Ejemplo n.º 1
0
int main(int argc, char **argv)
{
	if (argc != 3) {
		fprintf(stderr, "Usage: bip39bruteforce mnemonic address\n");
		return 1;
	}
	const char *mnemonic = argv[1];
	const char *address = argv[2];
	if (!mnemonic_check(mnemonic)) {
		fprintf(stderr, "\"%s\" is not a valid mnemonic\n", mnemonic);
		return 2;
	}
	if (!ecdsa_address_decode(address, addr)) {
		fprintf(stderr, "\"%s\" is not a valid address\n", address);
		return 3;
	}
	printf("Reading passphrases from stdin ...\n");
	start = clock();
	for (;;) {
		if (fgets(passphrase, 256, stdin) == NULL) break;
		int len = strlen(passphrase);
		if (len <= 0) {
			continue;
		}
		count++;
		passphrase[len - 1] = 0;
		mnemonic_to_seed(mnemonic, passphrase, seed, NULL);
		hdnode_from_seed(seed, 512 / 8, &node);
		hdnode_private_ckd_prime(&node, 44);
		hdnode_private_ckd_prime(&node, 0);
		hdnode_private_ckd_prime(&node, 0);
		hdnode_private_ckd(&node, 0);
		hdnode_private_ckd(&node, 0);
		ecdsa_get_pubkeyhash(node.public_key, pubkeyhash);
		if (memcmp(addr + 1, pubkeyhash, 20) == 0) {
			found = 1;
			break;
		}
	}
	float dur = (float)(clock() - start) / CLOCKS_PER_SEC;
	printf("Tried %d passphrases in %f seconds = %f tries/second\n", count, dur, (float)count/dur);
	if (found) {
		printf("Correct passphrase found! :-)\n\"%s\"\n", passphrase);
		return 0;
	}
	printf("Correct passphrase not found. :-(\n");
	return 4;
}
Ejemplo n.º 2
0
void signing_txack(TransactionType *tx)
{
	if (!signing) {
		fsm_sendFailure(FailureType_Failure_UnexpectedMessage, "Not in Signing mode");
		go_home();
		return;
	}

	int co;
	memset(&resp, 0, sizeof(TxRequest));

	switch (signing_stage) {
		case STAGE_REQUEST_1_INPUT:
			/* compute multisig fingerprint */
			/* (if all input share the same fingerprint, outputs having the same fingerprint will be considered as change outputs) */
			if (tx->inputs[0].script_type == InputScriptType_SPENDMULTISIG) {
				if (tx->inputs[0].has_multisig && !multisig_fp_mismatch) {
					if (multisig_fp_set) {
						uint8_t h[32];
						if (cryptoMultisigFingerprint(&(tx->inputs[0].multisig), h) == 0) {
							fsm_sendFailure(FailureType_Failure_Other, "Error computing multisig fingeprint");
							signing_abort();
							return;
						}
						if (memcmp(multisig_fp, h, 32) != 0) {
							multisig_fp_mismatch = true;
						}
					} else {
						if (cryptoMultisigFingerprint(&(tx->inputs[0].multisig), multisig_fp) == 0) {
							fsm_sendFailure(FailureType_Failure_Other, "Error computing multisig fingeprint");
							signing_abort();
							return;
						}
						multisig_fp_set = true;
					}
				}
			} else { // InputScriptType_SPENDADDRESS
				multisig_fp_mismatch = true;
			}
			sha256_Update(&tc, (const uint8_t *)tx->inputs, sizeof(TxInputType));
			memcpy(&input, tx->inputs, sizeof(TxInputType));
			send_req_2_prev_meta();
			return;
		case STAGE_REQUEST_2_PREV_META:
			tx_init(&tp, tx->inputs_cnt, tx->outputs_cnt, tx->version, tx->lock_time, false);
			idx2 = 0;
			send_req_2_prev_input();
			return;
		case STAGE_REQUEST_2_PREV_INPUT:
			if (!tx_serialize_input_hash(&tp, tx->inputs)) {
				fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize input");
				signing_abort();
				return;
			}
			if (idx2 < tp.inputs_len - 1) {
				idx2++;
				send_req_2_prev_input();
			} else {
				idx2 = 0;
				send_req_2_prev_output();
			}
			return;
		case STAGE_REQUEST_2_PREV_OUTPUT:
			if (!tx_serialize_output_hash(&tp, tx->bin_outputs)) {
				fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize output");
				signing_abort();
				return;
			}
			if (idx2 == input.prev_index) {
				to_spend += tx->bin_outputs[0].amount;
			}
			if (idx2 < tp.outputs_len - 1) {
				/* Check prevtx of next input */
				idx2++;
				send_req_2_prev_output();
			} else {
				/* Check next output */
				tx_hash_final(&tp, hash, true);
				if (memcmp(hash, input.prev_hash.bytes, 32) != 0) {
					fsm_sendFailure(FailureType_Failure_Other, "Encountered invalid prevhash");
					signing_abort();
					return;
				}
				if (idx1 < inputs_count - 1) {
					idx1++;
					send_req_1_input();
				} else {
					idx1 = 0;
					send_req_3_output();
				}
			}
			return;
		case STAGE_REQUEST_3_OUTPUT:
		{
			/* Downloaded output idx1 the first time.
			 *  Add it to transaction check
			 *  Ask for permission.
			 */
			bool is_change = false;

