bool javaVFrame::structural_compare(javaVFrame* other) { // Check static part if (method() != other->method()) return false; if (bci() != other->bci()) return false; // Check locals StackValueCollection *locs = locals(); StackValueCollection *other_locs = other->locals(); assert(locs->size() == other_locs->size(), "sanity check"); int i; for(i = 0; i < locs->size(); i++) { // it might happen the compiler reports a conflict and // the interpreter reports a bogus int. if ( is_compiled_frame() && locs->at(i)->type() == T_CONFLICT) continue; if (other->is_compiled_frame() && other_locs->at(i)->type() == T_CONFLICT) continue; if (!locs->at(i)->equal(other_locs->at(i))) return false; } // Check expressions StackValueCollection* exprs = expressions(); StackValueCollection* other_exprs = other->expressions(); assert(exprs->size() == other_exprs->size(), "sanity check"); for(i = 0; i < exprs->size(); i++) { if (!exprs->at(i)->equal(other_exprs->at(i))) return false; } return true; }
ExpressionsPtr Parser::parseExpressionList() { if (m_curToken.tokenType() != TokenType::Identifier && m_curToken.tokenType() != TokenType::AddOp && m_curToken.tokenType() != TokenType::Number && m_curToken.tokenType() != TokenType::LParen && m_curToken.tokenType() != TokenType::Not) { return ExpressionsPtr(); } ExpressionsPtr expressions(new Expressions); ExpressionPtr curExpression = parseExpression(); if (m_errorCode > ErrorCodes::NoError) { return ExpressionsPtr(); } expressions->list.push_back(curExpression); ExpressionsPtr rest = parseExpressionList_r(); if (rest) { expressions->list.insert(expressions->list.end(), rest->list.begin(), rest->list.end()); } return expressions; }
std::shared_ptr<NeumannBCAbstract> ParsedFunctionNeumannBCFactoryHelper<FunctionType>::build_neumman_func_common( const GetPot& input, MultiphysicsSystem& system, const FEVariablesBase& fe_var, const std::string& flux_input ) { const std::vector<std::string>& var_names = fe_var.active_var_names(); std::shared_ptr<NeumannBCAbstract> func; // Use "standard" parsed version if there's only one variable if( var_names.size() == 1 ) { libmesh_assert_equal_to( fe_var.var_indices().size(), 1 ); std::string expression = input(flux_input,std::string("DIE!")); func = this->build_parsed_neumann_func(system,expression,fe_var.var_indices()[0]); } // Otherwise, use the composite versions else { libmesh_assert_equal_to( fe_var.var_indices().size(), var_names.size() ); // We already checked size consistency for flux input and var_names // so just use var_names for the size std::vector<std::string> expressions(var_names.size()); for( unsigned int i = 0; i < var_names.size(); i++ ) expressions[i] = input(flux_input,std::string("DIE!"),i); func = this->build_composite_parsed_neumann_func(system,expressions,fe_var.var_indices()); } return func; }
void javaVFrame::print() { ResourceMark rm; vframe::print(); tty->print("\t"); method()->print_value(); tty->cr(); tty->print_cr("\tbci: %d", bci()); print_stack_values("locals", locals()); print_stack_values("expressions", expressions()); GrowableArray<MonitorInfo*>* list = monitors(); if (list->is_empty()) return; tty->print_cr("\tmonitor list:"); for (int index = (list->length()-1); index >= 0; index--) { MonitorInfo* monitor = list->at(index); tty->print("\t obj\t"); if (monitor->owner_is_scalar_replaced()) { Klass* k = java_lang_Class::as_Klass(monitor->owner_klass()); tty->print("( is scalar replaced %s)", k->external_name()); } else if (monitor->owner() == NULL) { tty->print("( null )"); } else { monitor->owner()->print_value(); tty->print("(" INTPTR_FORMAT ")", (address)monitor->owner()); } if (monitor->eliminated() && is_compiled_frame()) tty->print(" ( lock is eliminated )"); tty->cr(); tty->print("\t "); monitor->lock()->print_on(tty); tty->cr(); } }
