Ejemplo n.º 1
0
static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);

	if (!(file->f_flags & O_NOATIME) &&
	    !IS_NOATIME(&ip->i_inode)) {
		struct gfs2_holder i_gh;
		int error;

		gfs2_holder_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
		error = gfs2_glock_nq(&i_gh);
		if (error == 0) {
			file_accessed(file);
			gfs2_glock_dq(&i_gh);
		}
		gfs2_holder_uninit(&i_gh);
		if (error)
			return error;
	}
	vma->vm_ops = &gfs2_vm_ops;

	return 0;
}
Ejemplo n.º 2
0
static ssize_t hypfs_aio_read(struct kiocb *iocb, const struct iovec *iov,
			      unsigned long nr_segs, loff_t offset)
{
	char *data;
	ssize_t ret;
	struct file *filp = iocb->ki_filp;
	/* XXX: temporary */
	char __user *buf = iov[0].iov_base;
	size_t count = iov[0].iov_len;

	if (nr_segs != 1)
		return -EINVAL;

	data = filp->private_data;
	ret = simple_read_from_buffer(buf, count, &offset, data, strlen(data));
	if (ret <= 0)
		return ret;

	iocb->ki_pos += ret;
	file_accessed(filp);

	return ret;
}
Ejemplo n.º 3
0
static ssize_t hypfs_aio_read(struct kiocb *iocb, __user char *buf,
			      size_t count, loff_t offset)
{
	char *data;
	size_t len;
	struct file *filp = iocb->ki_filp;

	data = filp->private_data;
	len = strlen(data);
	if (offset > len) {
		count = 0;
		goto out;
	}
	if (count > len - offset)
		count = len - offset;
	if (copy_to_user(buf, data + offset, count)) {
		count = -EFAULT;
		goto out;
	}
	iocb->ki_pos += count;
	file_accessed(filp);
out:
	return count;
}
Ejemplo n.º 4
0
/* file operations for directories */
static int coda_readdir(struct file *coda_file, struct dir_context *ctx)
{
    struct coda_file_info *cfi;
    struct file *host_file;
    int ret;

    cfi = CODA_FTOC(coda_file);
    BUG_ON(!cfi || cfi->cfi_magic != CODA_MAGIC);
    host_file = cfi->cfi_container;

    if (host_file->f_op->iterate) {
        struct inode *host_inode = file_inode(host_file);
        mutex_lock(&host_inode->i_mutex);
        ret = -ENOENT;
        if (!IS_DEADDIR(host_inode)) {
            ret = host_file->f_op->iterate(host_file, ctx);
            file_accessed(host_file);
        }
        mutex_unlock(&host_inode->i_mutex);
        return ret;
    }
    /* Venus: we must read Venus dirents from a file */
    return coda_venus_readdir(coda_file, ctx);
}
Ejemplo n.º 5
0
int vfs_readdir(struct file *file, filldir_t filler, void *buf)
{
	struct inode *inode = file->f_path.dentry->d_inode;
	int res = -ENOTDIR;
	if (!file->f_op || !file->f_op->readdir)
		goto out;

	res = security_file_permission(file, MAY_READ);
	if (res)
		goto out;

	res = mutex_lock_killable(&inode->i_mutex);
	if (res)
		goto out;

	res = -ENOENT;
	if (!IS_DEADDIR(inode)) {
		res = file->f_op->readdir(file, buf, filler);
		file_accessed(file);
	}
	mutex_unlock(&inode->i_mutex);
out:
	return res;
}
Ejemplo n.º 6
0
int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
{
	struct inode *inode = file->f_mapping->host;
	struct f2fs_inode_info *fi = F2FS_I(inode);
	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
	nid_t ino = inode->i_ino;
	int ret = 0;
	bool need_cp = false;
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_ALL,
		.nr_to_write = LONG_MAX,
		.for_reclaim = 0,
	};

	if (unlikely(f2fs_readonly(inode->i_sb)))
		return 0;

	trace_f2fs_sync_file_enter(inode);

	/* if fdatasync is triggered, let's do in-place-update */
	if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
		set_inode_flag(fi, FI_NEED_IPU);
	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
	clear_inode_flag(fi, FI_NEED_IPU);

	if (ret) {
		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
		return ret;
	}

	/* if the inode is dirty, let's recover all the time */
	if (!datasync && is_inode_flag_set(fi, FI_DIRTY_INODE)) {
		update_inode_page(inode);
		goto go_write;
	}

	/*
	 * if there is no written data, don't waste time to write recovery info.
	 */
	if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
			!exist_written_data(sbi, ino, APPEND_INO)) {

		/* it may call write_inode just prior to fsync */
		if (need_inode_page_update(sbi, ino))
			goto go_write;

		if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
				exist_written_data(sbi, ino, UPDATE_INO))
			goto flush_out;
		goto out;
	}
go_write:
	/* guarantee free sections for fsync */
	f2fs_balance_fs(sbi);

	/*
	 * Both of fdatasync() and fsync() are able to be recovered from
	 * sudden-power-off.
	 */
	down_read(&fi->i_sem);
	need_cp = need_do_checkpoint(inode);
	up_read(&fi->i_sem);

	if (need_cp) {
		/* all the dirty node pages should be flushed for POR */
		ret = f2fs_sync_fs(inode->i_sb, 1);

		/*
		 * We've secured consistency through sync_fs. Following pino
		 * will be used only for fsynced inodes after checkpoint.
		 */
		try_to_fix_pino(inode);
		clear_inode_flag(fi, FI_APPEND_WRITE);
		clear_inode_flag(fi, FI_UPDATE_WRITE);
		goto out;
	}
sync_nodes:
	sync_node_pages(sbi, ino, &wbc);

	/* if cp_error was enabled, we should avoid infinite loop */
	if (unlikely(f2fs_cp_error(sbi)))
		goto out;

	if (need_inode_block_update(sbi, ino)) {
		mark_inode_dirty_sync(inode);
		f2fs_write_inode(inode, NULL);
		goto sync_nodes;
	}

	ret = wait_on_node_pages_writeback(sbi, ino);
	if (ret)
		goto out;

	/* once recovery info is written, don't need to tack this */
	remove_dirty_inode(sbi, ino, APPEND_INO);
	clear_inode_flag(fi, FI_APPEND_WRITE);
flush_out:
	remove_dirty_inode(sbi, ino, UPDATE_INO);
	clear_inode_flag(fi, FI_UPDATE_WRITE);
	ret = f2fs_issue_flush(sbi);
out:
	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
	f2fs_trace_ios(NULL, 1);
	return ret;
}

static pgoff_t __get_first_dirty_index(struct address_space *mapping,
						pgoff_t pgofs, int whence)
{
	struct pagevec pvec;
	int nr_pages;

	if (whence != SEEK_DATA)
		return 0;

	/* find first dirty page index */
	pagevec_init(&pvec, 0);
	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
					PAGECACHE_TAG_DIRTY, 1);
	pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
	pagevec_release(&pvec);
	return pgofs;
}

static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
							int whence)
{
	switch (whence) {
	case SEEK_DATA:
		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
			return true;
		break;
	case SEEK_HOLE:
		if (blkaddr == NULL_ADDR)
			return true;
		break;
	}
	return false;
}

static inline int unsigned_offsets(struct file *file)
{
	return file->f_mode & FMODE_UNSIGNED_OFFSET;
}

static loff_t vfs_setpos(struct file *file, loff_t offset, loff_t maxsize)
{
	if (offset < 0 && !unsigned_offsets(file))
		return -EINVAL;
	if (offset > maxsize)
		return -EINVAL;

	if (offset != file->f_pos) {
		file->f_pos = offset;
		file->f_version = 0;
	}
	return offset;
}

static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
{
	struct inode *inode = file->f_mapping->host;
	loff_t maxbytes = inode->i_sb->s_maxbytes;
	struct dnode_of_data dn;
	pgoff_t pgofs, end_offset, dirty;
	loff_t data_ofs = offset;
	loff_t isize;
	int err = 0;

	mutex_lock(&inode->i_mutex);

	isize = i_size_read(inode);
	if (offset >= isize)
		goto fail;

