (mercator >= 0) {
		double lat, lon;
		tile2latlon((x_draw + .5) * (1LL << (32 - z_draw)),
			    (y_draw + .5) * (1LL << (32 - z_draw)),
			    32, &lat, &lon);
		double rat = cos(lat * M_PI / 180);

		double base = cos(mercator * M_PI / 180);
		brush /= rat * rat / (base * base);
	}

	if (dump) {
		step = 1;
	} else {
		// Align to step size so each zoom is a superset of the previous
		start = (start - map + (step * bytes - 1)) / (step * bytes) * (step * bytes) + map;
	}

	double size = cloudsize(z_draw, x_draw, y_draw);
	int innerstep = 1;
	long long todo = 0;

	size *= tilesize;                  // convert to pixels

	if (circle > 0) {
		// An additional 4 zoom levels without skipping
		// XXX Why 4?
		if (step > 1 && size > .0625) {
			innerstep = step;
			step = 1;
		}
	}

	const double b = brush * (tilesize / 256.0) * (tilesize / 256.0);

	for (; start < end; start += step * bytes) {
		unsigned int x[components], y[components];
		double xd[components], yd[components];
		int k;
		unsigned long long meta = 0;

		buf2xys(start, mapbits, metabits, z_lookup, components, x, y, &meta);

		if (meta > maxmeta) {
			continue;
		}

		if (!dump && z_draw >= mapbits / 2 - 8) {
			// Add noise below the bottom of the file resolution
			// so that it looks less gridded when overzoomed

			int j;
			for (j = 0; j < components; j++) {
				int noisebits = 32 - mapbits / 2;
				int i;

				for (i = 0; i < noisebits; i++) {
					x[j] |= ((y[j] >> (2 * noisebits - 1 - i)) & 1) << i;
					y[j] |= ((x[j] >> (2 * noisebits - 1 - i)) & 1) << i;
				}
			}
		}

		double hue = -1;
		if (metabits > 0 && colors->active) {
			hue = (((double) meta - colors->meta1) / (colors->meta2 - colors->meta1) * (colors->hue2 - colors->hue1) + colors->hue1) / 360;

			if (hue < -2) {
				hue = -1;
			} else {
				while (hue < 0) {
					hue++;
				}
				while (hue > 1) {
					hue--;
				}
			}
		}

		double bright = bright1;
		double bb = b;

		if (metabright) {
			bright *= meta;
		}
		if (metabrush) {
			bb = bb * meta;
		}

		for (k = 0; k < components; k++) {
			wxy2fxy(x[k], y[k], &xd[k], &yd[k], z_draw, x_draw, y_draw);
		}

		if (dump) {
			int should = 0;

			if (components == 1) {
				should = 1;
			} else {
				for (k = 1; k < components; k++) {
					double x1 = xd[k - 1];
					double y1 = yd[k - 1];
					double x2 = xd[k];
					double y2 = yd[k];

					if (clip(&x1, &y1, &x2, &y2, 0, 0, 1, 1)) {
						should = 1;
						break;
					}
				}
			}

			if (should) {
				dump_out(dump, x, y, components, metabits, meta);
			}
		} else if (components == 1) {
			if (!antialias) {
				xd[0] = ((int) (xd[0] * tilesize) + .5) / tilesize;
				yd[0] = ((int) (yd[0] * tilesize) + .5) / tilesize;
			}

			if (circle > 0) {
				if (size < .5) {
					if (bb <= 1) {
						drawPixel((xd[0] * tilesize - .5) + xoff, (yd[0] * tilesize - .5) + yoff, gc, bright * bb * meta / innerstep, hue, meta, &tc);
					} else {
						drawBrush((xd[0] * tilesize) + xoff, (yd[0] * tilesize) + yoff, gc, bright * meta / innerstep, bb, hue, meta, gaussian, &tc);
						ret = 1;
					}
				} else {
					double xc = (xd[0] * tilesize) + xoff;
					double yc = (yd[0] * tilesize) + yoff;

					if (xc + size >= 0 &&
					    yc + size >= 0 &&
					    xc - size <= tilesize &&
					    yc - size <= tilesize) {
						srand(x[0] * 37 + y[0]);

