Ejemplo n.º 1
0
    rational_type Number::to_r() const
    {
        switch (type())
        {
        case Number::INTEGER:
            return i_to_r();

        case Number::FLOATING:
            return f_to_r();

        case Number::RATIONAL:
            return get_r();

#ifndef PMP_DISABLE_VECTOR
        case Number::VECTOR:
            if (empty())
                return 0;
            else
                return get_v()[0].to_r();
#endif

        default:
            assert(0);
            return 0;
        }
    }
Ejemplo n.º 2
0
/*
 * call-seq:
 *    cmp.to_r  ->  rational
 *
 * Returns the value as a rational if possible (the imaginary part
 * should be exactly zero).
 *
 *    Complex(1, 0).to_r    #=> (1/1)
 *    Complex(1, 0.0).to_r  # RangeError
 *    Complex(1, 2).to_r    # RangeError
 *
 * See rationalize.
 */
static VALUE
nucomp_to_r(VALUE self)
{
    get_dat1(self);

    if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
	rb_raise(rb_eRangeError, "can't convert %"PRIsVALUE" into Rational",
		 self);
    }
    return f_to_r(dat->real);
}
Ejemplo n.º 3
0
/*
 * call-seq:
 *    cmp.to_r  ->  rational
 *
 * Returns the value as a rational if possible.
 */
static VALUE
nucomp_to_r(VALUE self)
{
    get_dat1(self);

    if (k_inexact_p(dat->imag) || f_nonzero_p(dat->imag)) {
	VALUE s = f_to_s(self);
	rb_raise(rb_eRangeError, "can't convert %s into Rational",
		 StringValuePtr(s));
    }
    return f_to_r(dat->real);
}
Ejemplo n.º 4
0
/*
 * call-seq:
 *    flt.to_r  ->  rational
 *
 * Returns the value as a rational.
 *
 * NOTE: 0.3.to_r isn't the same as '0.3'.to_r.  The latter is
 * equivalent to '3/10'.to_r, but the former isn't so.
 *
 * For example:
 *
 *    2.0.to_r    #=> (2/1)
 *    2.5.to_r    #=> (5/2)
 *    -0.75.to_r  #=> (-3/4)
 *    0.0.to_r    #=> (0/1)
 */
static VALUE
float_to_r(VALUE self, SEL sel)
{
    VALUE f, n;

    float_decode_internal(self, &f, &n);
#if FLT_RADIX == 2
    {
	long ln = FIX2LONG(n);

	if (ln == 0)
	    return f_to_r(f);
	if (ln > 0)
	    return f_to_r(f_lshift(f, n));
	ln = -ln;
	return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln)));
    }
#else
    return f_to_r(f_mul(f, f_expt(INT2FIX(FLT_RADIX), n)));
#endif
}
Ejemplo n.º 5
0
static VALUE
string_to_c_internal(VALUE self)
{
    VALUE s;

    s = self;

    if (RSTRING_LEN(s) == 0)
	return rb_assoc_new(Qnil, self);

    {
	VALUE m, sr, si, re, r, i;
	int po;

	m = f_match(comp_pat0, s);
	if (!NIL_P(m)) {
	    sr = rb_reg_nth_match(1, m);
	    si = rb_reg_nth_match(2, m);
	    re = rb_reg_match_post(m);
	    po = 1;
	}
	if (NIL_P(m)) {
	    m = f_match(comp_pat1, s);
	    if (!NIL_P(m)) {
		sr = Qnil;
		si = rb_reg_nth_match(1, m);
		if (NIL_P(si))
		    si = rb_usascii_str_new2("");
		{
		    VALUE t;

		    t = rb_reg_nth_match(2, m);
		    if (NIL_P(t))
			t = rb_usascii_str_new2("1");
		    rb_str_concat(si, t);
		}
		re = rb_reg_match_post(m);
		po = 0;
	    }
	}
	if (NIL_P(m)) {
	    m = f_match(comp_pat2, s);
	    if (NIL_P(m))
		return rb_assoc_new(Qnil, self);
	    sr = rb_reg_nth_match(1, m);
	    if (NIL_P(rb_reg_nth_match(2, m)))
		si = Qnil;
	    else {
		VALUE t;