	/* handle inline data case */
	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
		if (whence == SEEK_HOLE)
			data_ofs = isize;
		goto found;
	}

	pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);

	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);

	for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
		set_new_dnode(&dn, inode, NULL, NULL, 0);
		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
		if (err && err != -ENOENT) {
			goto fail;
		} else if (err == -ENOENT) {
			/* direct node does not exists */
			if (whence == SEEK_DATA) {
				pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
							F2FS_I(inode));
				continue;
			} else {
				goto found;
			}
		}

		end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));

		/* find data/hole in dnode block */
		for (; dn.ofs_in_node < end_offset;
				dn.ofs_in_node++, pgofs++,
				data_ofs = (loff_t)pgofs << PAGE_CACHE_SHIFT) {
			block_t blkaddr;
			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);

			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
				f2fs_put_dnode(&dn);
				goto found;
			}
		}
		f2fs_put_dnode(&dn);
	}

	if (whence == SEEK_DATA)
		goto fail;
found:
	if (whence == SEEK_HOLE && data_ofs > isize)
		data_ofs = isize;
	mutex_unlock(&inode->i_mutex);
	return vfs_setpos(file, data_ofs, maxbytes);
fail:
	mutex_unlock(&inode->i_mutex);
	return -ENXIO;
}

static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
{
	struct inode *inode = file->f_mapping->host;
	loff_t maxbytes = inode->i_sb->s_maxbytes;

	switch (whence) {
	case SEEK_SET:
	case SEEK_CUR:
	case SEEK_END:
		return generic_file_llseek_size(file, offset, whence,
						maxbytes);
	case SEEK_DATA:
	case SEEK_HOLE:
		if (offset < 0)
			return -ENXIO;
		return f2fs_seek_block(file, offset, whence);
	}

	return -EINVAL;
}

static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct inode *inode = file_inode(file);

	if (f2fs_encrypted_inode(inode)) {
		int err = f2fs_get_encryption_info(inode);
		if (err)
			return 0;
	}

	/* we don't need to use inline_data strictly */
	if (f2fs_has_inline_data(inode)) {
		int err = f2fs_convert_inline_inode(inode);
		if (err)
			return err;
	}

	file_accessed(file);
	vma->vm_ops = &f2fs_file_vm_ops;
	return 0;
}

static int f2fs_file_open(struct inode *inode, struct file *filp)
{
	int ret = generic_file_open(inode, filp);

	if (!ret && f2fs_encrypted_inode(inode)) {
		ret = f2fs_get_encryption_info(inode);
		if (ret)
			ret = -EACCES;
	}
	return ret;
}
Ejemplo n.º 7
0
static ssize_t
pipe_readv(struct file *filp, const struct iovec *_iov,
           unsigned long nr_segs, loff_t *ppos)
{
    struct inode *inode = filp->f_dentry->d_inode;
    int do_wakeup;
    ssize_t ret;
    struct iovec *iov = (struct iovec *)_iov;
    size_t total_len;

    total_len = iov_length(iov, nr_segs);
    /* Null read succeeds. */
    if (unlikely(total_len == 0))
        return 0;

    do_wakeup = 0;
    ret = 0;
    down(PIPE_SEM(*inode));
    for (;;) {
        int size = PIPE_LEN(*inode);
        if (size) {
            char *pipebuf = PIPE_BASE(*inode) + PIPE_START(*inode);
            ssize_t chars = PIPE_MAX_RCHUNK(*inode);

            if (chars > total_len)
                chars = total_len;
            if (chars > size)
                chars = size;

            if (pipe_iov_copy_to_user(iov, pipebuf, chars)) {
                if (!ret) ret = -EFAULT;
                break;
            }
            ret += chars;

            PIPE_START(*inode) += chars;
            PIPE_START(*inode) &= (PIPE_SIZE - 1);
            PIPE_LEN(*inode) -= chars;
            total_len -= chars;
            do_wakeup = 1;
            if (!total_len)
                break;	/* common path: read succeeded */
        }
        if (PIPE_LEN(*inode)) /* test for cyclic buffers */
            continue;
        if (!PIPE_WRITERS(*inode))
            break;
        if (!PIPE_WAITING_WRITERS(*inode)) {
            /* syscall merging: Usually we must not sleep
             * if O_NONBLOCK is set, or if we got some data.
             * But if a writer sleeps in kernel space, then
             * we can wait for that data without violating POSIX.
             */
            if (ret)
                break;
            if (filp->f_flags & O_NONBLOCK) {
                ret = -EAGAIN;
                break;
            }
        }
        if (signal_pending(current)) {
            if (!ret) ret = -ERESTARTSYS;
            break;
        }
        if (do_wakeup) {
            wake_up_interruptible_sync(PIPE_WAIT(*inode));
            kill_fasync(PIPE_FASYNC_WRITERS(*inode), SIGIO, POLL_OUT);
        }
        pipe_wait(inode);
    }
    up(PIPE_SEM(*inode));
    /* Signal writers asynchronously that there is more room.  */
    if (do_wakeup) {
        wake_up_interruptible(PIPE_WAIT(*inode));
        kill_fasync(PIPE_FASYNC_WRITERS(*inode), SIGIO, POLL_OUT);
    }
    /*
     * Hack: we turn off atime updates for -RT kernels.
     * Who uses them on pipes anyway?
     */
#ifndef CONFIG_PREEMPT_RT
    if (ret > 0)
        file_accessed(filp);
#endif
    return ret;
}
Ejemplo n.º 8
0
Archivo: file.c Proyecto: krzk/linux
/*
 * Common entry point for read/write/readv/writev
 * This function will dispatch it to either the direct I/O
 * or buffered I/O path depending on the mount options and/or
 * augmented/extended metadata attached to the file.
 * Note: File extended attributes override any mount options.
 */
static ssize_t do_readv_writev(enum ORANGEFS_io_type type, struct file *file,
		loff_t *offset, struct iov_iter *iter)
{
	struct inode *inode = file->f_mapping->host;
	struct orangefs_inode_s *orangefs_inode = ORANGEFS_I(inode);
	struct orangefs_khandle *handle = &orangefs_inode->refn.khandle;
	size_t count = iov_iter_count(iter);
	ssize_t total_count = 0;
	ssize_t ret = -EINVAL;

	gossip_debug(GOSSIP_FILE_DEBUG,
		"%s-BEGIN(%pU): count(%d) after estimate_max_iovecs.\n",
		__func__,
		handle,
		(int)count);

	if (type == ORANGEFS_IO_WRITE) {
		gossip_debug(GOSSIP_FILE_DEBUG,
			     "%s(%pU): proceeding with offset : %llu, "
			     "size %d\n",
			     __func__,
			     handle,
			     llu(*offset),
			     (int)count);
	}

	if (count == 0) {
		ret = 0;
		goto out;
	}

	while (iov_iter_count(iter)) {
		size_t each_count = iov_iter_count(iter);
		size_t amt_complete;

