void main (void){ int lower, upper, step; float fahr, celsius; lower = 0; upper = 300; step = 20; fahr = lower; while (fahr <= upper) { celsius = fahr_to_cel(fahr); printf("%2d\t%6d\n", lower, celsius); fahr += step; } }
int main(int argc,char **argv) { PetscErrorCode ierr; int time; /* amount of loops */ struct in put; PetscScalar rh; /* relative humidity */ PetscScalar x; /* memory varialbe for relative humidity calculation */ PetscScalar deep_grnd_temp; /* temperature of ground under top soil surface layer */ PetscScalar emma; /* absorption-emission constant for air */ PetscScalar pressure1 = 101300; /* surface pressure */ PetscScalar mixratio; /* mixing ratio */ PetscScalar airtemp; /* temperature of air near boundary layer inversion */ PetscScalar dewtemp; /* dew point temperature */ PetscScalar sfctemp; /* temperature at surface */ PetscScalar pwat; /* total column precipitable water */ PetscScalar cloudTemp; /* temperature at base of cloud */ AppCtx user; /* user-defined work context */ MonitorCtx usermonitor; /* user-defined monitor context */ PetscMPIInt rank,size; TS ts; SNES snes; DM da; Vec T,rhs; /* solution vector */ Mat J; /* Jacobian matrix */ PetscReal ftime,dt; PetscInt steps,dof = 5; PetscBool use_coloring = PETSC_TRUE; MatFDColoring matfdcoloring = 0; PetscBool monitor_off = PETSC_FALSE; PetscInitialize(&argc,&argv,(char*)0,help); ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr); ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr); /* Inputs */ readinput(&put); sfctemp = put.Ts; dewtemp = put.Td; cloudTemp = put.Tc; airtemp = put.Ta; pwat = put.pwt; if (!rank) PetscPrintf(PETSC_COMM_SELF,"Initial Temperature = %g\n",sfctemp); /* input surface temperature */ deep_grnd_temp = sfctemp - 10; /* set underlying ground layer temperature */ emma = emission(pwat); /* accounts for radiative effects of water vapor */ /* Converts from Fahrenheit to Celsuis */ sfctemp = fahr_to_cel(sfctemp); airtemp = fahr_to_cel(airtemp); dewtemp = fahr_to_cel(dewtemp); cloudTemp = fahr_to_cel(cloudTemp); deep_grnd_temp = fahr_to_cel(deep_grnd_temp); /* Converts from Celsius to Kelvin */ sfctemp += 273; airtemp += 273; dewtemp += 273; cloudTemp += 273; deep_grnd_temp += 273; /* Calculates initial relative humidity */ x = calcmixingr(dewtemp,pressure1); mixratio = calcmixingr(sfctemp,pressure1); rh = (x/mixratio)*100; if (!rank) printf("Initial RH = %.1f percent\n\n",rh); /* prints initial relative humidity */ time = 3600*put.time; /* sets amount of timesteps to run model */ /* Configure PETSc TS solver */ /*------------------------------------------*/ /* Create grid */ ierr = DMDACreate2d(PETSC_COMM_WORLD,DMDA_BOUNDARY_PERIODIC,DMDA_BOUNDARY_PERIODIC,DMDA_STENCIL_STAR,-20,-20, PETSC_DECIDE,PETSC_DECIDE,dof,1,NULL,NULL,&da);CHKERRQ(ierr); ierr = DMDASetUniformCoordinates(da, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0);CHKERRQ(ierr); /* Define output window for each variable of interest */ ierr = DMDASetFieldName(da,0,"Ts");CHKERRQ(ierr); ierr = DMDASetFieldName(da,1,"Ta");CHKERRQ(ierr); ierr = DMDASetFieldName(da,2,"u");CHKERRQ(ierr); ierr = DMDASetFieldName(da,3,"v");CHKERRQ(ierr); ierr = DMDASetFieldName(da,4,"p");CHKERRQ(ierr); /* set values for appctx */ user.da = da; user.Ts = sfctemp; user.fract = put.fr; /* fraction of sky covered by clouds */ user.dewtemp = dewtemp; /* dew point temperature (mositure in air) */ user.csoil = 2000000; /* heat constant for layer */ user.dzlay = 0.08; /* thickness of top soil layer */ user.emma = emma; /* emission parameter */ user.wind = put.wnd; /* wind spped */ user.pressure1 = pressure1; /* sea