		si = rb_reg_nth_match(3, m);
		t = rb_reg_nth_match(4, m);
		if (NIL_P(t))
		    t = rb_usascii_str_new2("1");
		rb_str_concat(si, t);
	    }
	    re = rb_reg_match_post(m);
	    po = 0;
	}
	r = INT2FIX(0);
	i = INT2FIX(0);
	if (!NIL_P(sr)) {
	    if (strchr(RSTRING_PTR(sr), '/'))
		r = f_to_r(sr);
	    else if (strpbrk(RSTRING_PTR(sr), ".eE"))
		r = f_to_f(sr);
	    else
		r = f_to_i(sr);
	}
	if (!NIL_P(si)) {
	    if (strchr(RSTRING_PTR(si), '/'))
		i = f_to_r(si);
	    else if (strpbrk(RSTRING_PTR(si), ".eE"))
		i = f_to_f(si);
	    else
		i = f_to_i(si);
	}
	if (po)
	    return rb_assoc_new(rb_complex_polar(r, i), re);
	else
	    return rb_assoc_new(rb_complex_new2(r, i), re);
    }
}
Ejemplo n.º 6
0
static VALUE
nurat_s_convert(VALUE klass, SEL sel, int argc, VALUE *argv)
{
    VALUE a1, a2, backref;

    rb_scan_args(argc, argv, "11", &a1, &a2);

    if (NIL_P(a1) || (argc == 2 && NIL_P(a2)))
	rb_raise(rb_eTypeError, "can't convert nil into Rational");

    switch (TYPE(a1)) {
      case T_COMPLEX:
	if (k_exact_zero_p(RCOMPLEX(a1)->imag))
	    a1 = RCOMPLEX(a1)->real;
    }

    switch (TYPE(a2)) {
      case T_COMPLEX:
	if (k_exact_zero_p(RCOMPLEX(a2)->imag))
	    a2 = RCOMPLEX(a2)->real;
    }

    backref = rb_backref_get();
    rb_match_busy(backref);

    switch (TYPE(a1)) {
      case T_FIXNUM:
      case T_BIGNUM:
	break;
      case T_FLOAT:
	a1 = f_to_r(a1);
	break;
      case T_STRING:
	a1 = string_to_r_strict(a1);
	break;
    }

    switch (TYPE(a2)) {
      case T_FIXNUM:
      case T_BIGNUM:
	break;
      case T_FLOAT:
	a2 = f_to_r(a2);
	break;
      case T_STRING:
	a2 = string_to_r_strict(a2);
	break;
    }

    rb_backref_set(backref);

    switch (TYPE(a1)) {
      case T_RATIONAL:
	if (argc == 1 || (k_exact_one_p(a2)))
	    return a1;
    }

    if (argc == 1) {
	if (!(k_numeric_p(a1) && k_integer_p(a1)))
	    return rb_convert_type(a1, T_RATIONAL, "Rational", "to_r");
    }
    else {
	if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
	    (!f_integer_p(a1) || !f_integer_p(a2)))
	    return f_div(a1, a2);
    }

    {
	VALUE argv2[2];
	argv2[0] = a1;
	argv2[1] = a2;
	return nurat_s_new(argc, argv2, klass);
    }
}
Ejemplo n.º 7
0
/*
 * call-seq:
 *    num.denominator  ->  integer
 *
 * Returns the denominator (always positive).
 */
static VALUE
numeric_denominator(VALUE self, SEL sel)
{
    return f_denominator(f_to_r(self));
}
Ejemplo n.º 8
0
/*
 * call-seq:
 *    num.numerator  ->  integer
 *
 * Returns the numerator.
 */
static VALUE
numeric_numerator(VALUE self, SEL sel)
{
    return f_numerator(f_to_r(self));
}
Ejemplo n.º 9
0
static VALUE
nurat_s_induced_from(VALUE klass, VALUE n)
{
    return f_to_r(n);
}
Ejemplo n.º 10
0
static VALUE
nurat_s_convert(int argc, VALUE *argv, VALUE klass)
{
    VALUE a1, a2;