		/* how much to transfer in this loop iteration */
		if (each_count > orangefs_bufmap_size_query())
			each_count = orangefs_bufmap_size_query();

		gossip_debug(GOSSIP_FILE_DEBUG,
			     "%s(%pU): size of each_count(%d)\n",
			     __func__,
			     handle,
			     (int)each_count);
		gossip_debug(GOSSIP_FILE_DEBUG,
			     "%s(%pU): BEFORE wait_for_io: offset is %d\n",
			     __func__,
			     handle,
			     (int)*offset);

		ret = wait_for_direct_io(type, inode, offset, iter,
				each_count, 0);
		gossip_debug(GOSSIP_FILE_DEBUG,
			     "%s(%pU): return from wait_for_io:%d\n",
			     __func__,
			     handle,
			     (int)ret);

		if (ret < 0)
			goto out;

		*offset += ret;
		total_count += ret;
		amt_complete = ret;

		gossip_debug(GOSSIP_FILE_DEBUG,
			     "%s(%pU): AFTER wait_for_io: offset is %d\n",
			     __func__,
			     handle,
			     (int)*offset);

		/*
		 * if we got a short I/O operations,
		 * fall out and return what we got so far
		 */
		if (amt_complete < each_count)
			break;
	} /*end while */

out:
	if (total_count > 0)
		ret = total_count;
	if (ret > 0) {
		if (type == ORANGEFS_IO_READ) {
			file_accessed(file);
		} else {
			file_update_time(file);
			/*
			 * Must invalidate to ensure write loop doesn't
			 * prevent kernel from reading updated
			 * attribute.  Size probably changed because of
			 * the write, and other clients could update
			 * any other attribute.
			 */
			orangefs_inode->getattr_time = jiffies - 1;
		}
	}

	gossip_debug(GOSSIP_FILE_DEBUG,
		     "%s(%pU): Value(%d) returned.\n",
		     __func__,
		     handle,
		     (int)ret);

	return ret;
}
Ejemplo n.º 9
0
Archivo: file.c Proyecto: 7799/linux
static int gfs2_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct page *page = vmf->page;
	struct inode *inode = file_inode(vma->vm_file);
	struct gfs2_inode *ip = GFS2_I(inode);
	struct gfs2_sbd *sdp = GFS2_SB(inode);
	struct gfs2_alloc_parms ap = { .aflags = 0, };
	unsigned long last_index;
	u64 pos = page->index << PAGE_CACHE_SHIFT;
	unsigned int data_blocks, ind_blocks, rblocks;
	struct gfs2_holder gh;
	loff_t size;
	int ret;

	sb_start_pagefault(inode->i_sb);

	/* Update file times before taking page lock */
	file_update_time(vma->vm_file);

	ret = get_write_access(inode);
	if (ret)
		goto out;

	ret = gfs2_rs_alloc(ip);
	if (ret)
		goto out_write_access;

	gfs2_size_hint(vma->vm_file, pos, PAGE_CACHE_SIZE);

	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
	ret = gfs2_glock_nq(&gh);
	if (ret)
		goto out_uninit;

	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
	set_bit(GIF_SW_PAGED, &ip->i_flags);

	if (!gfs2_write_alloc_required(ip, pos, PAGE_CACHE_SIZE)) {
		lock_page(page);
		if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
			ret = -EAGAIN;
			unlock_page(page);
		}
		goto out_unlock;
	}

	ret = gfs2_rindex_update(sdp);
	if (ret)
		goto out_unlock;

	ret = gfs2_quota_lock_check(ip);
	if (ret)
		goto out_unlock;
	gfs2_write_calc_reserv(ip, PAGE_CACHE_SIZE, &data_blocks, &ind_blocks);
	ap.target = data_blocks + ind_blocks;
	ret = gfs2_inplace_reserve(ip, &ap);
	if (ret)
		goto out_quota_unlock;

	rblocks = RES_DINODE + ind_blocks;
	if (gfs2_is_jdata(ip))
		rblocks += data_blocks ? data_blocks : 1;
	if (ind_blocks || data_blocks) {
		rblocks += RES_STATFS + RES_QUOTA;
		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
	}
	ret = gfs2_trans_begin(sdp, rblocks, 0);
	if (ret)
		goto out_trans_fail;

	lock_page(page);
	ret = -EINVAL;
	size = i_size_read(inode);
	last_index = (size - 1) >> PAGE_CACHE_SHIFT;
	/* Check page index against inode size */
	if (size == 0 || (page->index > last_index))
		goto out_trans_end;

	ret = -EAGAIN;
	/* If truncated, we must retry the operation, we may have raced
	 * with the glock demotion code.
	 */
	if (!PageUptodate(page) || page->mapping != inode->i_mapping)
		goto out_trans_end;

	/* Unstuff, if required, and allocate backing blocks for page */
	ret = 0;
	if (gfs2_is_stuffed(ip))
		ret = gfs2_unstuff_dinode(ip, page);
	if (ret == 0)
		ret = gfs2_allocate_page_backing(page);

out_trans_end:
	if (ret)
		unlock_page(page);
	gfs2_trans_end(sdp);
out_trans_fail:
	gfs2_inplace_release(ip);
out_quota_unlock:
	gfs2_quota_unlock(ip);
out_unlock:
	gfs2_glock_dq(&gh);
out_uninit:
	gfs2_holder_uninit(&gh);
	if (ret == 0) {
		set_page_dirty(page);
		wait_for_stable_page(page);
	}
out_write_access:
	put_write_access(inode);
out:
	sb_end_pagefault(inode->i_sb);
	return block_page_mkwrite_return(ret);
}

static const struct vm_operations_struct gfs2_vm_ops = {
	.fault = filemap_fault,
	.map_pages = filemap_map_pages,
	.page_mkwrite = gfs2_page_mkwrite,
	.remap_pages = generic_file_remap_pages,
};

/**
 * gfs2_mmap -
 * @file: The file to map
 * @vma: The VMA which described the mapping
 *
 * There is no need to get a lock here unless we should be updating
 * atime. We ignore any locking errors since the only consequence is
 * a missed atime update (which will just be deferred until later).
 *
 * Returns: 0
 */

static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);

	if (!(file->f_flags & O_NOATIME) &&
	    !IS_NOATIME(&ip->i_inode)) {
		struct gfs2_holder i_gh;
		int error;

		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
					   &i_gh);
		if (error)
			return error;
		/* grab lock to update inode */
		gfs2_glock_dq_uninit(&i_gh);
		file_accessed(file);
	}
	vma->vm_ops = &gfs2_vm_ops;

	return 0;
}

/**
 * gfs2_open_common - This is common to open and atomic_open
 * @inode: The inode being opened
 * @file: The file being opened
 *
 * This maybe called under a glock or not depending upon how it has
 * been called. We must always be called under a glock for regular
 * files, however. For other file types, it does not matter whether
 * we hold the glock or not.
 *
 * Returns: Error code or 0 for success
 */

int gfs2_open_common(struct inode *inode, struct file *file)
{
	struct gfs2_file *fp;
	int ret;

	if (S_ISREG(inode->i_mode)) {
		ret = generic_file_open(inode, file);
		if (ret)
			return ret;
	}

	fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
	if (!fp)
		return -ENOMEM;

	mutex_init(&fp->f_fl_mutex);

	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
	file->private_data = fp;
	return 0;
}