nsresult nsAbQueryStringToExpression::ParseExpressions ( const char** index, nsIAbBooleanExpression* expression) { nsresult rv; nsCOMPtr<nsIMutableArray> expressions(do_CreateInstance(NS_ARRAY_CONTRACTID, &rv)); if (NS_FAILED(rv)) return NS_ERROR_OUT_OF_MEMORY; // Case: ")(*)(*)....(*))" // printf ("Case: )(*)(*)....(*)): %s\n", *index); while (**index == '(') { nsCOMPtr<nsISupports> childExpression; rv = ParseExpression(index, getter_AddRefs (childExpression)); NS_ENSURE_SUCCESS(rv, rv); expressions->AppendElement(childExpression, false); } if (**index == 0) return NS_ERROR_FAILURE; // Case: "))" // printf ("Case: )): %s\n", *index); if (**index != ')') return NS_ERROR_FAILURE; expression->SetExpressions (expressions); return NS_OK; }
int GMSH_CutParametricPlugin::fillXYZ() { std::vector<std::string> expressions(3), variables(2); for(int i = 0; i < 3; i++) expressions[i] = CutParametricOptions_String[i].def; variables[0] = "u"; variables[1] = "v"; mathEvaluator f(expressions, variables); if(expressions.empty()) return 0; int nbU = (int)CutParametricOptions_Number[2].def; int nbV = (int)CutParametricOptions_Number[5].def; x.resize(nbU * nbV); y.resize(nbU * nbV); z.resize(nbU * nbV); std::vector<double> val(2), res(3); for(int i = 0; i < nbU; ++i){ val[0] = getU(i); for(int j = 0; j < nbV; ++j){ val[1] = getV(j); if(f.eval(val, res)){ x[i * nbV + j] = res[0]; y[i * nbV + j] = res[1]; z[i * nbV + j] = res[2]; } } } return 1; }
void ScopeDesc::verify() { ResourceMark rm; guarantee(method()->is_method(), "type check"); // check if we have any illegal elements on the expression stack { GrowableArray<ScopeValue*>* l = expressions(); if (l != NULL) { for (int index = 0; index < l->length(); index++) { //guarantee(!l->at(index)->is_illegal(), "expression element cannot be illegal"); } } } }
gmshParametricSurface::gmshParametricSurface(char *valX, char *valY, char *valZ) { std::vector<std::string> expressions(3), variables(2); expressions[0] = valX; expressions[1] = valY; expressions[2] = valZ; variables[0] = "u"; variables[1] = "v"; _f = new mathEvaluator(expressions, variables); if(expressions.empty()){ delete _f; _f = 0; } }
int vframeArrayElement::on_stack_size(int callee_parameters, int callee_locals, bool is_top_frame, int popframe_extra_stack_expression_els) const { assert(method()->max_locals() == locals()->size(), "just checking"); int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors(); int temps = expressions()->size(); return Interpreter::size_activation(method()->max_stack(), temps + callee_parameters, popframe_extra_stack_expression_els, locks, callee_parameters, callee_locals, is_top_frame); }
void PViewOptions::createGeneralRaise() { const char *names[] = { "x", "y", "z", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "s", "t"}; unsigned int numVariables = sizeof(names) / sizeof(names[0]); std::vector<std::string> expressions(3), variables(numVariables); expressions[0] = genRaiseX; expressions[1] = genRaiseY; expressions[2] = genRaiseZ; for(unsigned int i = 0; i < numVariables; i++) variables[i] = names[i]; if(genRaiseEvaluator) delete genRaiseEvaluator; genRaiseEvaluator = new mathEvaluator(expressions, variables); if(expressions.empty()){ delete genRaiseEvaluator; genRaiseEvaluator = 0; } }
void javaVFrame::print() { ResourceMark rm; vframe::print(); tty->print("\t"); method()->print_value(); tty->cr(); tty->print_cr("\tbci: %d", bci()); print_stack_values("locals", locals()); print_stack_values("expressions", expressions()); GrowableArray<MonitorInfo*>* list = monitors(); if (list->is_empty()) return; tty->print_cr("\tmonitor list:"); for (int index = (list->length()-1); index >= 0; index--) { MonitorInfo* monitor = list->at(index); tty->print("\t obj\t"); monitor->owner()->print_value(); tty->print("(" INTPTR_FORMAT ")", monitor->owner()); tty->cr(); tty->print("\t "); monitor->lock()->print_on(tty); tty->cr(); } }