						for (todo += meta; todo > 0; todo -= innerstep) {
							double r = sqrt(((double) (rand() & (INT_MAX - 1))) / (INT_MAX));
							double ang = ((double) (rand() & (INT_MAX - 1))) / (INT_MAX) * 2 * M_PI;

							double xp = xc + size * r * cos(ang);
							double yp = yc + size * r * sin(ang);

							if (bb <= 1) {
								drawPixel(xp - .5, yp - .5, gc, bright * bb, hue, meta, &tc);
							} else {
								drawBrush(xp, yp, gc, bright, bb, hue, meta, gaussian, &tc);
								ret = 1;
							}
						}
					}
				}
			} else {
				if (bb <= 1) {
					drawPixel((xd[0] * tilesize - .5) + xoff, (yd[0] * tilesize - .5) + yoff, gc, bright * bb, hue, meta, &tc);
				} else {
					drawBrush((xd[0] * tilesize) + xoff, (yd[0] * tilesize) + yoff, gc, bright, bb, hue, meta, gaussian, &tc);
					ret = 1;
				}
			}
		} else {
			for (k = 1; k < components; k++) {
				double bright1 = bright;

				long long xk1 = x[k - 1];
				long long xk = x[k];

				if (gps) {
					double xdist = (long long) x[k] - (long long) x[k - 1];
					double ydist = (long long) y[k] - (long long) y[k - 1];
					double dist = sqrt(xdist * xdist + ydist * ydist);

					double min = gps_dist;
					min = min * exp(log(gps_ramp) * (gps_base - z_draw));

					if (dist > min) {
						bright1 /= (dist / min);
					}

					if (bright1 < .0025) {
						continue;
					}
				}

				double thick1 = thick * tilesize / 256.0;

				if (xk - xk1 >= (1LL << 31)) {
					wxy2fxy(xk - (1LL << 32), y[k], &xd[k], &yd[k], z_draw, x_draw, y_draw);
					drawClip(xd[k - 1] * tilesize + xoff, yd[k - 1] * tilesize + yoff, xd[k] * tilesize + xoff, yd[k] * tilesize + yoff, gc, bright1, hue, meta, antialias, thick1, &tc);

					wxy2fxy(x[k], y[k], &xd[k], &yd[k], z_draw, x_draw, y_draw);
					wxy2fxy(xk1 + (1LL << 32), y[k - 1], &xd[k - 1], &yd[k - 1], z_draw, x_draw, y_draw);
					drawClip(xd[k - 1] * tilesize + xoff, yd[k - 1] * tilesize + yoff, xd[k] * tilesize + xoff, yd[k] * tilesize + yoff, gc, bright1, hue, meta, antialias, thick1, &tc);

					wxy2fxy(x[k - 1], y[k - 1], &xd[k - 1], &yd[k - 1], z_draw, x_draw, y_draw);
				} else if (xk1 - xk >= (1LL << 31)) {
					wxy2fxy(xk1 - (1LL << 32), y[k - 1], &xd[k - 1], &yd[k - 1], z_draw, x_draw, y_draw);
					drawClip(xd[k - 1] * tilesize + xoff, yd[k - 1] * tilesize + yoff, xd[k] * tilesize + xoff, yd[k] * tilesize + yoff, gc, bright1, hue, meta, antialias, thick1, &tc);

					wxy2fxy(x[k - 1], y[k - 1], &xd[k - 1], &yd[k - 1], z_draw, x_draw, y_draw);
					wxy2fxy(xk + (1LL << 32), y[k], &xd[k], &yd[k], z_draw, x_draw, y_draw);
					drawClip(xd[k - 1] * tilesize + xoff, yd[k - 1] * tilesize + yoff, xd[k] * tilesize + xoff, yd[k] * tilesize + yoff, gc, bright1, hue, meta, antialias, thick1, &tc);