/**
 * gfs2_open - open a file
 * @inode: the inode to open
 * @file: the struct file for this opening
 *
 * After atomic_open, this function is only used for opening files
 * which are already cached. We must still get the glock for regular
 * files to ensure that we have the file size uptodate for the large
 * file check which is in the common code. That is only an issue for
 * regular files though.
 *
 * Returns: errno
 */

static int gfs2_open(struct inode *inode, struct file *file)
{
	struct gfs2_inode *ip = GFS2_I(inode);
	struct gfs2_holder i_gh;
	int error;
	bool need_unlock = false;

	if (S_ISREG(ip->i_inode.i_mode)) {
		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
					   &i_gh);
		if (error)
			return error;
		need_unlock = true;
	}

	error = gfs2_open_common(inode, file);

	if (need_unlock)
		gfs2_glock_dq_uninit(&i_gh);

	return error;
}

/**
 * gfs2_release - called to close a struct file
 * @inode: the inode the struct file belongs to
 * @file: the struct file being closed
 *
 * Returns: errno
 */

static int gfs2_release(struct inode *inode, struct file *file)
{
	struct gfs2_inode *ip = GFS2_I(inode);

	kfree(file->private_data);
	file->private_data = NULL;

	if (!(file->f_mode & FMODE_WRITE))
		return 0;

	gfs2_rs_delete(ip, &inode->i_writecount);
	return 0;
}

/**
 * gfs2_fsync - sync the dirty data for a file (across the cluster)
 * @file: the file that points to the dentry
 * @start: the start position in the file to sync
 * @end: the end position in the file to sync
 * @datasync: set if we can ignore timestamp changes
 *
 * We split the data flushing here so that we don't wait for the data
 * until after we've also sent the metadata to disk. Note that for
 * data=ordered, we will write & wait for the data at the log flush
 * stage anyway, so this is unlikely to make much of a difference
 * except in the data=writeback case.
 *
 * If the fdatawrite fails due to any reason except -EIO, we will
 * continue the remainder of the fsync, although we'll still report
 * the error at the end. This is to match filemap_write_and_wait_range()
 * behaviour.
 *
 * Returns: errno
 */

static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
		      int datasync)
{
	struct address_space *mapping = file->f_mapping;
	struct inode *inode = mapping->host;
	int sync_state = inode->i_state & I_DIRTY;
	struct gfs2_inode *ip = GFS2_I(inode);
	int ret = 0, ret1 = 0;

	if (mapping->nrpages) {
		ret1 = filemap_fdatawrite_range(mapping, start, end);
		if (ret1 == -EIO)
			return ret1;
	}

	if (!gfs2_is_jdata(ip))
		sync_state &= ~I_DIRTY_PAGES;
	if (datasync)
		sync_state &= ~I_DIRTY_SYNC;

	if (sync_state) {
		ret = sync_inode_metadata(inode, 1);
		if (ret)
			return ret;
		if (gfs2_is_jdata(ip))
			filemap_write_and_wait(mapping);
		gfs2_ail_flush(ip->i_gl, 1);
	}

	if (mapping->nrpages)
		ret = filemap_fdatawait_range(mapping, start, end);

	return ret ? ret : ret1;
}

/**
 * gfs2_file_aio_write - Perform a write to a file
 * @iocb: The io context
 * @iov: The data to write
 * @nr_segs: Number of @iov segments
 * @pos: The file position
 *
 * We have to do a lock/unlock here to refresh the inode size for
 * O_APPEND writes, otherwise we can land up writing at the wrong
 * offset. There is still a race, but provided the app is using its
 * own file locking, this will make O_APPEND work as expected.
 *
 */

static ssize_t gfs2_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
				   unsigned long nr_segs, loff_t pos)
{
	struct file *file = iocb->ki_filp;
	size_t writesize = iov_length(iov, nr_segs);
	struct gfs2_inode *ip = GFS2_I(file_inode(file));
	int ret;

	ret = gfs2_rs_alloc(ip);
	if (ret)
		return ret;

	gfs2_size_hint(file, pos, writesize);

	if (file->f_flags & O_APPEND) {
		struct gfs2_holder gh;

		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
		if (ret)
			return ret;
		gfs2_glock_dq_uninit(&gh);
	}

	return generic_file_aio_write(iocb, iov, nr_segs, pos);
}

static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
			   int mode)
{
	struct gfs2_inode *ip = GFS2_I(inode);
	struct buffer_head *dibh;
	int error;
	loff_t size = len;
	unsigned int nr_blks;
	sector_t lblock = offset >> inode->i_blkbits;

	error = gfs2_meta_inode_buffer(ip, &dibh);
	if (unlikely(error))
		return error;

	gfs2_trans_add_meta(ip->i_gl, dibh);

	if (gfs2_is_stuffed(ip)) {
		error = gfs2_unstuff_dinode(ip, NULL);
		if (unlikely(error))
			goto out;
	}

	while (len) {
		struct buffer_head bh_map = { .b_state = 0, .b_blocknr = 0 };
		bh_map.b_size = len;
		set_buffer_zeronew(&bh_map);

		error = gfs2_block_map(inode, lblock, &bh_map, 1);
		if (unlikely(error))
			goto out;
		len -= bh_map.b_size;
		nr_blks = bh_map.b_size >> inode->i_blkbits;
		lblock += nr_blks;
		if (!buffer_new(&bh_map))
			continue;
		if (unlikely(!buffer_zeronew(&bh_map))) {
			error = -EIO;
			goto out;
		}
	}
	if (offset + size > inode->i_size && !(mode & FALLOC_FL_KEEP_SIZE))
		i_size_write(inode, offset + size);

	mark_inode_dirty(inode);

out:
	brelse(dibh);
	return error;
}

static void calc_max_reserv(struct gfs2_inode *ip, loff_t max, loff_t *len,
			    unsigned int *data_blocks, unsigned int *ind_blocks)
{
	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
	unsigned int max_blocks = ip->i_rgd->rd_free_clone;
	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);

	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
		max_data -= tmp;
	}
	/* This calculation isn't the exact reverse of gfs2_write_calc_reserve,
	   so it might end up with fewer data blocks */
	if (max_data <= *data_blocks)
		return;
	*data_blocks = max_data;
	*ind_blocks = max_blocks - max_data;
	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
	if (*len > max) {
		*len = max;
		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
	}
}

static long gfs2_fallocate(struct file *file, int mode, loff_t offset,
			   loff_t len)
{
	struct inode *inode = file_inode(file);
	struct gfs2_sbd *sdp = GFS2_SB(inode);
	struct gfs2_inode *ip = GFS2_I(inode);
	struct gfs2_alloc_parms ap = { .aflags = 0, };
	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
	loff_t bytes, max_bytes;
	int error;
	const loff_t pos = offset;
	const loff_t count = len;
	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
	loff_t max_chunk_size = UINT_MAX & bsize_mask;
	struct gfs2_holder gh;

	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;

	/* We only support the FALLOC_FL_KEEP_SIZE mode */
	if (mode & ~FALLOC_FL_KEEP_SIZE)
		return -EOPNOTSUPP;

	offset &= bsize_mask;

	len = next - offset;
	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
	if (!bytes)
		bytes = UINT_MAX;
	bytes &= bsize_mask;
	if (bytes == 0)
		bytes = sdp->sd_sb.sb_bsize;

	error = gfs2_rs_alloc(ip);
	if (error)
		return error;

	mutex_lock(&inode->i_mutex);

	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
	error = gfs2_glock_nq(&gh);
	if (unlikely(error))
		goto out_uninit;

	gfs2_size_hint(file, offset, len);

	while (len > 0) {
		if (len < bytes)
			bytes = len;
		if (!gfs2_write_alloc_required(ip, offset, bytes)) {
			len -= bytes;
			offset += bytes;
			continue;
		}
		error = gfs2_quota_lock_check(ip);
		if (error)
			goto out_unlock;

retry:
		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);

		ap.target = data_blocks + ind_blocks;
		error = gfs2_inplace_reserve(ip, &ap);
		if (error) {
			if (error == -ENOSPC && bytes > sdp->sd_sb.sb_bsize) {
				bytes >>= 1;
				bytes &= bsize_mask;
				if (bytes == 0)
					bytes = sdp->sd_sb.sb_bsize;
				goto retry;
			}
			goto out_qunlock;
		}
		max_bytes = bytes;
		calc_max_reserv(ip, (len > max_chunk_size)? max_chunk_size: len,
				&max_bytes, &data_blocks, &ind_blocks);