/* ARGSUSED1 */ static void Key ( unsigned char key, int x, int y ) { char title[512]; switch ( key ) { case 27 : case 'q' : case 'Q' : exit (0) ; case 'r' : case 'R' : printf ("Rereading expression file\n"); read_expressions(); e = 0; /* reset the expression count variable */ glutPostRedisplay(); break; case 'a' : printf ("increment muscle: %s\n", face->muscle[m]->name ) ; /* set the muscle activation */ face->muscle[m]->mstat += 0.1 ; activate_muscle ( face, face->muscle[m]->head, face->muscle[m]->tail, face->muscle[m]->fs, face->muscle[m]->fe, face->muscle[m]->zone, 0.1 ) ; glutPostRedisplay(); break; case 'A' : printf ("decrement muscle: %s\n", face->muscle[m]->name ) ; face->muscle[m]->mstat -= 0.1 ; activate_muscle ( face, face->muscle[m]->head, face->muscle[m]->tail, face->muscle[m]->fs, face->muscle[m]->fe, face->muscle[m]->zone, -0.1 ) ; glutPostRedisplay(); break; case 'b' : DRAW_MODE++ ; if ( DRAW_MODE >= 3 ) DRAW_MODE = 0 ; printf ("draw mode: %d\n", DRAW_MODE ) ; glutPostRedisplay(); break; case 'c' : face_reset ( face ) ; glutPostRedisplay(); break; case 'n' : m++ ; if ( m >= face->nmuscles ) m = 0 ; sprintf(title, "geoface (%s)", face->muscle[m]->name); glutSetWindowTitle(title); break; case 'e' : if (face->expression) { face_reset ( face ) ; expressions ( face, e ) ; e++ ; if ( e >= face->nexpressions ) e = 0 ; glutPostRedisplay(); } break; case 'h' : print_mesg(); } }
PView *GMSH_ModifyComponentPlugin::execute(PView *view) { int component = (int)ModifyComponentOptions_Number[0].def; int timeStep = (int)ModifyComponentOptions_Number[1].def; int iView = (int)ModifyComponentOptions_Number[2].def; int otherTimeStep = (int)ModifyComponentOptions_Number[3].def; int otherView = (int)ModifyComponentOptions_Number[4].def; int forceInterpolation = (int)ModifyComponentOptions_Number[5].def; PView *v1 = getView(iView, view); if(!v1) return view; PViewData *data1 = v1->getData(); if(timeStep > data1->getNumTimeSteps() - 1){ Msg::Error("Invalid time step (%d) in View[%d]: using step 0 instead", timeStep, v1->getIndex()); timeStep = 0; } PView *v2 = v1; if(otherView >= 0){ if(otherView < (int)PView::list.size()) v2 = PView::list[otherView]; else Msg::Error("View[%d] does not exist: using self", otherView); } PViewData *data2 = getPossiblyAdaptiveData(v2); if(otherTimeStep < 0 && data2->getNumTimeSteps() != data1->getNumTimeSteps()){ Msg::Error("Number of time steps don't match: using step 0"); otherTimeStep = 0; } else if(otherTimeStep > data2->getNumTimeSteps() - 1){ Msg::Error("Invalid time step (%d) in View[%d]: using step 0 instead", otherTimeStep, v2->getIndex()); otherTimeStep = 0; } const char *names[] = {"x", "y", "z", "Time", "TimeStep", "v", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8", "w", "w0", "w1", "w2", "w3", "w4", "w5", "w6", "w7", "w8"}; unsigned int numVariables = sizeof(names) / sizeof(names[0]); std::vector<std::string> expressions(1), variables(numVariables); expressions[0] = ModifyComponentOptions_String[0].def; for(unsigned int i = 0; i < numVariables; i++) variables[i] = names[i]; mathEvaluator f(expressions, variables); if(expressions.empty()) return view; std::vector<double> values(numVariables), res(1); OctreePost *octree = 0; if(forceInterpolation || (data1->getNumEntities() != data2->getNumEntities()) || (data1->getNumElements() != data2->getNumElements())){ Msg::Info("Other view based on different grid: interpolating..."); octree = new OctreePost(v2); } for(int step = 0; step < data1->getNumTimeSteps(); step++){ if(timeStep >= 0 && timeStep != step) continue; double time = data1->getTime(step); int step2 = (otherTimeStep < 0) ? step : otherTimeStep; // tag all the nodes with "0" (the default tag) for(int ent = 0; ent < data1->getNumEntities(step); ent++){ for(int ele = 0; ele < data1->getNumElements(step, ent); ele++){ if(data1->skipElement(step, ent, ele)) continue; for(int nod = 0; nod < data1->getNumNodes(step, ent, ele); nod++) data1->tagNode(step, ent, ele, nod, 0); } } for(int ent = 0; ent < data1->getNumEntities(step); ent++){ for(int ele = 0; ele < data1->getNumElements(step, ent); ele++){ if(data1->skipElement(step, ent, ele)) continue; int numComp = data1->getNumComponents(step, ent, ele); int numComp2 = octree ? 9 : data2->getNumComponents(step2, ent, ele); int numNodes = data1->getNumNodes(step, ent, ele); std::vector<int> tag(numNodes); std::vector<double> x(numNodes), y(numNodes), z(numNodes); for(int nod = 0; nod < numNodes; nod++) tag[nod] = data1->getNode(step, ent, ele, nod, x[nod], y[nod], z[nod]); for(int nod = 0; nod < numNodes; nod++){ if(tag[nod]) continue; // node has already been modified std::vector<double> v(std::max(9, numComp), 0.); for(int comp = 0; comp < numComp; comp++) data1->getValue(step, ent, ele, nod, comp, v[comp]); std::vector<double> w(std::max(9, numComp2), 0.); if(octree){ int qn = forceInterpolation ? numNodes : 0; if(!octree->searchScalar(x[nod], y[nod], z[nod], &w[0], step2, 0, qn, &x[0], &y[0], &z[0])) if(!octree->searchVector(x[nod], y[nod], z[nod], &w[0], step2, 0, qn, &x[0], &y[0], &z[0])) octree->searchTensor(x[nod], y[nod], z[nod], &w[0], step2, 0, qn, &x[0], &y[0], &z[0]); } else for(int comp = 0; comp < numComp2; comp++) data2->getValue(step2, ent, ele, nod, comp, w[comp]); for(int comp = 0; comp < numComp; comp++){ if(component >= 0 && component != comp) continue; values[0] = x[nod]; values[1] = y[nod]; values[2] = z[nod]; values[3] = time; values[4] = step; values[5] = v[comp]; for(int i = 0; i < 9; i++) values[6 + i] = v[i]; values[15] = w[comp]; for(int i = 0; i < 9; i++) values[16 + i] = w[i]; if(f.eval(values, res)) data1->setValue(step, ent, ele, nod, comp, res[0]); data1->tagNode(step, ent, ele, nod, 1); } } } } } if(octree) delete octree; data1->finalize(); v1->setChanged(true); return v1; }
void vframeArrayElement::unpack_on_stack(int caller_actual_parameters, int callee_parameters, int callee_locals, frame* caller, bool is_top_frame, bool is_bottom_frame, int exec_mode) { JavaThread* thread = (JavaThread*) Thread::current(); // Look at bci and decide on bcp and continuation pc address bcp; // C++ interpreter doesn't need a pc since it will figure out what to do when it // begins execution address pc; bool use_next_mdp = false; // true if we should use the mdp associated with the next bci // rather than the one associated with bcp if (raw_bci() == SynchronizationEntryBCI) { // We are deoptimizing while hanging in prologue code for synchronized method bcp = method()->bcp_from(0); // first byte code pc = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode } else if (should_reexecute()) { //reexecute this bytecode assert(is_top_frame, "reexecute allowed only for the top frame"); bcp = method()->bcp_from(bci()); pc = Interpreter::deopt_reexecute_entry(method(), bcp); } else { bcp = method()->bcp_from(bci()); pc = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame); use_next_mdp = true; } assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode"); // Monitorenter and pending exceptions: // // For Compiler2, there should be no pending exception when deoptimizing at monitorenter // because there is no safepoint at the null pointer check (it is either handled explicitly // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER). If an asynchronous // exception was processed, the bytecode pointer would have to be extended one bytecode beyond // the monitorenter to place it in the proper exception range. // // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter, // in which case bcp should point to the monitorenter since it is within the exception's range. assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame"); assert(thread->deopt_nmethod() != NULL, "nmethod should be known"); guarantee(!