			if (tx->outputs[0].script_type == OutputScriptType_PAYTOMULTISIG &&
			    tx->outputs[0].has_multisig &&
			    multisig_fp_set && !multisig_fp_mismatch) {
				uint8_t h[32];
				if (cryptoMultisigFingerprint(&(tx->outputs[0].multisig), h) == 0) {
					fsm_sendFailure(FailureType_Failure_Other, "Error computing multisig fingeprint");
					signing_abort();
					return;
				}
				if (memcmp(multisig_fp, h, 32) == 0) {
					is_change = true;
				}
                        } else {
                            if(tx->outputs[0].has_address_type) {
                                if(check_valid_output_address(tx->outputs) == false) {
                                    fsm_sendFailure(FailureType_Failure_Other, "Invalid output address type");
                                    signing_abort();
                                    return;
                                }

                                if(tx->outputs[0].script_type == OutputScriptType_PAYTOADDRESS &&
                                        tx->outputs[0].address_n_count > 0 &&
                                        tx->outputs[0].address_type == OutputAddressType_CHANGE) {
                                    is_change = true;
                                }
                            }
                            else if(tx->outputs[0].script_type == OutputScriptType_PAYTOADDRESS &&
                                    tx->outputs[0].address_n_count > 0) {
                                is_change = true;
                            }
                        }

			if (is_change) {
				if (change_spend == 0) { // not set
					change_spend = tx->outputs[0].amount;
				} else {
					fsm_sendFailure(FailureType_Failure_Other, "Only one change output allowed");
					signing_abort();
					return;
			    }
			}

			spending += tx->outputs[0].amount;
			co = compile_output(coin, root, tx->outputs, &bin_output, !is_change);

			if (co < 0) {
				fsm_sendFailure(FailureType_Failure_Other, "Signing cancelled by user");
				signing_abort();
				return;
			} else if (co == 0) {
				fsm_sendFailure(FailureType_Failure_Other, "Failed to compile output");
				signing_abort();
				return;
			}
			sha256_Update(&tc, (const uint8_t *)&bin_output, sizeof(TxOutputBinType));
			if (idx1 < outputs_count - 1) {
				idx1++;
				send_req_3_output();
			} else {
                            sha256_Final(hash_check, &tc);
                            // check fees
                            if (spending > to_spend) {
                                fsm_sendFailure(FailureType_Failure_NotEnoughFunds, "Not enough funds");
		                        signing_abort();
                                return;
                            }
                            uint64_t fee = to_spend - spending;
                            uint32_t tx_est_size = transactionEstimateSizeKb(inputs_count, outputs_count);
                            char total_amount_str[32];
		            char fee_str[32];

		            coin_amnt_to_str(coin, fee, fee_str, sizeof(fee_str));

                            if(fee > (uint64_t)tx_est_size * coin->maxfee_kb) {
			        if (!confirm(ButtonRequestType_ButtonRequest_FeeOverThreshold,
		                        "Confirm Fee", "%s", fee_str)) {
		                    fsm_sendFailure(FailureType_Failure_ActionCancelled, "Fee over threshold. Signing cancelled.");
		                    signing_abort();
		                    return;
		                }