		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
			  RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
		if (gfs2_is_jdata(ip))
			rblocks += data_blocks ? data_blocks : 1;

		error = gfs2_trans_begin(sdp, rblocks,
					 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
		if (error)
			goto out_trans_fail;

		error = fallocate_chunk(inode, offset, max_bytes, mode);
		gfs2_trans_end(sdp);

		if (error)
			goto out_trans_fail;

		len -= max_bytes;
		offset += max_bytes;
		gfs2_inplace_release(ip);
		gfs2_quota_unlock(ip);
	}

	if (error == 0)
		error = generic_write_sync(file, pos, count);
	goto out_unlock;

out_trans_fail:
	gfs2_inplace_release(ip);
out_qunlock:
	gfs2_quota_unlock(ip);
out_unlock:
	gfs2_glock_dq(&gh);
out_uninit:
	gfs2_holder_uninit(&gh);
	mutex_unlock(&inode->i_mutex);
	return error;
}

#ifdef CONFIG_GFS2_FS_LOCKING_DLM

/**
 * gfs2_setlease - acquire/release a file lease
 * @file: the file pointer
 * @arg: lease type
 * @fl: file lock
 *
 * We don't currently have a way to enforce a lease across the whole
 * cluster; until we do, disable leases (by just returning -EINVAL),
 * unless the administrator has requested purely local locking.
 *
 * Locking: called under i_lock
 *
 * Returns: errno
 */

static int gfs2_setlease(struct file *file, long arg, struct file_lock **fl)
{
	return -EINVAL;
}

/**
 * gfs2_lock - acquire/release a posix lock on a file
 * @file: the file pointer
 * @cmd: either modify or retrieve lock state, possibly wait
 * @fl: type and range of lock
 *
 * Returns: errno
 */

static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
{
	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
	struct lm_lockstruct *ls = &sdp->sd_lockstruct;

	if (!(fl->fl_flags & FL_POSIX))
		return -ENOLCK;
	if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
		return -ENOLCK;

	if (cmd == F_CANCELLK) {
		/* Hack: */
		cmd = F_SETLK;
		fl->fl_type = F_UNLCK;
	}
	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) {
		if (fl->fl_type == F_UNLCK)
			posix_lock_file_wait(file, fl);
		return -EIO;
	}
	if (IS_GETLK(cmd))
		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
	else if (fl->fl_type == F_UNLCK)
		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
	else
		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
}

static int do_flock(struct file *file, int cmd, struct file_lock *fl)
{
	struct gfs2_file *fp = file->private_data;
	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
	struct gfs2_inode *ip = GFS2_I(file_inode(file));
	struct gfs2_glock *gl;
	unsigned int state;
	int flags;
	int error = 0;

	state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
	flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY) | GL_EXACT | GL_NOCACHE;

	mutex_lock(&fp->f_fl_mutex);

	gl = fl_gh->gh_gl;
	if (gl) {
		if (fl_gh->gh_state == state)
			goto out;
		flock_lock_file_wait(file,
				     &(struct file_lock){.fl_type = F_UNLCK});
		gfs2_glock_dq_wait(fl_gh);
		gfs2_holder_reinit(state, flags, fl_gh);
	} else {
		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
				       &gfs2_flock_glops, CREATE, &gl);
		if (error)
			goto out;
		gfs2_holder_init(gl, state, flags, fl_gh);
		gfs2_glock_put(gl);
	}
	error = gfs2_glock_nq(fl_gh);
	if (error) {
		gfs2_holder_uninit(fl_gh);
		if (error == GLR_TRYFAILED)
			error = -EAGAIN;
	} else {
		error = flock_lock_file_wait(file, fl);
		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
	}

out:
	mutex_unlock(&fp->f_fl_mutex);
	return error;
}
Ejemplo n.º 10
0
STATIC ssize_t
xfs_file_dio_aio_read(
	struct kiocb		*iocb,
	struct iov_iter		*to)
{
	struct address_space	*mapping = iocb->ki_filp->f_mapping;
	struct inode		*inode = mapping->host;
	struct xfs_inode	*ip = XFS_I(inode);
	loff_t			isize = i_size_read(inode);
	size_t			count = iov_iter_count(to);
	struct iov_iter		data;
	struct xfs_buftarg	*target;
	ssize_t			ret = 0;

	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);

	if (!count)
		return 0; /* skip atime */

	if (XFS_IS_REALTIME_INODE(ip))
		target = ip->i_mount->m_rtdev_targp;
	else
		target = ip->i_mount->m_ddev_targp;

	/* DIO must be aligned to device logical sector size */
	if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
		if (iocb->ki_pos == isize)
			return 0;
		return -EINVAL;
	}

	file_accessed(iocb->ki_filp);

	/*
	 * Locking is a bit tricky here. If we take an exclusive lock for direct
	 * IO, we effectively serialise all new concurrent read IO to this file
	 * and block it behind IO that is currently in progress because IO in
	 * progress holds the IO lock shared. We only need to hold the lock
	 * exclusive to blow away the page cache, so only take lock exclusively
	 * if the page cache needs invalidation. This allows the normal direct
	 * IO case of no page cache pages to proceeed concurrently without
	 * serialisation.
	 */
	xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
	if (mapping->nrpages) {
		xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
		xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);

		/*
		 * The generic dio code only flushes the range of the particular
		 * I/O. Because we take an exclusive lock here, this whole
		 * sequence is considerably more expensive for us. This has a
		 * noticeable performance impact for any file with cached pages,
		 * even when outside of the range of the particular I/O.
		 *
		 * Hence, amortize the cost of the lock against a full file
		 * flush and reduce the chances of repeated iolock cycles going
		 * forward.
		 */
		if (mapping->nrpages) {
			ret = filemap_write_and_wait(mapping);
			if (ret) {
				xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
				return ret;
			}

			/*
			 * Invalidate whole pages. This can return an error if
			 * we fail to invalidate a page, but this should never
			 * happen on XFS. Warn if it does fail.
			 */
			ret = invalidate_inode_pages2(mapping);
			WARN_ON_ONCE(ret);
			ret = 0;
		}
		xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
	}

	data = *to;
	ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
			xfs_get_blocks_direct, NULL, NULL, 0);
	if (ret >= 0) {
		iocb->ki_pos += ret;
		iov_iter_advance(to, ret);
	}
	xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);

	return ret;
}
Ejemplo n.º 11
0
static int vvp_io_read_start(const struct lu_env *env,
                             const struct cl_io_slice *ios)
{
        struct vvp_io     *vio   = cl2vvp_io(env, ios);
        struct ccc_io     *cio   = cl2ccc_io(env, ios);
        struct cl_io      *io    = ios->cis_io;
        struct cl_object  *obj   = io->ci_obj;
        struct inode      *inode = ccc_object_inode(obj);
        struct ll_ra_read *bead  = &vio->cui_bead;
        struct file       *file  = cio->cui_fd->fd_file;

        int     result;
        loff_t  pos = io->u.ci_rd.rd.crw_pos;
        long    cnt = io->u.ci_rd.rd.crw_count;
        long    tot = cio->cui_tot_count;
        int     exceed = 0;

        CLOBINVRNT(env, obj, ccc_object_invariant(obj));

        CDEBUG(D_VFSTRACE, "read: -> [%lli, %lli)\n", pos, pos + cnt);

	if (!can_populate_pages(env, io, inode))
		return 0;

        result = ccc_prep_size(env, obj, io, pos, tot, &exceed);
        if (result != 0)
                return result;
        else if (exceed != 0)
                goto out;