(thread->deopt_nmethod()->is_compiled_by_c2() && *bcp == Bytecodes::_monitorenter && exec_mode == Deoptimization::Unpack_exception), "shouldn't get exception during monitorenter"); int popframe_preserved_args_size_in_bytes = 0; int popframe_preserved_args_size_in_words = 0; if (is_top_frame) { JvmtiThreadState *state = thread->jvmti_thread_state(); if (JvmtiExport::can_pop_frame() && (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) { if (thread->has_pending_popframe()) { // Pop top frame after deoptimization #ifndef CC_INTERP pc = Interpreter::remove_activation_preserving_args_entry(); #else // Do an uncommon trap type entry. c++ interpreter will know // to pop frame and preserve the args pc = Interpreter::deopt_entry(vtos, 0); use_next_mdp = false; #endif } else { // Reexecute invoke in top frame pc = Interpreter::deopt_entry(vtos, 0); use_next_mdp = false; popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size()); // Note: the PopFrame-related extension of the expression stack size is done in // Deoptimization::fetch_unroll_info_helper popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words()); } } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) { // Force early return from top frame after deoptimization #ifndef CC_INTERP pc = Interpreter::remove_activation_early_entry(state->earlyret_tos()); #else // TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64) #endif } else { // Possibly override the previous pc computation of the top (youngest) frame switch (exec_mode) { case Deoptimization::Unpack_deopt: // use what we've got break; case Deoptimization::Unpack_exception: // exception is pending pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc); // [phh] We're going to end up in some handler or other, so it doesn't // matter what mdp we point to. See exception_handler_for_exception() // in interpreterRuntime.cpp. break; case Deoptimization::Unpack_uncommon_trap: case Deoptimization::Unpack_reexecute: // redo last byte code pc = Interpreter::deopt_entry(vtos, 0); use_next_mdp = false; break; default: ShouldNotReachHere(); } } } // Setup the interpreter frame assert(method() != NULL, "method must exist"); int temps = expressions()->size(); int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors(); Interpreter::layout_activation(method(), temps + callee_parameters, popframe_preserved_args_size_in_words, locks, caller_actual_parameters, callee_parameters, callee_locals, caller, iframe(), is_top_frame, is_bottom_frame); // Update the pc in the frame object and overwrite the temporary pc // we placed in the skeletal frame now that we finally know the // exact interpreter address we should use. _frame.patch_pc(thread, pc); assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors"); BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin(); for (int index = 0; index < locks; index++) { top = iframe()->previous_monitor_in_interpreter_frame(top); BasicObjectLock* src = _monitors->at(index); top->set_obj(src->obj()); src->lock()->move_to(src->obj(), top->lock()); } if (ProfileInterpreter) { iframe()->interpreter_frame_set_mdx(0); // clear out the mdp. } iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet if (ProfileInterpreter) { methodDataOop