level pressure */ user.airtemp = airtemp; /* temperature of air near boundar layer inversion */ user.Tc = cloudTemp; /* temperature at base of lowest cloud layer */ user.init = put.init; /* user chosen initiation scenario */ user.lat = 70*0.0174532; /* converts latitude degrees to latitude in radians */ user.deep_grnd_temp = deep_grnd_temp; /* temp in lowest ground layer */ /* set values for MonitorCtx */ usermonitor.drawcontours = PETSC_FALSE; ierr = PetscOptionsHasName(NULL,"-drawcontours",&usermonitor.drawcontours);CHKERRQ(ierr); if (usermonitor.drawcontours) { PetscReal bounds[] = {1000.0,-1000., -1000.,-1000., 1000.,-1000., 1000.,-1000., 1000,-1000, 100700,100800}; ierr = PetscViewerDrawOpen(PETSC_COMM_WORLD,0,0,0,0,300,300,&usermonitor.drawviewer);CHKERRQ(ierr); ierr = PetscViewerDrawSetBounds(usermonitor.drawviewer,dof,bounds);CHKERRQ(ierr); } usermonitor.interval = 1; ierr = PetscOptionsGetInt(NULL,"-monitor_interval",&usermonitor.interval,NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Extract global vectors from DA; - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = DMCreateGlobalVector(da,&T);CHKERRQ(ierr); ierr = VecDuplicate(T,&rhs);CHKERRQ(ierr); /* r: vector to put the computed right hand side */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetProblemType(ts,TS_NONLINEAR);CHKERRQ(ierr); ierr = TSSetType(ts,TSBEULER);CHKERRQ(ierr); ierr = TSSetRHSFunction(ts,rhs,RhsFunc,&user);CHKERRQ(ierr); /* Set Jacobian evaluation routine - use coloring to compute finite difference Jacobian efficiently */ ierr = DMSetMatType(da,MATAIJ);CHKERRQ(ierr); ierr = DMCreateMatrix(da,&J);CHKERRQ(ierr); ierr = TSGetSNES(ts,&snes);CHKERRQ(ierr); if (use_coloring) { ISColoring iscoloring; ierr = DMCreateColoring(da,IS_COLORING_GLOBAL,&iscoloring);CHKERRQ(ierr); ierr = MatFDColoringCreate(J,iscoloring,&matfdcoloring);CHKERRQ(ierr); ierr = MatFDColoringSetFromOptions(matfdcoloring);CHKERRQ(ierr); ierr = MatFDColoringSetUp(J,iscoloring,matfdcoloring);CHKERRQ(ierr); ierr = ISColoringDestroy(&iscoloring);CHKERRQ(ierr); ierr = MatFDColoringSetFunction(matfdcoloring,(PetscErrorCode (*)(void))SNESTSFormFunction,ts);CHKERRQ(ierr); ierr = SNESSetJacobian(snes,J,J,SNESComputeJacobianDefaultColor,matfdcoloring);CHKERRQ(ierr); } else { ierr = SNESSetJacobian(snes,J,J,SNESComputeJacobianDefault,NULL);CHKERRQ(ierr); } /* Define what to print for ts_monitor option */ ierr = PetscOptionsHasName(NULL,"-monitor_off",&monitor_off);CHKERRQ(ierr); if (!monitor_off) { ierr = TSMonitorSet(ts,Monitor,&usermonitor,NULL);CHKERRQ(ierr); } ierr = FormInitialSolution(da,T,&user);CHKERRQ(ierr); dt = TIMESTEP; /* initial time step */ ftime = TIMESTEP*time; if (!rank) printf("time %d, ftime %g hour, TIMESTEP %g\n",time,ftime/3600,dt); ierr = TSSetInitialTimeStep(ts,0.0,dt);CHKERRQ(ierr); ierr = TSSetDuration(ts,time,ftime);CHKERRQ(ierr); ierr = TSSetSolution(ts,T);CHKERRQ(ierr); ierr = TSSetDM(ts,da);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,T);CHKERRQ(ierr); ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr); ierr = TSGetTimeStepNumber(ts,&steps);CHKERRQ(ierr); if (!rank) PetscPrintf(PETSC_COMM_WORLD,"Solution T after %g hours %d steps\n",ftime/3600,steps); if (matfdcoloring) {ierr = MatFDColoringDestroy(&matfdcoloring);CHKERRQ(ierr);} if (usermonitor.drawcontours) { ierr = PetscViewerDestroy(&usermonitor.drawviewer);CHKERRQ(ierr); } ierr = MatDestroy(&J);CHKERRQ(ierr); ierr = VecDestroy(&T);CHKERRQ(ierr); ierr = VecDestroy(&rhs);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = DMDestroy(&da);CHKERRQ(ierr); PetscFinalize(); return 0; }