        LU_OBJECT_HEADER(D_INODE, env, &obj->co_lu,
                        "Read ino %lu, %lu bytes, offset %lld, size %llu\n",
                        inode->i_ino, cnt, pos, i_size_read(inode));

        /* turn off the kernel's read-ahead */
        cio->cui_fd->fd_file->f_ra.ra_pages = 0;

        /* initialize read-ahead window once per syscall */
        if (!vio->cui_ra_window_set) {
                vio->cui_ra_window_set = 1;
                bead->lrr_start = cl_index(obj, pos);
		bead->lrr_count = cl_index(obj, tot + PAGE_CACHE_SIZE - 1);
                ll_ra_read_in(file, bead);
        }

        /* BUG: 5972 */
        file_accessed(file);
        switch (vio->cui_io_subtype) {
        case IO_NORMAL:
                 result = lustre_generic_file_read(file, cio, &pos);
                 break;
        case IO_SPLICE:
                result = generic_file_splice_read(file, &pos,
                                vio->u.splice.cui_pipe, cnt,
                                vio->u.splice.cui_flags);
                /* LU-1109: do splice read stripe by stripe otherwise if it
                 * may make nfsd stuck if this read occupied all internal pipe
                 * buffers. */
                io->ci_continue = 0;
                break;
        default:
                CERROR("Wrong IO type %u\n", vio->cui_io_subtype);
                LBUG();
        }

out:
	if (result >= 0) {
		if (result < cnt)
			io->ci_continue = 0;
		io->ci_nob += result;
		ll_rw_stats_tally(ll_i2sbi(inode), current->pid, cio->cui_fd,
				  pos, result, READ);
		result = 0;
	}

	return result;
}
Ejemplo n.º 12
0
Archivo: file.c Proyecto: 19Dan01/linux
static ssize_t
ncp_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
	struct file *file = iocb->ki_filp;
	struct inode *inode = file_inode(file);
	size_t already_read = 0;
	off_t pos = iocb->ki_pos;
	size_t bufsize;
	int error;
	void *freepage;
	size_t freelen;

	ncp_dbg(1, "enter %pD2\n", file);

	if (!iov_iter_count(to))
		return 0;
	if (pos > inode->i_sb->s_maxbytes)
		return 0;
	iov_iter_truncate(to, inode->i_sb->s_maxbytes - pos);

	error = ncp_make_open(inode, O_RDONLY);
	if (error) {
		ncp_dbg(1, "open failed, error=%d\n", error);
		return error;
	}

	bufsize = NCP_SERVER(inode)->buffer_size;

	error = -EIO;
	freelen = ncp_read_bounce_size(bufsize);
	freepage = vmalloc(freelen);
	if (!freepage)
		goto outrel;
	error = 0;
	/* First read in as much as possible for each bufsize. */
	while (iov_iter_count(to)) {
		int read_this_time;
		size_t to_read = min_t(size_t,
				     bufsize - (pos % bufsize),
				     iov_iter_count(to));

		error = ncp_read_bounce(NCP_SERVER(inode),
			 	NCP_FINFO(inode)->file_handle,
				pos, to_read, to, &read_this_time, 
				freepage, freelen);
		if (error) {
			error = -EIO;	/* NW errno -> Linux errno */
			break;
		}
		pos += read_this_time;
		already_read += read_this_time;

		if (read_this_time != to_read)
			break;
	}
	vfree(freepage);

	iocb->ki_pos = pos;

	file_accessed(file);

	ncp_dbg(1, "exit %pD2\n", file);
outrel:
	ncp_inode_close(inode);		
	return already_read ? already_read : error;
}
Ejemplo n.º 13
0
static int wrapfs_mmap(struct file *file, struct vm_area_struct *vma)
{
	int err = 0;
	bool willwrite;
	struct file *lower_file;
	const struct vm_operations_struct *saved_vm_ops = NULL;
#ifdef DEBUG_SUPPORT
	if(debug_support(wrapfs_lower_file(file)->f_dentry->d_sb,"file"))
		UDBG;
#endif
	/* this might be deferred to mmap's writepage */
	willwrite = ((vma->vm_flags | VM_SHARED | VM_WRITE) == vma->vm_flags);

	/*
	 * File systems which do not implement ->writepage may use
	 * generic_file_readonly_mmap as their ->mmap op.  If you call
	 * generic_file_readonly_mmap with VM_WRITE, you'd get an -EINVAL.
	 * But we cannot call the lower ->mmap op, so we can't tell that
	 * writeable mappings won't work.  Therefore, our only choice is to
	 * check if the lower file system supports the ->writepage, and if
	 * not, return EINVAL (the same error that
	 * generic_file_readonly_mmap returns in that case).
	 */
	lower_file = wrapfs_lower_file(file);
	if (willwrite && !lower_file->f_mapping->a_ops->writepage) {
		err = -EINVAL;
		printk(KERN_ERR "wrapfs: lower file system does not "
		       "support writeable mmap\n");
		goto out;
	}

	/*
	 * find and save lower vm_ops.
	 *
	 * XXX: the VFS should have a cleaner way of finding the lower vm_ops
	 */
	if (!WRAPFS_F(file)->lower_vm_ops) {
		err = lower_file->f_op->mmap(lower_file, vma);
		if (err) {
			printk(KERN_ERR "wrapfs: lower mmap failed %d\n", err);
			goto out;
		}
		saved_vm_ops = vma->vm_ops; /* save: came from lower ->mmap */
		err = do_munmap(current->mm, vma->vm_start,
				vma->vm_end - vma->vm_start);
		if (err) {
			printk(KERN_ERR "wrapfs: do_munmap failed %d\n", err);
			goto out;
		}
	}

	/*
	 * Next 3 lines are all I need from generic_file_mmap.  I definitely
	 * don't want its test for ->readpage which returns -ENOEXEC.
	 */
	file_accessed(file);
	vma->vm_ops = &wrapfs_vm_ops;
	vma->vm_flags |= VM_CAN_NONLINEAR;

	file->f_mapping->a_ops = &wrapfs_aops; /* set our aops */
	if (!WRAPFS_F(file)->lower_vm_ops) /* save for our ->fault */
		WRAPFS_F(file)->lower_vm_ops = saved_vm_ops;

out:
#ifdef DEBUG_SUPPORT
	if(debug_support(lower_file->f_dentry->d_sb,"file"))
		UDBGE(err);
#endif
	return err;
}
Ejemplo n.º 14
0
static int nilfs_file_mmap(struct file *file, struct vm_area_struct *vma)
{
	file_accessed(file);
	vma->vm_ops = &nilfs_file_vm_ops;
	return 0;
}
Ejemplo n.º 15
0
static int sdcardfs_mmap(struct file *file, struct vm_area_struct *vma)
{
	int err = 0;
	bool willwrite;
	struct file *lower_file;
	const struct vm_operations_struct *saved_vm_ops = NULL;
#ifdef CONFIG_TIMA_IOMMU_OPT
	if (vma->vm_end - vma->vm_start) {
		/* iommu optimization- needs to be turned ON from
		* the tz side.
		*/
		cpu_v7_tima_iommu_opt(vma->vm_start, vma->vm_end, (unsigned long)vma->vm_mm->pgd);
	}
#endif /* CONFIG_TIMA_IOMMU_OPT */
	/* this might be deferred to mmap's writepage */
	willwrite = ((vma->vm_flags | VM_SHARED | VM_WRITE) == vma->vm_flags);