mdo = method()->method_data(); if (mdo != NULL) { int bci = iframe()->interpreter_frame_bci(); if (use_next_mdp) ++bci; address mdp = mdo->bci_to_dp(bci); iframe()->interpreter_frame_set_mdp(mdp); } } // Unpack expression stack // If this is an intermediate frame (i.e. not top frame) then this // only unpacks the part of the expression stack not used by callee // as parameters. The callee parameters are unpacked as part of the // callee locals. int i; for(i = 0; i < expressions()->size(); i++) { StackValue *value = expressions()->at(i); intptr_t* addr = iframe()->interpreter_frame_expression_stack_at(i); switch(value->type()) { case T_INT: *addr = value->get_int(); break; case T_OBJECT: *addr = value->get_int(T_OBJECT); break; case T_CONFLICT: // A dead stack slot. Initialize to null in case it is an oop. *addr = NULL_WORD; break; default: ShouldNotReachHere(); } } // Unpack the locals for(i = 0; i < locals()->size(); i++) { StackValue *value = locals()->at(i); intptr_t* addr = iframe()->interpreter_frame_local_at(i); switch(value->type()) { case T_INT: *addr = value->get_int(); break; case T_OBJECT: *addr = value->get_int(T_OBJECT); break; case T_CONFLICT: // A dead location. If it is an oop then we need a NULL to prevent GC from following it *addr = NULL_WORD; break; default: ShouldNotReachHere(); } } if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) { // An interpreted frame was popped but it returns to a deoptimized // frame. The incoming arguments to the interpreted activation // were preserved in thread-local storage by the // remove_activation_preserving_args_entry in the interpreter; now // we put them back into the just-unpacked interpreter frame. // Note that this assumes that the locals arena grows toward lower // addresses. if (popframe_preserved_args_size_in_words != 0) { void* saved_args = thread->popframe_preserved_args(); assert(saved_args != NULL, "must have been saved by interpreter"); #ifdef ASSERT assert(popframe_preserved_args_size_in_words <= iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords, "expression stack size should have been extended"); #endif // ASSERT int top_element = iframe()->interpreter_frame_expression_stack_size()-1; intptr_t* base; if (frame::interpreter_frame_expression_stack_direction() < 0) { base = iframe()->interpreter_frame_expression_stack_at(top_element); } else { base = iframe()->interpreter_frame_expression_stack(); } Copy::conjoint_jbytes(saved_args, base, popframe_preserved_args_size_in_bytes); thread->popframe_free_preserved_args(); } } #ifndef PRODUCT if (TraceDeoptimization && Verbose) { ttyLocker ttyl; tty->print_cr("[%d Interpreted Frame]", ++unpack_counter); iframe()->print_on(tty); RegisterMap map(thread); vframe* f = vframe::new_vframe(iframe(), &map, thread); f->print(); tty->print_cr("locals size %d", locals()->size()); tty->print_cr("expression size %d", expressions()->size()); method()->print_value(); tty->cr(); // method()->print_codes(); } else if (TraceDeoptimization) { tty->print(" "); method()->print_value(); Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp); int bci = method()->bci_from(bcp); tty->print(" - %s", Bytecodes::name(code)); tty->print(" @ bci %d ", bci); tty->print_cr("sp = " PTR_FORMAT, iframe()->sp()); } #endif // PRODUCT // The expression stack and locals are in the resource area don't leave // a dangling pointer in the vframeArray we leave around for debug // purposes _locals = _expressions = NULL; }