					wxy2fxy(x[k], y[k], &xd[k], &yd[k], z_draw, x_draw, y_draw);
				} else {
					drawClip(xd[k - 1] * tilesize + xoff, yd[k - 1] * tilesize + yoff, xd[k] * tilesize + xoff, yd[k] * tilesize + yoff, gc, bright1, hue, meta, antialias, thick1, &tc);
				}
			}
		}
	}
Ejemplo n.º 8
0
void THandler::verifyInterpolantWithExternalTool( vector< Enode * > & expl
                                                , Enode * interp_list )
{
  uint64_t mask = 0xFFFFFFFFFFFFFFFEULL;
  for ( unsigned in = 1 ; in < core_solver.getNofPartitions( ) ; in ++ )
  {
    Enode * args = interp_list;
    // Advance in the interpolants list
    for ( unsigned i = 0 ; i < in - 1 ; i ++ )
      args = args->getCdr( );
    Enode * interp = args->getCar( );
    mask &= ~SETBIT( in );
    // Check A -> I, i.e., A & !I
    // First stage: print declarations
    const char * name = "/tmp/verifyinterp.smt2";
    std::ofstream dump_out( name );
    core_solver.dumpHeaderToFile( dump_out );
    // Print only A atoms
    dump_out << "(assert " << endl;
    dump_out << "(and" << endl;
    for ( size_t j = 0 ; j < expl.size( ) ; j ++ )
    {
      Enode * e = expl[ j ];
      assert( e->isTAtom( ) );
      assert( e->getPolarity( ) != l_Undef );
      assert( (core_solver.getIPartitions( e ) &  mask) != 0
           || (core_solver.getIPartitions( e ) & ~mask) != 0 );
      if ( (core_solver.getIPartitions( e ) & ~mask) != 0 )
      {
        bool negated = e->getPolarity( ) == l_False;
        if ( negated )
          dump_out << "(not ";
        e->print( dump_out );
        if ( negated )
          dump_out << ")";
        dump_out << endl;
      }
    }

    dump_out << "(not " << interp << ")" << endl;
    dump_out << "))" << endl;
    dump_out << "(check-sat)" << endl;
    dump_out << "(exit)" << endl;
    dump_out.close( );
    // Check !
    bool tool_res;
    if ( int pid = fork() )
    {
      int status;
      waitpid(pid, &status, 0);
      switch ( WEXITSTATUS( status ) )
      {
        case 0:
          tool_res = false;
          break;
        case 1:
          tool_res = true;
          break;
        default:
          perror( "Tool" );
          exit( EXIT_FAILURE );
      }
    }
    else
    {
      execlp( "tool_wrapper.sh", "tool_wrapper.sh", name, 0 );
      perror( "Tool" );
      exit( 1 );
    }

    if ( tool_res == true )
      opensmt_error2( config.certifying_solver, " says A -> I does not hold" );
    // Now check B & I
    dump_out.open( name );
    core_solver.dumpHeaderToFile( dump_out );
    // Print only B atoms
    dump_out << "(assert " << endl;
    dump_out << "(and" << endl;
    for ( size_t j = 0 ; j < expl.size( ) ; j ++ )
    {
      Enode * e = expl[ j ];
      assert( e->isTAtom( ) );
      assert( e->getPolarity( ) != l_Undef );
      assert( (core_solver.getIPartitions( e ) &  mask) != 0
           || (core_solver.getIPartitions( e ) & ~mask) != 0 );
      if ( (core_solver.getIPartitions( e ) & mask) != 0 )
      {
        bool negated = e->getPolarity( ) == l_False;
        if ( negated )
          dump_out << "(not ";
        e->print( dump_out );
        if ( negated )
          dump_out << ")";
        dump_out << endl;
      }
    }
    dump_out << interp << endl;
    dump_out << "))" << endl;
    dump_out << "(check-sat)" << endl;
    dump_out << "(exit)" << endl;
    dump_out.close( );
    // Check !
    tool_res;
    if ( int pid = fork() )
    {
      int status;
      waitpid(pid, &status, 0);
      switch ( WEXITSTATUS( status ) )
      {
        case 0:
          tool_res = false;
          break;
        case 1:
          tool_res = true;
          break;
        default:
          perror( "Tool" );
          exit( EXIT_FAILURE );
      }
    }
    else
    {
      execlp( "tool_wrapper.sh", "tool_wrapper.sh", name, 0 );
      perror( "Tool" );
      exit( 1 );
    }
    if ( tool_res == true )
      opensmt_error2( config.certifying_solver, " says B & I does not hold" );
  }
}