    if (rb_scan_args(argc, argv, "02", &a1, &a2) == 1) {
	a2 = ONE;
    }

    switch (TYPE(a1)) {
      case T_COMPLEX:
	if (k_float_p(RCOMPLEX(a1)->image) || !f_zero_p(RCOMPLEX(a1)->image)) {
	    VALUE s = f_to_s(a1);
	    rb_raise(rb_eRangeError, "can't accept %s",
		     StringValuePtr(s));
	}
	a1 = RCOMPLEX(a1)->real;
    }

    switch (TYPE(a2)) {
      case T_COMPLEX:
	if (k_float_p(RCOMPLEX(a2)->image) || !f_zero_p(RCOMPLEX(a2)->image)) {
	    VALUE s = f_to_s(a2);
	    rb_raise(rb_eRangeError, "can't accept %s",
		     StringValuePtr(s));
	}
	a2 = RCOMPLEX(a2)->real;
    }

    switch (TYPE(a1)) {
      case T_FIXNUM:
      case T_BIGNUM:
	break;
      case T_FLOAT:
	a1 = f_to_r(a1);
	break;
      case T_STRING:
	a1 = string_to_r_strict(a1);
	break;
    }

    switch (TYPE(a2)) {
      case T_FIXNUM:
      case T_BIGNUM:
	break;
      case T_FLOAT:
	a2 = f_to_r(a2);
	break;
      case T_STRING:
	a2 = string_to_r_strict(a2);
	break;
    }

    switch (TYPE(a1)) {
      case T_RATIONAL:
	if (NIL_P(a2) || f_zero_p(a2))
	    return a1;
	else
	    return f_div(a1, a2);
    }

    switch (TYPE(a2)) {
      case T_RATIONAL:
	return f_div(a1, a2);
    }

    return nurat_s_new(klass, a1, a2);
}
Ejemplo n.º 11
0
static VALUE
nurat_s_convert(int argc, VALUE *argv, VALUE klass)
{
    VALUE a1, a2, backref;

    rb_scan_args(argc, argv, "11", &a1, &a2);

    switch (TYPE(a1)) {
      case T_COMPLEX:
	if (k_exact_p(RCOMPLEX(a1)->imag) && f_zero_p(RCOMPLEX(a1)->imag))
	    a1 = RCOMPLEX(a1)->real;
    }

    switch (TYPE(a2)) {
      case T_COMPLEX:
	if (k_exact_p(RCOMPLEX(a2)->imag) && f_zero_p(RCOMPLEX(a2)->imag))
	    a2 = RCOMPLEX(a2)->real;
    }

    backref = rb_backref_get();
    rb_match_busy(backref);

    switch (TYPE(a1)) {
      case T_FIXNUM:
      case T_BIGNUM:
	break;
      case T_FLOAT:
	a1 = f_to_r(a1);
	break;
      case T_STRING:
	a1 = string_to_r_strict(a1);
	break;
    }

    switch (TYPE(a2)) {
      case T_FIXNUM:
      case T_BIGNUM:
	break;
      case T_FLOAT:
	a2 = f_to_r(a2);
	break;
      case T_STRING:
	a2 = string_to_r_strict(a2);
	break;
    }

    rb_backref_set(backref);

    switch (TYPE(a1)) {
      case T_RATIONAL:
	if (argc == 1 || (k_exact_p(a2) && f_one_p(a2)))
	    return a1;
    }

    if (argc == 1) {
	if (k_numeric_p(a1) && !f_integer_p(a1))
	    return a1;
    }
    else {
	if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
	    (!f_integer_p(a1) || !f_integer_p(a2)))
	    return f_div(a1, a2);
    }

    {
	VALUE argv2[2];
	argv2[0] = a1;
	argv2[1] = a2;
	return nurat_s_new(argc, argv2, klass);
    }
}
Ejemplo n.º 12
0
static VALUE
nucomp_expt(VALUE self, VALUE other)
{
    if (k_exact_p(other) && f_zero_p(other))
	return f_complex_new_bang1(CLASS_OF(self), ONE);

    if (k_rational_p(other) && f_one_p(f_denominator(other)))
	other = f_numerator(other); /* good? */

    if (k_complex_p(other)) {
	VALUE a, r, theta, ore, oim, nr, ntheta;

	get_dat1(other);

	a = f_polar(self);
	r = RARRAY_PTR(a)[0];
	theta = RARRAY_PTR(a)[1];