int main (int argc, char **argv) { IloEnv env; try { IloCplex cplex(env); IloTimer timer(env); const IloNum startTime = cplex.getCplexTime(); parseCommandLine(argc, argv); printCommandLine(argc, argv); // set all default constraint weights as zero consWts["NonOperatorsAtMostOnce"] = 0; consWts["StackDepthUpperBound"] = 0; consWts["ExactlyOneUnknown"] = 0; consWts["NoTwoConsecutiveMultiplications"] = 0; // note: this may be disabled if word "dozen" appears consWts["NoTwoConsecutiveDivisions"] = 0; consWts["NoConsecutiveMultAndDiv"] = 0; consWts["NoNegatives"] = 0; consWts["TypeConsistency"] = 0; consWts["EqualityFirstOrLast"] = 0; consWts["IntConstantsImplyIntUnknown"] = 0; consWts["PreserveOrderingInText"] = 0; consWts["UnknownFirstOrLast"] = 0; consWts["EqualityNextToUnknown"] = 0; consWts["HasAddition"] = 0; consWts["HasSubtraction"] = 0; consWts["HasMultiplication"] = 0; consWts["HasDivision"] = 0; // parse config file defining constraint weights parseConfigFile(param_wts_config_file); cout << "Starting IloTimer" << endl; timer.start(); // parse arithmetic model parameters; note: this may override previously // set constraint weights if (strlen(arith_filename) > 0) parseInputFile(arith_filename); // set cplex paramters setCplexParameters(cplex); // import or build the model IloModel model(env); IloObjective obj(env); IloNumVarArray corevars(env); IloRangeArray rngs(env); if (strlen(mip_filename) > 0) { cout << "------- Importing the model -------" << endl; cplex.importModel(model, mip_filename, obj, corevars, rngs); cout << "Model imported at " << (cplex.getCplexTime() - startTime) << " sec" << endl; } else { cout << "------- Building the model -------" << endl; buildArithmeticModel(model, obj, corevars, rngs); } int nvars = corevars.getSize(); cout << "Number of Core Variables: " << nvars << endl; cplex.extract(model); cout << "Model extracted at " << (cplex.getCplexTime() - startTime) << " sec" << endl; // save the MIP model to a file, if desired if (!param_savemodel.empty()) { cout << endl << "Saving generated MIP model to " << param_savemodel << endl << endl; cplex.exportModel(param_savemodel.c_str()); } // find out whether it is a minimization problem or a maximization one bool isMinimization = true; if (cplex.getObjective().getSense() == IloObjective::Maximize) isMinimization = false; // ask cplex to use MIPInfoCallback cplex.use(MIPInfoCallback(env, isMinimization, cplex, startTime)); cout << "------- Solving the extracted model -------" << endl; //const bool solutionFound = cplex.solve(); const bool solutionFound = (param_nsolutions > 1 ? cplex.populate() : cplex.solve()); const int nSolutionsFound = cplex.getSolnPoolNsolns(); cout << "Stopping IloTimer" << endl; timer.stop(); const IloNum endTime = cplex.getCplexTime(); cout << "-------------------------------------------" << endl; printCommandLine(argc, argv); cout << "-------------------------------------------" << endl; cout << "Number of cplex nodes = " << cplex.getNnodes() << endl; cout << "Number of cplex iterations = " << cplex.getNiterations() << endl; cout << "Aggregated CPU time = " << timer.getTime() << " seconds" << endl; cout << "Elapsed wall clock time = " << endTime - startTime << " seconds" << endl; cout << "Number of threads used = " << param_threads << endl; cout << "Solution status = " << cplex.getStatus() << endl; if (solutionFound) { cout << "Solution value = " << cplex.getObjValue() << endl; cout << "Optimality Gap (in %) = " << fabs((cplex.getBestObjValue() - cplex.getObjValue()) / (1.0 * cplex.getObjValue())) * 100 << endl; //cout << "Maximum bound violation = " << cplex.getQuality(IloCplex::MaxPrimalInfeas) << endl; } cout << endl << "parameters: n=" << n << " l=" << l << " k=" << k << " p=" << p << " q=" << q << " m=" << m << endl; if (solutionFound) { cout << "TOTAL " << nSolutionsFound << " solutions found" << endl; int nAllowedSolutionsFound = 0; if (param_printexpr || param_printanswer || param_printsoln) { IloNumArray