                            }
                            // last confirmation
                            coin_amnt_to_str(coin, to_spend - change_spend, total_amount_str, sizeof(total_amount_str));

		            if(!confirm_transaction(total_amount_str, fee_str))
		            {
		                fsm_sendFailure(FailureType_Failure_ActionCancelled, "Signing cancelled by user");
		                signing_abort();
		                return;
		            }
		            // Everything was checked, now phase 2 begins and the transaction is signed.
		            layout_simple_message("Signing Transaction...");

			    idx1 = 0;
			    idx2 = 0;
			    send_req_4_input();
			}
			return;
		}
		case STAGE_REQUEST_4_INPUT:
			if (idx2 == 0) {
				tx_init(&ti, inputs_count, outputs_count, version, lock_time, true);
				sha256_Init(&tc);
				sha256_Update(&tc, (const uint8_t *)&inputs_count, sizeof(inputs_count));
				sha256_Update(&tc, (const uint8_t *)&outputs_count, sizeof(outputs_count));
				sha256_Update(&tc, (const uint8_t *)&version, sizeof(version));
				sha256_Update(&tc, (const uint8_t *)&lock_time, sizeof(lock_time));
				memset(privkey, 0, 32);
				memset(pubkey, 0, 33);
			}
			sha256_Update(&tc, (const uint8_t *)tx->inputs, sizeof(TxInputType));
			if (idx2 == idx1) {
				memcpy(&input, tx->inputs, sizeof(TxInputType));
				memcpy(&node, root, sizeof(HDNode));
				if (hdnode_private_ckd_cached(&node, tx->inputs[0].address_n, tx->inputs[0].address_n_count) == 0) {
					fsm_sendFailure(FailureType_Failure_Other, "Failed to derive private key");
					signing_abort();
					return;
				}
				if (tx->inputs[0].script_type == InputScriptType_SPENDMULTISIG) {
					if (!tx->inputs[0].has_multisig) {
						fsm_sendFailure(FailureType_Failure_Other, "Multisig info not provided");
						signing_abort();
						return;
					}
					tx->inputs[0].script_sig.size = compile_script_multisig(&(tx->inputs[0].multisig), tx->inputs[0].script_sig.bytes);
				} else { // SPENDADDRESS
					ecdsa_get_pubkeyhash(node.public_key, hash);
					tx->inputs[0].script_sig.size = compile_script_sig(coin->address_type, hash, tx->inputs[0].script_sig.bytes);
				}
				if (tx->inputs[0].script_sig.size == 0) {
					fsm_sendFailure(FailureType_Failure_Other, "Failed to compile input");
					signing_abort();
					return;
				}
				memcpy(privkey, node.private_key, 32);
				memcpy(pubkey, node.public_key, 33);
			} else {
				tx->inputs[0].script_sig.size = 0;
			}
			if (!tx_serialize_input_hash(&ti, tx->inputs)) {
				fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize input");
				signing_abort();
				return;
			}
			if (idx2 < inputs_count - 1) {
				idx2++;
				send_req_4_input();
			} else {
				idx2 = 0;
				send_req_4_output();
			}
			return;
		case STAGE_REQUEST_4_OUTPUT:
			co = compile_output(coin, root, tx->outputs, &bin_output, false);
			if (co < 0) {
				fsm_sendFailure(FailureType_Failure_Other, "Signing cancelled by user");
				signing_abort();
				return;
			} else if (co == 0) {
				fsm_sendFailure(FailureType_Failure_Other, "Failed to compile output");
				signing_abort();
				return;
			}
			sha256_Update(&tc, (const uint8_t *)&bin_output, sizeof(TxOutputBinType));
			if (!tx_serialize_output_hash(&ti, &bin_output)) {
				fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize output");
				signing_abort();
				return;
			}
			if (idx2 < outputs_count - 1) {
				idx2++;
				send_req_4_output();
			} else {
				sha256_Final(hash, &tc);
				if (memcmp(hash, hash_check, 32) != 0) {
					fsm_sendFailure(FailureType_Failure_Other, "Transaction has changed during signing");
					signing_abort();
					return;
				}
				tx_hash_final(&ti, hash, false);
				resp.has_serialized = true;
				resp.serialized.has_signature_index = true;
				resp.serialized.signature_index = idx1;
				resp.serialized.has_signature = true;
				resp.serialized.has_serialized_tx = true;
				ecdsa_sign_digest(&secp256k1, privkey, hash, sig, 0);
				resp.serialized.signature.size = ecdsa_sig_to_der(sig, resp.serialized.signature.bytes);
				if (input.script_type == InputScriptType_SPENDMULTISIG) {
					if (!input.has_multisig) {
						fsm_sendFailure(FailureType_Failure_Other, "Multisig info not provided");
						signing_abort();
						return;
					}
					// fill in the signature
					int pubkey_idx = cryptoMultisigPubkeyIndex(&(input.multisig), pubkey);
					if (pubkey_idx < 0) {
						fsm_sendFailure(FailureType_Failure_Other, "Pubkey not found in multisig script");
						signing_abort();
						return;
					}
					memcpy(input.multisig.signatures[pubkey_idx].bytes, resp.serialized.signature.bytes, resp.serialized.signature.size);
					input.multisig.signatures[pubkey_idx].size = resp.serialized.signature.size;
					input.script_sig.size = serialize_script_multisig(&(input.multisig), input.script_sig.bytes);
					if (input.script_sig.size == 0) {
						fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize multisig script");
						signing_abort();
						return;
					}
				} else { // SPENDADDRESS
					input.script_sig.size = serialize_script_sig(resp.serialized.signature.bytes, resp.serialized.signature.size, pubkey, 33, input.script_sig.bytes);
				}
				resp.serialized.serialized_tx.size = tx_serialize_input(&to, &input, resp.serialized.serialized_tx.bytes);

