static typename edge_capacity_value<Graph, P, T, R>::type
 apply
 (Graph& g,
  typename graph_traits<Graph>::vertex_descriptor src,
  typename graph_traits<Graph>::vertex_descriptor sink,
  PredMap pred,
  const bgl_named_params<P, T, R>& params,
  detail::error_property_not_found)
 {
   typedef typename graph_traits<Graph>::edge_descriptor edge_descriptor;
   typedef typename graph_traits<Graph>::vertices_size_type size_type;
   size_type n = is_default_param(get_param(params, vertex_color)) ?
     num_vertices(g) : 1;
   std::vector<default_color_type> color_vec(n);
   return edmunds_karp_max_flow
     (g, src, sink, 
      choose_const_pmap(get_param(params, edge_capacity), g, edge_capacity),
      choose_pmap(get_param(params, edge_residual_capacity), 
                  g, edge_residual_capacity),
      choose_const_pmap(get_param(params, edge_reverse), g, edge_reverse),
      make_iterator_property_map(color_vec.begin(), choose_const_pmap
                                 (get_param(params, vertex_index),
                                  g, vertex_index), color_vec[0]),
      pred);
 }
 typename property_traits<
   typename property_map<Graph, edge_capacity_t>::const_type
 >::value_type
 edmunds_karp_max_flow
   (Graph& g,
    typename graph_traits<Graph>::vertex_descriptor src,
    typename graph_traits<Graph>::vertex_descriptor sink)
 {
   bgl_named_params<int, buffer_param_t> params(0);
   return edmunds_karp_max_flow(g, src, sink, params);
 }
 static typename edge_capacity_value<Graph, P, T, R>::type
 apply
 (Graph& g,
  typename graph_traits<Graph>::vertex_descriptor src,
  typename graph_traits<Graph>::vertex_descriptor sink,
  PredMap pred,
  const bgl_named_params<P, T, R>& params,
  ColorMap color)
 {
   return edmunds_karp_max_flow
     (g, src, sink, 
      choose_const_pmap(get_param(params, edge_capacity), g, edge_capacity),
      choose_pmap(get_param(params, edge_residual_capacity), 
                  g, edge_residual_capacity),
      choose_const_pmap(get_param(params, edge_reverse), g, edge_reverse),
      color, pred);
 }
Ejemplo n.º 4
0
  typename graph_traits<VertexListGraph>::degree_size_type
  edge_connectivity(VertexListGraph& g, OutputIterator disconnecting_set)
  {
    //-------------------------------------------------------------------------
    // Type Definitions
    typedef graph_traits<VertexListGraph> Traits;
    typedef typename Traits::vertex_iterator vertex_iterator;
    typedef typename Traits::edge_iterator edge_iterator;
    typedef typename Traits::out_edge_iterator out_edge_iterator;
    typedef typename Traits::vertex_descriptor vertex_descriptor;
    typedef typename Traits::degree_size_type degree_size_type;
    typedef color_traits<default_color_type> Color;

    typedef adjacency_list_traits<vecS, vecS, directedS> Tr;
    typedef typename Tr::edge_descriptor Tr_edge_desc;
    typedef adjacency_list<vecS, vecS, directedS, no_property, 
      property<edge_capacity_t, degree_size_type,
	property<edge_residual_capacity_t, degree_size_type,
	  property<edge_reverse_t, Tr_edge_desc> > > > 
      FlowGraph;
    typedef typename graph_traits<FlowGraph>::edge_descriptor edge_descriptor;

    //-------------------------------------------------------------------------
    // Variable Declarations
    vertex_descriptor u, v, p, k;
    edge_descriptor e1, e2;
    bool inserted;
    vertex_iterator vi, vi_end;
    edge_iterator ei, ei_end;
    degree_size_type delta, alpha_star, alpha_S_k;
    std::set<vertex_descriptor> S, neighbor_S;
    std::vector<vertex_descriptor> S_star, non_neighbor_S;
    std::vector<default_color_type> color(num_vertices(g));
    std::vector<edge_descriptor> pred(num_vertices(g));

    //-------------------------------------------------------------------------
    // Create a network flow graph out of the undirected graph
    FlowGraph flow_g(num_vertices(g));

    typename property_map<FlowGraph, edge_capacity_t>::type
      cap = get(edge_capacity, flow_g);
    typename property_map<FlowGraph, edge_residual_capacity_t>::type
      res_cap = get(edge_residual_capacity, flow_g);
    typename property_map<FlowGraph, edge_reverse_t>::type
      rev_edge = get(edge_reverse, flow_g);

    for (tie(ei, ei_end) = edges(g); ei != ei_end; ++ei) {
      u = source(*ei, g), v = target(*ei, g);
      tie(e1, inserted) = add_edge(u, v, flow_g);
      cap[e1] = 1;
      tie(e2, inserted) = add_edge(v, u, flow_g);
      cap[e2] = 1; // not sure about this
      rev_edge[e1] = e2;
      rev_edge[e2] = e1;
    }

    //-------------------------------------------------------------------------
    // The Algorithm

    tie(p, delta) = detail::min_degree_vertex(g);
    S_star.push_back(p);
    alpha_star = delta;
    S.insert(p);
    neighbor_S.insert(p);
    detail::neighbors(g, S.begin(), S.end(), 
		      std::inserter(neighbor_S, neighbor_S.begin()));

    std::set_difference(vertices(g).first, vertices(g).second,
			neighbor_S.begin(), neighbor_S.end(),
			std::back_inserter(non_neighbor_S));

    while (!non_neighbor_S.empty()) { // at most n - 1 times
      k = non_neighbor_S.front();

      alpha_S_k = edmunds_karp_max_flow
	(flow_g, p, k, cap, res_cap, rev_edge, &color[0], &pred[0]);

      if (alpha_S_k < alpha_star) {
	alpha_star = alpha_S_k;
	S_star.clear();
	for (tie(vi, vi_end) = vertices(flow_g); vi != vi_end; ++vi)
	  if (color[*vi] != Color::white())
	    S_star.push_back(*vi);
      }
      S.insert(k);
      neighbor_S.insert(k);
      detail::neighbors(g, k, std::inserter(neighbor_S, neighbor_S.begin()));
      non_neighbor_S.clear();
      std::set_difference(vertices(g).first, vertices(g).second,
			  neighbor_S.begin(), neighbor_S.end(),
			  std::back_inserter(non_neighbor_S));
    }
    //-------------------------------------------------------------------------
    // Compute edges of the cut [S*, ~S*]
    std::vector<bool> in_S_star(num_vertices(g), false);
    typename std::vector<vertex_descriptor>::iterator si;
    for (si = S_star.begin(); si != S_star.end(); ++si)
      in_S_star[*si] = true;

    degree_size_type c = 0;
    for (si = S_star.begin(); si != S_star.end(); ++si) {
      out_edge_iterator ei, ei_end;
      for (tie(ei, ei_end) = out_edges(*si, g); ei != ei_end; ++ei)
	if (!in_S_star[target(*ei, g)]) {
	  *disconnecting_set++ = *ei;
	  ++c;
	}
    }
    return c;
  }