objValues(env, nSolutionsFound); vector<pair<IloNum,unsigned> > sortedIndex(nSolutionsFound); // to sort solutions by objective value vector<FormattedExpr> expressions(nSolutionsFound); // extract all solutions as formatted expressions for (int s=0; s<nSolutionsFound; s++) { IloNumArray vals(env); cplex.getValues(vals, corevars, s); // convert solution values to integers; note: simple int cast may lead to errors! IloIntArray intvals(env, vals.getSize()); for (int i=0; i<vals.getSize(); i++) intvals[i] = IloRound(vals[i]); // use IloRound rather than std::round if (param_printsoln) prettyPrintSoln(intvals); objValues[s] = cplex.getObjValue(s); expressions[s] = getFormattedExpr(intvals); sortedIndex[s] = pair<IloNum,unsigned> (objValues[s],s); } // sort solutions by increasing objective value std::stable_sort(sortedIndex.begin(), sortedIndex.end()); // identify which expressions are unique (ignoring type differences); // prefer to keep those that appear earlier in the above sorted order set<int> uniqueExprIndices; set<string> seenExpressions; if (!param_allowdupes) { for (int s=0; s<nSolutionsFound; s++) { const int sId = sortedIndex[s].second; const string & exprPf = expressions[sId].postfix; if (seenExpressions.find(exprPf) == seenExpressions.end()) { uniqueExprIndices.insert(sId); seenExpressions.insert(exprPf); } } } // evaluate all expressions with a single call to Python's SymPy package if (param_printanswer) solveExpressionsWithSymPy(expressions); // print expressions if desired, in sorted order if (param_printexpr) { cout << "SOLN: CORRECT | POS/NEG | INT/FRA | OBJ-SCORE | TRUE-ANS | ANS | INFIX | POSTFIX | TYPED-POSTFIX" << endl; for (int s=0; s<nSolutionsFound; s++) { const int sId = sortedIndex[s].second; if (!param_allowdupes && uniqueExprIndices.find(sId) == uniqueExprIndices.end()) continue; const FormattedExpr & expr = expressions[sId]; const double answerValue = atof(expr.answer.c_str()); const bool isCorrect = (fabs(answerValue - trueAnswer) < epsilon); const bool isAnswerNegative = answerValue < 0; const bool isAnswerInteger = isInt(answerValue); if (!isAnswerNegative && (!allIntConstants || consWts["IntConstantsImplyIntUnknown"] == 0 || isAnswerInteger)) { ++nAllowedSolutionsFound; cout << "EXPR: " << isCorrect << " | " << (isAnswerNegative ? "NEG" : "POS") << " | " << (isAnswerInteger ? "INT" : "FRA") << " | " << objValues[sId] << " | " << trueAnswer << " | " << expr.answer << " | " << expr.infix << " | " << expr.postfix << " | " << expr.typedPostfix << endl; } } } } const string solnProperty = (param_allowdupes ? "" : " unique,") + string(" non-negative") + (allIntConstants && consWts["IntConstantsImplyIntUnknown"] != 0 ? ", integer-valued " : " "); cout << "NET " << nAllowedSolutionsFound << solnProperty << "solutions found out of " << nSolutionsFound << " total solutions" << endl; } cout << "-------------------------------------------" << endl; cout << "RESULT:" << " NODES " << cplex.getNnodes() << " | ITERATIONS " << cplex.getNiterations() << " | CPUTIME " << timer.getTime() << " | WALLTIME " << endTime - startTime << " | THREADS " << param_threads << " | STATUS " << cplex.getStatus(); if (solutionFound) cout << " | SOLUTION " << cplex.getObjValue() << " | OPTGAP " << fabs((cplex.getBestObjValue() - cplex.getObjValue()) / (1.0 * cplex.getObjValue())) * 100; else cout << " | SOLUTION - | OPTGAP -"; cout << endl; //try { // basis may not exist // IloCplex::BasisStatusArray cstat(env); // cplex.getBasisStatuses(cstat, vars); // cout << "Basis statuses = " << cstat << endl; //} //catch (...) { //} } catch (IloException& e) { cerr << "Concert exception caught: " << e << endl; } catch (...) { cerr << "Unknown exception caught" << endl; } env.end(); return 0; } // END main