	ore = dat->real;
	oim = dat->imag;
	nr = m_exp_bang(f_sub(f_mul(ore, m_log_bang(r)),
			      f_mul(oim, theta)));
	ntheta = f_add(f_mul(theta, ore), f_mul(oim, m_log_bang(r)));
	return f_complex_polar(CLASS_OF(self), nr, ntheta);
    }
    if (k_integer_p(other)) {
	if (f_gt_p(other, ZERO)) {
	    VALUE x, z, n;

	    x = self;
	    z = x;
	    n = f_sub(other, ONE);

	    while (f_nonzero_p(n)) {
		VALUE a;

		while (a = f_divmod(n, TWO),
		       f_zero_p(RARRAY_PTR(a)[1])) {
		    get_dat1(x);

		    x = f_complex_new2(CLASS_OF(self),
				       f_sub(f_mul(dat->real, dat->real),
					     f_mul(dat->imag, dat->imag)),
				       f_mul(f_mul(TWO, dat->real), dat->imag));
		    n = RARRAY_PTR(a)[0];
		}
		z = f_mul(z, x);
		n = f_sub(n, ONE);
	    }
	    return z;
	}
	return f_expt(f_div(f_to_r(ONE), self), f_negate(other));
    }
    if (k_numeric_p(other) && f_real_p(other)) {
	VALUE a, r, theta;

	a = f_polar(self);
	r = RARRAY_PTR(a)[0];
	theta = RARRAY_PTR(a)[1];
	return f_complex_polar(CLASS_OF(self), f_expt(r, other),
			      f_mul(theta, other));
    }
    return rb_num_coerce_bin(self, other, id_expt);
}
Ejemplo n.º 13
0
static VALUE
string_to_c_internal(VALUE self)
{
    VALUE s;

    s = self;

    if (RSTRING_LEN(s) == 0)
	return rb_assoc_new(Qnil, self);

    {
	VALUE m, sr, si, re, r, i;
	int po;

	m = f_match(comp_pat0, s);
	if (!NIL_P(m)) {
	  sr = f_aref(m, INT2FIX(1));
	  si = f_aref(m, INT2FIX(2));
	  re = f_post_match(m);
	  po = 1;
	}
	if (NIL_P(m)) {
	    m = f_match(comp_pat1, s);
	    if (!NIL_P(m)) {
		sr = Qnil;
		si = f_aref(m, INT2FIX(1));
		if (NIL_P(si))
		    si = rb_usascii_str_new2("");
		{
		    VALUE t;

		    t = f_aref(m, INT2FIX(2));
		    if (NIL_P(t))
			t = rb_usascii_str_new2("1");
		    rb_str_concat(si, t);
		}
		re = f_post_match(m);
		po = 0;
	    }
	}
	if (NIL_P(m)) {
	    m = f_match(comp_pat2, s);
	    if (NIL_P(m))
		return rb_assoc_new(Qnil, self);
	    sr = f_aref(m, INT2FIX(1));
	    if (NIL_P(f_aref(m, INT2FIX(2))))
		si = Qnil;
	    else {
		VALUE t;

		si = f_aref(m, INT2FIX(3));
		t = f_aref(m, INT2FIX(4));
		if (NIL_P(t))
		    t = rb_usascii_str_new2("1");
		rb_str_concat(si, t);
	    }
	    re = f_post_match(m);
	    po = 0;
	}
	r = INT2FIX(0);
	i = INT2FIX(0);
	if (!NIL_P(sr)) {
	    if (f_include_p(sr, a_slash))
		r = f_to_r(sr);
	    else if (f_gt_p(f_count(sr, a_dot_and_an_e), INT2FIX(0)))
		r = f_to_f(sr);
	    else
		r = f_to_i(sr);
	}
	if (!NIL_P(si)) {
	    if (f_include_p(si, a_slash))
		i = f_to_r(si);
	    else if (f_gt_p(f_count(si, a_dot_and_an_e), INT2FIX(0)))
		i = f_to_f(si);
	    else
		i = f_to_i(si);
	}
	if (po)
	    return rb_assoc_new(rb_complex_polar(r, i), re);
	else
	    return rb_assoc_new(rb_complex_new2(r, i), re);
    }
}