				if (idx1 < inputs_count - 1) {
					idx1++;
					idx2 = 0;
					send_req_4_input();
				} else {
					idx1 = 0;
					send_req_5_output();
				}
			}
			return;
		case STAGE_REQUEST_5_OUTPUT:
			if (compile_output(coin, root, tx->outputs, &bin_output,false) <= 0) {
				fsm_sendFailure(FailureType_Failure_Other, "Failed to compile output");
				signing_abort();
				return;
			}
			resp.has_serialized = true;
			resp.serialized.has_serialized_tx = true;
			resp.serialized.serialized_tx.size = tx_serialize_output(&to, &bin_output, resp.serialized.serialized_tx.bytes);
			if (idx1 < outputs_count - 1) {
				idx1++;
				send_req_5_output();
			} else {
				send_req_finished();
				signing_abort();
			}
			return;
	}

	fsm_sendFailure(FailureType_Failure_Other, "Signing error");
	signing_abort();
}
Ejemplo n.º 3
0
int main(int argc, char **argv) {
  if (argc != 2 && argc != 3) {
    fprintf(stderr, "Usage: bip39bruteforce address [mnemonic]\n");
    return 1;
  }
  const char *address = argv[1];
  const char *mnemonic, *item;
  if (argc == 3) {
    mnemonic = argv[2];
    item = "passphrase";
  } else {
    mnemonic = NULL;
    item = "mnemonic";
  }
  if (mnemonic && !mnemonic_check(mnemonic)) {
    fprintf(stderr, "\"%s\" is not a valid mnemonic\n", mnemonic);
    return 2;
  }
  if (!ecdsa_address_decode(address, 0, secp256k1_info.hasher_base58, addr)) {
    fprintf(stderr, "\"%s\" is not a valid address\n", address);
    return 3;
  }
  printf("Reading %ss from stdin ...\n", item);
  start = clock();
  for (;;) {
    if (fgets(iter, 256, stdin) == NULL) break;
    int len = strlen(iter);
    if (len <= 0) {
      continue;
    }
    count++;
    iter[len - 1] = 0;
    if (mnemonic) {
      mnemonic_to_seed(mnemonic, iter, seed, NULL);
    } else {
      mnemonic_to_seed(iter, "", seed, NULL);
    }
    hdnode_from_seed(seed, 512 / 8, SECP256K1_NAME, &node);
    hdnode_private_ckd_prime(&node, 44);
    hdnode_private_ckd_prime(&node, 0);
    hdnode_private_ckd_prime(&node, 0);
    hdnode_private_ckd(&node, 0);
    hdnode_private_ckd(&node, 0);
    hdnode_fill_public_key(&node);
    ecdsa_get_pubkeyhash(node.public_key, secp256k1_info.hasher_pubkey,
                         pubkeyhash);
    if (memcmp(addr + 1, pubkeyhash, 20) == 0) {
      found = 1;
      break;
    }
  }
  float dur = (float)(clock() - start) / CLOCKS_PER_SEC;
  printf("Tried %d %ss in %f seconds = %f tries/second\n", count, item, dur,
         (float)count / dur);
  if (found) {
    printf("Correct %s found! :-)\n\"%s\"\n", item, iter);
    return 0;
  }
  printf("Correct %s not found. :-(\n", item);
  return 4;
}