	/*
	 * File systems which do not implement ->writepage may use
	 * generic_file_readonly_mmap as their ->mmap op.  If you call
	 * generic_file_readonly_mmap with VM_WRITE, you'd get an -EINVAL.
	 * But we cannot call the lower ->mmap op, so we can't tell that
	 * writeable mappings won't work.  Therefore, our only choice is to
	 * check if the lower file system supports the ->writepage, and if
	 * not, return EINVAL (the same error that
	 * generic_file_readonly_mmap returns in that case).
	 */
	lower_file = sdcardfs_lower_file(file);
	if (willwrite && !lower_file->f_mapping->a_ops->writepage) {
		err = -EINVAL;
		printk(KERN_ERR "sdcardfs: lower file system does not "
		       "support writeable mmap\n");
		goto out;
	}

	/*
	 * find and save lower vm_ops.
	 *
	 * XXX: the VFS should have a cleaner way of finding the lower vm_ops
	 */
	if (!SDCARDFS_F(file)->lower_vm_ops) {
		err = lower_file->f_op->mmap(lower_file, vma);
		if (err) {
			printk(KERN_ERR "sdcardfs: lower mmap failed %d\n", err);
			goto out;
		}
		saved_vm_ops = vma->vm_ops; /* save: came from lower ->mmap */
		err = do_munmap(current->mm, vma->vm_start,
				vma->vm_end - vma->vm_start);
		if (err) {
			printk(KERN_ERR "sdcardfs: do_munmap failed %d\n", err);
			goto out;
		}
	}

	/*
	 * Next 3 lines are all I need from generic_file_mmap.  I definitely
	 * don't want its test for ->readpage which returns -ENOEXEC.
	 */
	file_accessed(file);
	vma->vm_ops = &sdcardfs_vm_ops;

	file->f_mapping->a_ops = &sdcardfs_aops; /* set our aops */
	if (!SDCARDFS_F(file)->lower_vm_ops) /* save for our ->fault */
		SDCARDFS_F(file)->lower_vm_ops = saved_vm_ops;

out:
	return err;
}
Ejemplo n.º 16
0
ssize_t hmfs_xip_file_read(struct file * filp, char __user * buf, size_t len,
			   loff_t * ppos)
{
	/* from do_XIP_mapping_read */
	struct inode *inode = filp->f_inode;
	pgoff_t index, end_index;
	unsigned long offset;
	loff_t isize, pos;
	size_t copied = 0, error = 0;

	pos = *ppos;
	index = pos >> HMFS_PAGE_SIZE_BITS;	
	offset = pos & ~HMFS_PAGE_MASK;

	mutex_lock(&inode->i_mutex);
	isize = i_size_read(inode);
	if (!isize)
		goto out;

	end_index = (isize - 1) >> HMFS_PAGE_SIZE_BITS;
	/*
	 * nr : read length for this loop
	 * offset : start inner-blk offset this loop
	 * index : start inner-file blk number this loop
	 * copied : read length so far
	 * FIXME: pending for write_lock? anything like access_ok()
	 */

	do {
		unsigned long nr, left;
		void *xip_mem[1];
		int zero = 0;
		int size;

		/* nr is the maximum number of bytes to copy from this page */
		nr = HMFS_PAGE_SIZE;	//HMFS_SIZE
		if (index >= end_index) {
			if (index > end_index)
				goto out;
			nr = ((isize - 1) & ~HMFS_PAGE_MASK) + 1;
			if (nr <= offset) {
				goto out;
			}
		}
		nr = nr - offset;
		if (nr > len - copied)
			nr = len - copied;
		BUG_ON(nr > HMFS_PAGE_SIZE);
		error = get_data_blocks(inode, index, index + 1, xip_mem, 
						&size, RA_END);

		if (unlikely(error || size != 1)) {
			if (error == -ENODATA) {
				/* sparse */
				zero = 1;
			} else
				goto out;
		}

		/* copy to user space */
		if (!zero)
			left =
			 __copy_to_user(buf + copied, xip_mem[0] + offset, nr);
		else
			left = __clear_user(buf + copied, nr);

		if (left) {
			error = -EFAULT;
			goto out;
		}
		copied += (nr - left);
		offset += (nr - left);
		index += offset >> HMFS_PAGE_SIZE_BITS;
		offset &= ~HMFS_PAGE_MASK;
	} while (copied < len);

out:
	mutex_unlock(&inode->i_mutex);
	*ppos = pos + copied;
	if (filp)
		file_accessed(filp);

	return (copied ? copied : error);
}
Ejemplo n.º 17
0
ssize_t rawfs_reg_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
		unsigned long nr_segs, loff_t pos)
{
    struct file *filp = iocb->ki_filp;
    struct super_block *sb = filp->f_path.dentry->d_sb;
    struct rawfs_sb_info *rawfs_sb = RAWFS_SB(sb);
//    struct address_space *mapping=filp->f_mapping;
    struct inode *inode = filp->f_mapping->host;
    struct rawfs_inode_info *inode_info = RAWFS_I(inode);

    ssize_t retval;
//	size_t count;
	loff_t *ppos = &iocb->ki_pos;
    struct rawfs_file_info *fi = NULL;
    unsigned int curr_file_pos = pos;
    unsigned int curr_buf_pos = 0;
    int starting_page, total_pages;
    int remain_buf_size;
    int result;
    struct rawfs_file_list_entry * entry;
    const struct iovec *iv = &iov[0];  // TODO: Process all io vectors

    // Always use direct I/O
    //	loff_t size;
    //  int block_no;

    // Get Lock
    mutex_lock(&rawfs_sb->rawfs_lock);

    retval=iov_length(iov, nr_segs);

    RAWFS_PRINT(RAWFS_DBG_FILE, "rawfs_reg_file_aio_write %s, pos %lld, "
        "len %d\n", inode_info->i_name, pos, retval);

    fi = kzalloc(sizeof(struct rawfs_file_info), GFP_NOFS);

    if (!fi) {
        retval = 0;
        goto out;
    }

    /* rawfs_fill_file_info(inode , fi); */
    rawfs_fill_fileinfo_by_dentry(filp->f_path.dentry, fi);

    /* Update file_info */
    if ((pos+retval) > fi->i_size)
        fi->i_size = pos+retval;

    fi->i_chunk_index = 1;
    fi->i_chunk_total = S_ISDIR(fi->i_mode) ? 1 : CEILING((unsigned)fi->i_size,
        rawfs_sb->page_data_size);

    /* do GC, if the required space is not enough */
    result = rawfs_reserve_space(sb, fi->i_chunk_total);
    if (result<0) {
        retval=result;
            goto out;
        }

    // get entry from file list
    entry = rawfs_file_list_get(sb, fi->i_name, fi->i_parent_folder_id);

    if (!entry) {
        RAWFS_PRINT(RAWFS_DBG_FILE, "rawfs_reg_file_aio_write: %s file list "
            "entry missing\n", fi->i_name);
        dump_stack();
        goto out;
    }

    // Write File
    {
        int preceding_pages, rear_pages;
        struct rawfs_page *page_buf = NULL;
        int i;

        // Prepare page buffer
        page_buf = kzalloc(rawfs_sb->page_size, GFP_NOFS);

        if (page_buf == NULL) {
            retval = 0;
            goto out;
        }

        starting_page = rawfs_sb->data_block_free_page_index;
        preceding_pages = FLOOR((unsigned)pos, rawfs_sb->page_data_size);
        total_pages = CEILING((unsigned)fi->i_size, rawfs_sb->page_data_size);
        rear_pages = CEILING((unsigned)pos + iv->iov_len,
            rawfs_sb->page_data_size);
        remain_buf_size = iv->iov_len;

        RAWFS_PRINT(RAWFS_DBG_FILE, "rawfs_reg_file_aio_write %s, "
            "preceding_pages %d, rear_pages %d, total_pages %d, "
            "remain_buf_size %d\n",
             inode_info->i_name, preceding_pages, rear_pages, total_pages,
             remain_buf_size);


