//--------------------------------------------------------- DVec& NDG2D::PoissonIPDGbc2D (DVec& ubc, //[in] DVec& qbc //[in] ) //--------------------------------------------------------- { // function [OP] = PoissonIPDGbc2D() // Purpose: Set up the discrete Poisson matrix directly // using LDG. The operator is set up in the weak form // build DG derivative matrices int max_OP = (K*Np*Np*(1+Nfaces)); // initialize parameters DVec faceR("faceR"), faceS("faceS"); DMat V1D("V1D"), Dx("Dx"),Dy("Dy"), Dn1("Dn1"), mmE_Fm1("mmE(:,Fm1)"); IVec Fm("Fm"), Fm1("Fm1"), fidM("fidM"); double lnx=0.0,lny=0.0,lsJ=0.0,hinv=0.0,gtau=0.0; int i=0,k1=0,f1=0,id=0; IVec i1_Nfp = Range(1,Nfp); double N1N1 = double((N+1)*(N+1)); // build local face matrices DMat massEdge[4]; // = zeros(Np,Np,Nfaces); for (i=1; i<=Nfaces; ++i) { massEdge[i].resize(Np,Np); } // face mass matrix 1 Fm = Fmask(All,1); faceR = r(Fm); V1D = Vandermonde1D(N, faceR); massEdge[1](Fm,Fm) = inv(V1D*trans(V1D)); // face mass matrix 2 Fm = Fmask(All,2); faceR = r(Fm); V1D = Vandermonde1D(N, faceR); massEdge[2](Fm,Fm) = inv(V1D*trans(V1D)); // face mass matrix 3 Fm = Fmask(All,3); faceS = s(Fm); V1D = Vandermonde1D(N, faceS); massEdge[3](Fm,Fm) = inv(V1D*trans(V1D)); // build DG right hand side DVec* pBC = new DVec(Np*K, "bc", OBJ_temp); DVec& bc = (*pBC); // reference, for syntax //////////////////////////////////////////////////////////////// umMSG(1, "\n ==> {OP} assembly [bc]: "); for (k1=1; k1<=K; ++k1) { if (! (k1%100)) { umMSG(1, "%d, ",k1); } // rows1 = outer(Range((k1-1)*Np+1,k1*Np), Ones(NGauss)); // Build element-to-element parts of operator for (f1=1; f1<=Nfaces; ++f1) { if (BCType(k1,f1)) { ////////////////////////added by Kevin /////////////////////////////// Fm1 = Fmask(All,f1); fidM = (k1-1)*Nfp*Nfaces + (f1-1)*Nfp + i1_Nfp; id = 1+(f1-1)*Nfp + (k1-1)*Nfp*Nfaces; lnx = nx(id); lny = ny(id); lsJ = sJ(id); hinv = Fscale(id); Dx = rx(1,k1)*Dr + sx(1,k1)*Ds; Dy = ry(1,k1)*Dr + sy(1,k1)*Ds; Dn1 = lnx*Dx + lny*Dy; //mmE = lsJ*massEdge(:,:,f1); //bc(All,k1) += (gtau*mmE(All,Fm1) - Dn1'*mmE(All,Fm1))*ubc(fidM); mmE_Fm1 = massEdge[f1](All,Fm1); mmE_Fm1 *= lsJ; gtau = 10*N1N1*hinv; // set penalty scaling //bc(All,k1) += (gtau*mmE_Fm1 - trans(Dn1)*mmE_Fm1) * ubc(fidM); switch(BCType(k1,f1)){ case BC_Dirichlet: bc(Np*(k1-1)+Range(1,Np)) += (gtau*mmE_Fm1 - trans(Dn1)*mmE_Fm1)*ubc(fidM); break; case BC_Neuman: bc(Np*(k1-1)+Range(1,Np)) += mmE_Fm1*qbc(fidM); break; default: std::cout<<"warning: boundary condition is incorrect"<<std::endl; } } } } return bc; }
//--------------------------------------------------------- void NDG3D::PoissonIPDG3D(CSd& spOP, CSd& spMM) //--------------------------------------------------------- { // function [OP,MM] = PoissonIPDG3D() // // Purpose: Set up the discrete Poisson matrix directly // using LDG. The operator is set up in the weak form DVec faceR("faceR"), faceS("faceS"), faceT("faceT"); DMat V2D; IVec Fm("Fm"); IVec i1_Nfp = Range(1,Nfp); double opti1=0.0, opti2=0.0; int i=0; umLOG(1, "\n ==> {OP,MM} assembly: "); opti1 = timer.read(); // time assembly // build local face matrices DMat massEdge[5]; // = zeros(Np,Np,Nfaces); for (i=1; i<=Nfaces; ++i) { massEdge[i].resize(Np,Np); } // face mass matrix 1 Fm = Fmask(All,1); faceR=r(Fm); faceS=s(Fm); V2D = Vandermonde2D(N, faceR, faceS); massEdge[1](Fm,Fm) = inv(V2D*trans(V2D)); // face mass matrix 2 Fm = Fmask(All,2); faceR = r(Fm); faceT = t(Fm); V2D = Vandermonde2D(N, faceR, faceT); massEdge[2](Fm,Fm) = inv(V2D*trans(V2D)); // face mass matrix 3 Fm = Fmask(All,3); faceS = s(Fm); faceT = t(Fm); V2D = Vandermonde2D(N, faceS, faceT); massEdge[3](Fm,Fm) = inv(V2D*trans(V2D)); // face mass matrix 4 Fm = Fmask(All,4); faceS = s(Fm); faceT = t(Fm); V2D = Vandermonde2D(N, faceS, faceT); massEdge[4](Fm,Fm) = inv(V2D*trans(V2D)); // build local volume mass matrix MassMatrix = trans(invV)*invV; DMat Dx("Dx"),Dy("Dy"),Dz("Dz"), Dx2("Dx2"),Dy2("Dy2"),Dz2("Dz2"); DMat Dn1("Dn1"),Dn2("Dn2"), mmE("mmE"), OP11("OP11"), OP12("OP12"); DMat mmE_All_Fm1, mmE_Fm1_Fm1, Dn2_Fm2_All; IMat rows1,cols1,rows2,cols2; int k1=0,f1=0,k2=0,f2=0,id=0; Index1D entries, entriesMM, idsM; IVec fidM,vidM,Fm1,vidP,Fm2; double lnx=0.0,lny=0.0,lnz=0.0,lsJ=0.0,hinv=0.0,gtau=0.0; double N1N1 = double((N+1)*(N+1)); int NpNp = Np*Np; // build DG derivative matrices int max_OP = (K*Np*Np*(1+Nfaces)); int max_MM = (K*Np*Np); // "OP" triplets (i,j,x), extracted to {Ai,Aj,Ax} IVec OPi(max_OP), OPj(max_OP), Ai,Aj; DVec OPx(max_OP), Ax; // "MM" triplets (i,j,x) IVec MMi(max_MM), MMj(max_MM); DVec MMx(max_MM); IVec OnesNp = Ones(Np); // global node numbering entries.reset(1,NpNp); entriesMM.reset(1,NpNp); OP12.resize(Np,Np); for (k1=1; k1<=K; ++k1) { if (! (k1%250)) { umLOG(1, "%d, ",k1); } rows1 = outer( Range((k1-1)*Np+1,k1*Np), OnesNp ); cols1 = trans(rows1); // Build local operators Dx = rx(1,k1)*Dr + sx(1,k1)*Ds + tx(1,k1)*Dt; Dy = ry(1,k1)*Dr + sy(1,k1)*Ds + ty(1,k1)*Dt; Dz = rz(1,k1)*Dr + sz(1,k1)*Ds + tz(1,k1)*Dt; OP11 = J(1,k1)*(trans(Dx)*MassMatrix*Dx + trans(Dy)*MassMatrix*Dy + trans(Dz)*MassMatrix*Dz); // Build element-to-element parts of operator for (f1=1; f1<=Nfaces; ++f1) { k2 = EToE(k1,f1); f2 = EToF(k1,f1); rows2 = outer( Range((k2-1)*Np+1, k2*Np), OnesNp ); cols2 = trans(rows2); fidM = (k1-1)*Nfp*Nfaces + (f1-1)*Nfp + i1_Nfp; vidM = vmapM(fidM); Fm1 = mod(vidM-1,Np)+1; vidP = vmapP(fidM); Fm2 = mod(vidP-1,Np)+1; id = 1+(f1-1)*Nfp + (k1-1)*Nfp*Nfaces; lnx = nx(id); lny = ny(id); lnz = nz(id); lsJ = sJ(id); hinv = std::max(Fscale(id), Fscale(1+(f2-1)*Nfp, k2)); Dx2 = rx(1,k2)*Dr + sx(1,k2)*Ds + tx(1,k2)*Dt; Dy2 = ry(1,k2)*Dr + sy(1,k2)*Ds + ty(1,k2)*Dt; Dz2 = rz(1,k2)*Dr + sz(1,k2)*Ds + tz(1,k2)*Dt; Dn1 = lnx*Dx + lny*Dy + lnz*Dz; Dn2 = lnx*Dx2 + lny*Dy2 + lnz*Dz2; mmE = lsJ*massEdge[f1]; gtau = 2.0 * N1N1 * hinv; // set penalty scaling if (EToE(k1,f1)==k1) { OP11 += ( gtau*mmE - mmE*Dn1 - trans(Dn1)*mmE ); // ok } else { // interior face variational terms OP11 += 0.5*( gtau*mmE - mmE*Dn1 - trans(Dn1)*mmE ); // extract mapped regions: mmE_All_Fm1 = mmE(All,Fm1); mmE_Fm1_Fm1 = mmE(Fm1,Fm1); Dn2_Fm2_All = Dn2(Fm2,All); OP12 = 0.0; // reset to zero OP12(All,Fm2) = -0.5*( gtau*mmE_All_Fm1 ); OP12(Fm1,All) -= 0.5*( mmE_Fm1_Fm1*Dn2_Fm2_All ); //OP12(All,Fm2) -= 0.5*(-trans(Dn1)*mmE_All_Fm1 ); OP12(All,Fm2) += 0.5*( trans(Dn1)*mmE_All_Fm1 ); // load this set of triplets #if (1) OPi(entries)=rows1; OPj(entries)=cols2, OPx(entries)=OP12; entries += (NpNp); #else //########################################################### // load only the lower triangle (after droptol test?) sk=0; start=entries(1); for (int i=1; i<=NpNp; ++i) { eid = start+i; id=entries(eid); rid=rows1(i); cid=cols2(i); if (rows1(rid) >= cid) { // take lower triangle if ( fabs(OP12(id)) > 1e-15) { // drop small entries ++sk; OPi(id)=rid; OPj(id)=cid, OPx(id)=OP12(id); } } } entries += sk; //########################################################### #endif } } OPi(entries )=rows1; OPj(entries )=cols1, OPx(entries )=OP11; MMi(entriesMM)=rows1; MMj(entriesMM)=cols1; MMx(entriesMM)=J(1,k1)*MassMatrix; entries += (NpNp); entriesMM += (NpNp); } umLOG(1, "\n ==> {OP,MM} to sparse\n"); entries.reset(1, entries.hi()-Np*Np); // Extract triplets from the large buffers. Note: this // requires copying each array, and since these arrays // can be HUGE(!), we force immediate deallocation: Ai=OPi(entries); OPi.Free(); Aj=OPj(entries); OPj.Free(); Ax=OPx(entries); OPx.Free(); umLOG(1, " ==> triplets ready (OP) nnz = %10d\n", entries.hi()); // adjust triplet indices for 0-based sparse operators Ai -= 1; Aj -= 1; MMi -= 1; MMj -= 1; int npk=Np*K; #if defined(NDG_USE_CHOLMOD) || defined(NDG_New_CHOLINC) // load only the lower triangle tril(OP) free args? spOP.load(npk,npk, Ai,Aj,Ax, sp_LT, false,1e-15, true); // {LT, false} -> TriL #else // select {upper,lower,both} triangles //spOP.load(npk,npk, Ai,Aj,Ax, sp_LT, true,1e-15,true); // LT -> enforce symmetry //spOP.load(npk,npk, Ai,Aj,Ax, sp_All,true,1e-15,true); // All-> includes "noise" //spOP.load(npk,npk, Ai,Aj,Ax, sp_UT, false,1e-15,true); // UT -> triu(OP) only #endif Ai.Free(); Aj.Free(); Ax.Free(); umLOG(1, " ==> triplets ready (MM) nnz = %10d\n", entriesMM.hi()); //------------------------------------------------------- // The mass matrix operator will NOT be factorised, // Load ALL elements (both upper and lower triangles): //------------------------------------------------------- spMM.load(npk,npk, MMi,MMj,MMx, sp_All,false,1.00e-15,true); MMi.Free(); MMj.Free(); MMx.Free(); opti2 = timer.read(); // time assembly umLOG(1, " ==> {OP,MM} converted to csc. (%g secs)\n", opti2-opti1); }
void NDG2D::PoissonIPDGbc2D( CSd& spOP //[out] sparse operator ) { // function [OP] = PoissonIPDGbc2D() // Purpose: Set up the discrete Poisson matrix directly // using LDG. The operator is set up in the weak form // build DG derivative matrices int max_OP = (K*Np*Np*(1+Nfaces)); //initialize parameters DVec faceR("faceR"), faceS("faceS"); IVec Fm("Fm"), Fm1("Fm1"), fidM("fidM"); DMat V1D("V1D"); int i=0; // build local face matrices DMat massEdge[4]; // = zeros(Np,Np,Nfaces); for (i=1; i<=Nfaces; ++i) { massEdge[i].resize(Np,Np); } // face mass matrix 1 Fm = Fmask(All,1); faceR = r(Fm); V1D = Vandermonde1D(N, faceR); massEdge[1](Fm,Fm) = inv(V1D*trans(V1D)); // face mass matrix 2 Fm = Fmask(All,2); faceR = r(Fm); V1D = Vandermonde1D(N, faceR); massEdge[2](Fm,Fm) = inv(V1D*trans(V1D)); // face mass matrix 3 Fm = Fmask(All,3); faceS = s(Fm); V1D = Vandermonde1D(N, faceS); massEdge[3](Fm,Fm) = inv(V1D*trans(V1D)); //continue initialize parameters DMat Dx("Dx"),Dy("Dy"), Dn1("Dn1"), mmE_Fm1("mmE(:,Fm1)"); double lnx=0.0,lny=0.0,lsJ=0.0,hinv=0.0,gtau=0.0; int k1=0,f1=0,id=0; IVec i1_Nfp = Range(1,Nfp); double N1N1 = double((N+1)*(N+1)); // "OP" triplets (i,j,x), extracted to {Ai,Aj,Ax} IVec OPi(max_OP),OPj(max_OP), Ai,Aj; DVec OPx(max_OP), Ax; IMat rows1, cols1; Index1D entries; DMat OP11(Np,Nfp, 0.0); // global node numbering entries.reset(1,Np*Nfp); cols1 = outer(Ones(Np), Range(1,Nfp)); umMSG(1, "\n ==> {OP} assembly [bc]: "); for (k1=1; k1<=K; ++k1) { if (! (k1%100)) { umMSG(1, "%d, ",k1); } rows1 = outer(Range((k1-1)*Np+1,k1*Np), Ones(Nfp)); // Build element-to-element parts of operator for (f1=1; f1<=Nfaces; ++f1) { if (BCType(k1,f1)) { ////////////////////////added by Kevin /////////////////////////////// Fm1 = Fmask(All,f1); fidM = (k1-1)*Nfp*Nfaces + (f1-1)*Nfp + i1_Nfp; id = 1+(f1-1)*Nfp + (k1-1)*Nfp*Nfaces; lnx = nx(id); lny = ny(id); lsJ = sJ(id); hinv = Fscale(id); Dx = rx(1,k1)*Dr + sx(1,k1)*Ds; Dy = ry(1,k1)*Dr + sy(1,k1)*Ds; Dn1 = lnx*Dx + lny*Dy; //mmE = lsJ*massEdge(:,:,f1); //bc(All,k1) += (gtau*mmE(All,Fm1) - Dn1'*mmE(All,Fm1))*ubc(fidM); mmE_Fm1 = massEdge[f1](All,Fm1); mmE_Fm1 *= lsJ; gtau = 10*N1N1*hinv; // set penalty scaling //bc(All,k1) += (gtau*mmE_Fm1 - trans(Dn1)*mmE_Fm1) * ubc(fidM); switch(BCType(k1,f1)){ case BC_Dirichlet: OP11 = gtau*mmE_Fm1 - trans(Dn1)*mmE_Fm1; break; case BC_Neuman: OP11 = mmE_Fm1; break; default: std::cout<<"warning: boundary condition is incorrect"<<std::endl; } OPi(entries)=rows1; OPj(entries)=cols1; OPx(entries)=OP11; entries += (Np*Nfp); } cols1 += Nfp; } } umMSG(1, "\n ==> {OPbc} to sparse\n"); entries.reset(1, entries.hi()-(Np*Nfp)); // extract triplets from large buffers Ai=OPi(entries); Aj=OPj(entries); Ax=OPx(entries); // These arrays can be HUGE, so force deallocation OPi.Free(); OPj.Free(); OPx.Free(); // return 0-based sparse result Ai -= 1; Aj -= 1; //------------------------------------------------------- // This operator is not symmetric, and will NOT be // factorised, only used to create reference RHS's: // // refrhsbcPR = spOP1 * bcPR; // refrhsbcUx = spOP2 * bcUx; // refrhsbcUy = spOP2 * bcUy; // // Load ALL elements (both upper and lower triangles): //------------------------------------------------------- spOP.load(Np*K, Nfp*Nfaces*K, Ai,Aj,Ax, sp_All,false, 1e-15,true); Ai.Free(); Aj.Free(); Ax.Free(); umMSG(1, " ==> {OPbc} ready.\n"); #if (1) // check on original estimates for nnx umMSG(1, " ==> max_OP: %12d\n", max_OP); umMSG(1, " ==> nnz_OP: %12d\n", entries.hi()); #endif }