Ejemplo n.º 1
0
/*
 * Machine-dependent startup code
 */
void
cpu_startup()
{
#ifdef DEBUG
	extern int pmapdebug;
	int opmapdebug = pmapdebug;
#endif
	vaddr_t minaddr, maxaddr;
	paddr_t msgbufpa;
	extern struct user *proc0paddr;

#ifdef DEBUG
	pmapdebug = 0;
#endif

	if (CPU_ISSUN4M)
		stackgap_random = STACKGAP_RANDOM_SUN4M;

	/*
	 * Re-map the message buffer from its temporary address
	 * at KERNBASE to MSGBUF_VA.
	 */

	/* Get physical address of the message buffer */
	pmap_extract(pmap_kernel(), (vaddr_t)KERNBASE, &msgbufpa);

	/* Invalidate the current mapping at KERNBASE. */
	pmap_kremove((vaddr_t)KERNBASE, PAGE_SIZE);
	pmap_update(pmap_kernel());

	/* Enter the new mapping */
	pmap_map(MSGBUF_VA, msgbufpa, msgbufpa + PAGE_SIZE,
	    PROT_READ | PROT_WRITE);

	/* Re-initialize the message buffer. */
	initmsgbuf((caddr_t)(MSGBUF_VA + (CPU_ISSUN4 ? 4096 : 0)), MSGBUFSIZE);

	proc0.p_addr = proc0paddr;

	/*
	 * Good {morning,afternoon,evening,night}.
	 */
	printf(version);
	/*identifycpu();*/
	printf("real mem = %lu (%luMB)\n", ptoa(physmem),
	    ptoa(physmem)/1024/1024);

	/*
	 * uvm_km_init() has allocated all the virtual memory below the
	 * end of the kernel image. If VM_MIN_KERNEL_ADDRESS is below
	 * KERNBASE, we need to reclaim that range.
	 */
	if (vm_min_kernel_address < (vaddr_t)KERNBASE) {
		uvm_unmap(kernel_map, vm_min_kernel_address, (vaddr_t)KERNBASE);
	}

	/*
	 * Allocate a submap for exec arguments.  This map effectively
	 * limits the number of processes exec'ing at any time.
	 */
	minaddr = vm_map_min(kernel_map);
	exec_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
				 16*NCARGS, VM_MAP_PAGEABLE, FALSE, NULL);

	/*
	 * Set up userland PIE limits. PIE is disabled on sun4/4c/4e due
	 * to the limited address space.
	 */
	if (CPU_ISSUN4M) {
		vm_pie_max_addr = VM_MAXUSER_ADDRESS / 4;
	}

	dvma_init();

#ifdef DEBUG
	pmapdebug = opmapdebug;
#endif
	printf("avail mem = %lu (%luMB)\n", ptoa(uvmexp.free),
	    ptoa(uvmexp.free)/1024/1024);

	/*
	 * Set up buffers, so they can be used to read disk labels.
	 */
	bufinit();
}
Ejemplo n.º 2
0
/*
 * cpu_startup: allocate memory for variable-sized tables,
 * initialize CPU, and do autoconfiguration.
 *
 * This is called early in init_main.c:main(), after the
 * kernel memory allocator is ready for use, but before
 * the creation of processes 1,2, and mountroot, etc.
 */
void 
cpu_startup(void)
{
	char *v;
	vaddr_t minaddr, maxaddr;
	char pbuf[9];

	/*
	 * Initialize message buffer (for kernel printf).
	 * This is put in physical page zero so it will
	 * always be in the same place after a reboot.
	 * Its mapping was prepared in pmap_bootstrap().
	 * Also, offset some to avoid PROM scribbles.
	 */
	v = (char *)KERNBASE;
	msgbufaddr = v + MSGBUFOFF;
	initmsgbuf(msgbufaddr, MSGBUFSIZE);

	/*
	 * Good {morning,afternoon,evening,night}.
	 */
	printf("%s%s", copyright, version);
	identifycpu();
	initfpu();	/* also prints FPU type */

	format_bytes(pbuf, sizeof(pbuf), ctob(physmem));
	printf("total memory = %s\n", pbuf);

	/*
	 * Get scratch page for dumpsys().
	 */
	dumppage = uvm_km_alloc(kernel_map, PAGE_SIZE, 0, UVM_KMF_WIRED);
	if (dumppage == 0)
		panic("startup: alloc dumppage");

	minaddr = 0;

	/*
	 * Allocate a submap for physio
	 */
	phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
				   VM_PHYS_SIZE, 0, false, NULL);

	/*
	 * Finally, allocate mbuf cluster submap.
	 */
	mb_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
				 nmbclusters * mclbytes, VM_MAP_INTRSAFE,
				 false, NULL);

	format_bytes(pbuf, sizeof(pbuf), ptoa(uvmexp.free));
	printf("avail memory = %s\n", pbuf);

	/*
	 * Allocate a virtual page (for use by /dev/mem)
	 * This page is handed to pmap_enter() therefore
	 * it has to be in the normal kernel VA range.
	 */
	vmmap = uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
	    UVM_KMF_VAONLY | UVM_KMF_WAITVA);

	/*
	 * Create the DVMA maps.
	 */
	dvma_init();

	/*
	 * Set up CPU-specific registers, cache, etc.
	 */
	initcpu();
}
Ejemplo n.º 3
0
void __init sbus_init(void)
{
	int nd, this_sbus, sbus_devs, topnd, iommund;
	unsigned int sbus_clock;
	struct sbus_bus *sbus;
	struct sbus_dev *this_dev;
	int num_sbus = 0;  /* How many did we find? */

#ifndef __sparc_v9__
	register_proc_sparc_ioport();
#endif

#ifdef CONFIG_SUN4
	return sun4_dvma_init();
#endif

	topnd = prom_getchild(prom_root_node);
	
	/* Finding the first sbus is a special case... */
	iommund = 0;
	if(sparc_cpu_model == sun4u) {
		nd = prom_searchsiblings(topnd, "sbus");
		if(nd == 0) {
#ifdef CONFIG_PCI
			if (!pcibios_present()) {	
				prom_printf("Neither SBUS nor PCI found.\n");
				prom_halt();
			} else {
#ifdef __sparc_v9__
				firetruck_init();
#endif
			}
			return;
#else
			prom_printf("YEEE, UltraSparc sbus not found\n");
			prom_halt();
#endif
		}
	} else if(sparc_cpu_model == sun4d) {
		if((iommund = prom_searchsiblings(topnd, "io-unit")) == 0 ||
		   (nd = prom_getchild(iommund)) == 0 ||
		   (nd = prom_searchsiblings(nd, "sbi")) == 0) {
		   	panic("sbi not found");
		}
	} else if((nd = prom_searchsiblings(topnd, "sbus")) == 0) {
		if((iommund = prom_searchsiblings(topnd, "iommu")) == 0 ||
		   (nd = prom_getchild(iommund)) == 0 ||
		   (nd = prom_searchsiblings(nd, "sbus")) == 0) {
#ifdef CONFIG_PCI
                        if (!pcibios_present()) {       
                                prom_printf("Neither SBUS nor PCI found.\n");
                                prom_halt();
                        }
                        return;
#else
			/* No reason to run further - the data access trap will occur. */
			panic("sbus not found");
#endif
		}
	}

	/* Ok, we've found the first one, allocate first SBus struct
	 * and place in chain.
	 */
	sbus = sbus_root = kmalloc(sizeof(struct sbus_bus), GFP_ATOMIC);
	sbus->next = NULL;
	sbus->prom_node = nd;
	this_sbus = nd;

	if(iommund && sparc_cpu_model != sun4u && sparc_cpu_model != sun4d)
		iommu_init(iommund, sbus);

	/* Loop until we find no more SBUS's */
	while(this_sbus) {
#ifdef __sparc_v9__						  
		/* IOMMU hides inside SBUS/SYSIO prom node on Ultra. */
		if(sparc_cpu_model == sun4u) {
			extern void sbus_iommu_init(int prom_node, struct sbus_bus *sbus);

			sbus_iommu_init(this_sbus, sbus);
		}
#endif
#ifndef __sparc_v9__						  
		if (sparc_cpu_model == sun4d)
			iounit_init(this_sbus, iommund, sbus);
#endif						   
		printk("sbus%d: ", num_sbus);
		sbus_clock = prom_getint(this_sbus, "clock-frequency");
		if(sbus_clock == -1)
			sbus_clock = (25*1000*1000);
		printk("Clock %d.%d MHz\n", (int) ((sbus_clock/1000)/1000),
		       (int) (((sbus_clock/1000)%1000 != 0) ? 
			      (((sbus_clock/1000)%1000) + 1000) : 0));

		prom_getstring(this_sbus, "name",
			       sbus->prom_name, sizeof(sbus->prom_name));
		sbus->clock_freq = sbus_clock;
#ifndef __sparc_v9__		
		if (sparc_cpu_model == sun4d) {
			sbus->devid = prom_getint(iommund, "device-id");
			sbus->board = prom_getint(iommund, "board#");
		}
#endif
		
		sbus_bus_ranges_init(iommund, sbus);

		sbus_devs = prom_getchild(this_sbus);
		if (!sbus_devs) {
			sbus->devices = NULL;
			goto next_bus;
		}

		sbus->devices = kmalloc(sizeof(struct sbus_dev), GFP_ATOMIC);

		this_dev = sbus->devices;
		this_dev->next = NULL;

		this_dev->bus = sbus;
		this_dev->parent = NULL;
		fill_sbus_device(sbus_devs, this_dev);

		/* Should we traverse for children? */
		if(prom_getchild(sbus_devs)) {
			/* Allocate device node */
			this_dev->child = kmalloc(sizeof(struct sbus_dev),
						  GFP_ATOMIC);
			/* Fill it */
			this_dev->child->bus = sbus;
			this_dev->child->next = 0;
			fill_sbus_device(prom_getchild(sbus_devs),
					 this_dev->child);
			sbus_do_child_siblings(prom_getchild(sbus_devs),
					       this_dev->child,
					       this_dev,
					       sbus);
		} else {
			this_dev->child = NULL;
		}

		while((sbus_devs = prom_getsibling(sbus_devs)) != 0) {
			/* Allocate device node */
			this_dev->next = kmalloc(sizeof(struct sbus_dev),
						 GFP_ATOMIC);
			this_dev = this_dev->next;
			this_dev->next = NULL;

			/* Fill it */
			this_dev->bus = sbus;
			this_dev->parent = NULL;
			fill_sbus_device(sbus_devs, this_dev);

			/* Is there a child node hanging off of us? */
			if(prom_getchild(sbus_devs)) {
				/* Get new device struct */
				this_dev->child = kmalloc(sizeof(struct sbus_dev),
							  GFP_ATOMIC);
				/* Fill it */
				this_dev->child->bus = sbus;
				this_dev->child->next = 0;
				fill_sbus_device(prom_getchild(sbus_devs),
						 this_dev->child);
				sbus_do_child_siblings(prom_getchild(sbus_devs),
						       this_dev->child,
						       this_dev,
						       sbus);
			} else {
				this_dev->child = NULL;
			}
		}

		/* Walk all devices and apply parent ranges. */
		sbus_fixup_all_regs(sbus->devices);

		dvma_init(sbus);
	next_bus:
		num_sbus++;
		if(sparc_cpu_model == sun4u) {
			this_sbus = prom_getsibling(this_sbus);
			if(!this_sbus)
				break;
			this_sbus = prom_searchsiblings(this_sbus, "sbus");
		} else if(sparc_cpu_model == sun4d) {
			iommund = prom_getsibling(iommund);
			if(!iommund)
				break;
			iommund = prom_searchsiblings(iommund, "io-unit");
			if(!iommund)
				break;
			this_sbus = prom_searchsiblings(prom_getchild(iommund), "sbi");
		} else {
			this_sbus = prom_getsibling(this_sbus);
			if(!this_sbus)
				break;
			this_sbus = prom_searchsiblings(this_sbus, "sbus");
		}
		if(this_sbus) {
			sbus->next = kmalloc(sizeof(struct sbus_bus), GFP_ATOMIC);
			sbus = sbus->next;
			sbus->next = NULL;
			sbus->prom_node = this_sbus;
		} else {
			break;
		}
	} /* while(this_sbus) */

	if (sparc_cpu_model == sun4d) {
		extern void sun4d_init_sbi_irq(void);
		sun4d_init_sbi_irq();
	}
	
	rs_init();

#ifdef __sparc_v9__
	if (sparc_cpu_model == sun4u) {
		firetruck_init();
	}
#endif
#ifdef CONFIG_SUN_AUXIO
	if (sparc_cpu_model == sun4u)
		auxio_probe ();
#endif
#ifdef __sparc_v9__
	if (sparc_cpu_model == sun4u) {
		extern void clock_probe(void);

		clock_probe();
	}
#endif
}
Ejemplo n.º 4
0
static void __init build_one_sbus(struct device_node *dp, int num_sbus)
{
	struct sbus_bus *sbus;
	unsigned int sbus_clock;
	struct device_node *dev_dp;

	sbus = kzalloc(sizeof(struct sbus_bus), GFP_ATOMIC);
	if (!sbus)
		return;

	sbus_insert(sbus, &sbus_root);
	sbus->prom_node = dp->node;

	sbus_setup_iommu(sbus, dp);

	printk("sbus%d: ", num_sbus);

	sbus_clock = of_getintprop_default(dp, "clock-frequency",
					   (25*1000*1000));
	sbus->clock_freq = sbus_clock;

	printk("Clock %d.%d MHz\n", (int) ((sbus_clock/1000)/1000),
	       (int) (((sbus_clock/1000)%1000 != 0) ? 
		      (((sbus_clock/1000)%1000) + 1000) : 0));

	strcpy(sbus->prom_name, dp->name);

	sbus_setup_arch_props(sbus, dp);

	sbus_bus_ranges_init(dp, sbus);

	sbus->ofdev.node = dp;
	sbus->ofdev.dev.parent = NULL;
	sbus->ofdev.dev.bus = &sbus_bus_type;
	sprintf(sbus->ofdev.dev.bus_id, "sbus%d", num_sbus);

	if (of_device_register(&sbus->ofdev) != 0)
		printk(KERN_DEBUG "sbus: device registration error for %s!\n",
		       sbus->ofdev.dev.bus_id);

	dev_dp = dp->child;
	while (dev_dp) {
		struct sbus_dev *sdev;

		sdev = kzalloc(sizeof(struct sbus_dev), GFP_ATOMIC);
		if (sdev) {
			sdev_insert(sdev, &sbus->devices);

			sdev->bus = sbus;
			sdev->parent = NULL;
			fill_sbus_device(dev_dp, sdev);

			walk_children(dev_dp, sdev, sbus);
		}
		dev_dp = dev_dp->sibling;
	}

	sbus_fixup_all_regs(sbus->devices);

	dvma_init(sbus);
}