        // Step 1: Copy preceding pages, if starting pos is not 0.
        for (i=0;i<total_pages;i++)
        {
            // Read, if necessary, (no need for new files)
            if ( (i<=preceding_pages) || (i>=rear_pages))
            rawfs_sb->dev.read_page(sb,
                entry->i_location_block,
                entry->i_location_page+i,
                page_buf);

            // Update info
            memcpy(&page_buf->i_info.i_file_info, fi,
                sizeof(struct rawfs_file_info));

            // Within Modify Range: Copy Modify
            if ((i>=preceding_pages) && (i<=rear_pages))
            {
                int start_in_buf;
                int copy_len;

                start_in_buf = (curr_file_pos % rawfs_sb->page_data_size);
                copy_len =  ((start_in_buf + remain_buf_size) >
                            rawfs_sb->page_data_size) ?
                            (rawfs_sb->page_data_size - start_in_buf) :
                            remain_buf_size;

                if (copy_from_user(&page_buf->i_data[0] + start_in_buf,
                    (char*)iv->iov_base + curr_buf_pos, copy_len))
                {
                    retval = -EFAULT;
                    goto out2;
                }

                curr_buf_pos    += copy_len;
                remain_buf_size -= copy_len;

                RAWFS_PRINT(RAWFS_DBG_FILE, "rawfs_reg_file_aio_write %s, %d, "
                    "curr_buf_pos %d, remain_buf_size %d start_in_buf %d "
                    "copy_len %d starting pattern %X\n",
                inode_info->i_name, i, curr_buf_pos, remain_buf_size,
                start_in_buf, copy_len,
                *(unsigned int*)(&page_buf->i_data[0] + start_in_buf));
            }

            rawfs_page_signature(sb, page_buf);

            // Write
            rawfs_sb->dev.write_page(sb,
                rawfs_sb->data_block,
                rawfs_sb->data_block_free_page_index,
                page_buf);

            rawfs_sb->data_block_free_page_index++;
            fi->i_chunk_index++;
        }

out2:
        if (page_buf)
            kfree(page_buf);
    }

	if (retval > 0) {
		*ppos = pos + retval;
	}

    file_accessed(filp);

    // Update Inode: file size, block, page
    i_size_write(inode, fi->i_size);
    // TODO: Get inode lock when update
    inode_info->i_location_block = rawfs_sb->data_block;
    inode_info->i_location_page = starting_page;
    inode_info->i_location_page_count = total_pages;

    // update location
    entry->i_location_block = rawfs_sb->data_block;
    entry->i_location_page = starting_page;
    entry->i_location_page_count = total_pages;

out:
    if (fi)
        kfree(fi);

    // Release Lock
    mutex_unlock(&rawfs_sb->rawfs_lock);

    return retval;
}
Ejemplo n.º 18
0
//-----------------------------------------------------------------------------
// Regular File Operation
//-----------------------------------------------------------------------------
ssize_t rawfs_reg_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
		unsigned long nr_segs, loff_t pos)
{
    struct file *filp = iocb->ki_filp;
    struct super_block *sb = filp->f_path.dentry->d_sb;
    struct rawfs_sb_info *rawfs_sb = RAWFS_SB(sb);
//    struct address_space *mapping=filp->f_mapping;
    struct inode *inode = filp->f_mapping->host;
    struct rawfs_inode_info *inode_info = RAWFS_I(inode);

    ssize_t retval;
	size_t count;
	loff_t *ppos = &iocb->ki_pos;
	loff_t size;
    unsigned int curr_file_pos = pos;
    unsigned int curr_buf_pos = 0;
    int remain_buf_size;
    const struct iovec *iv = &iov[0];  // TODO: Process all io vectors

	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);

    RAWFS_PRINT(RAWFS_DBG_FILE, "rawfs_reg_file_aio_read %s, segment check "
        "result %d\n", inode_info->i_name, retval);

	if (retval)
		return retval;

    mutex_lock(&rawfs_sb->rawfs_lock);

    retval=iov_length(iov, nr_segs);

    size = i_size_read(inode);

    RAWFS_PRINT(RAWFS_DBG_FILE, "rawfs_reg_file_aio_read %s, pos %lld, len %d, "
        "filesize: %lld\n", inode_info->i_name, pos, retval, size);

    if ((retval + pos) >= size)
        retval = size - pos;

    if (pos < size) {
        /* Read File */
        {
            int preceding_pages, rear_pages;
            struct rawfs_page *page_buf = NULL;
            int i;

            // Prepare page buffer
            page_buf = kzalloc(rawfs_sb->page_size, GFP_NOFS);

            if (page_buf == NULL) {
                retval = 0;
                goto out;
            }

            preceding_pages = FLOOR((unsigned)pos, rawfs_sb->page_data_size);
            rear_pages = CEILING((unsigned)pos + retval,
                rawfs_sb->page_data_size);
            remain_buf_size = retval;

            RAWFS_PRINT(RAWFS_DBG_FILE, "rawfs_reg_file_aio_read %s, "
                "preceding_pages %d, rear_pages %d, remain_buf_size %d\n",
                inode_info->i_name, preceding_pages, rear_pages,
                remain_buf_size);

            // Step 1: Copy preceding pages, if starting pos is not 0.
            for (i=preceding_pages;i<rear_pages;i++)
            {
                __u32 crc;

                // Read page
                rawfs_sb->dev.read_page(sb,
                    inode_info->i_location_block,
                    inode_info->i_location_page+i,
                    page_buf);

                // TODO: skip this page, if unrecoverable error occurs

                /* CRC error should not happen,
                   since we have already check them at bootup */
                crc = rawfs_page_crc_data(sb, page_buf);

                if (crc != page_buf->i_crc)
                    RAWFS_PRINT(RAWFS_DBG_FILE, "rawfs_reg_file_aio_read: "
                        "%s @ %X, crc fail %X, expected %X\n",
                        page_buf->i_info.i_file_info.i_name,
                        page_buf->i_info.i_file_info.i_parent_folder_id, crc,
                        page_buf->i_crc);
                else
                    RAWFS_PRINT(RAWFS_DBG_FILE, "rawfs_reg_file_aio_read: "
                        "%s @ %X, crc %X\n",
                        page_buf->i_info.i_file_info.i_name,
                        page_buf->i_info.i_file_info.i_parent_folder_id,
                        page_buf->i_crc);

                /* Copy requried parts */
                {
                    int start_in_buf;
                    int copy_len;

                    start_in_buf = (curr_file_pos % rawfs_sb->page_data_size);
                    copy_len =  ((start_in_buf + remain_buf_size) >
                        rawfs_sb->page_data_size) ?
                        (rawfs_sb->page_data_size - start_in_buf) :
                        remain_buf_size;

                    if (copy_to_user((char*)iv->iov_base + curr_buf_pos,
                        &page_buf->i_data[0] + start_in_buf, copy_len))
                    {
                        retval = -EFAULT;
                        goto out2;
                    }

                    RAWFS_PRINT(RAWFS_DBG_FILE, "rawfs_reg_file_aio_read %s, "
                        "%d, curr_buf_pos %d, remain_buf_size %d "
                        "start_in_buf %d copy_len %d starting pattern %X\n",
                        inode_info->i_name, i, curr_buf_pos, remain_buf_size,
                        start_in_buf, copy_len,
                        *(unsigned int*)(&page_buf->i_data[0] + start_in_buf));

                    curr_buf_pos    += copy_len;
                    remain_buf_size -= copy_len;
                }
            }

out2:
            if (page_buf)
                kfree(page_buf);
        }

        if (retval > 0)
            *ppos = pos + retval;

        if (retval < 0 || *ppos >= size) {
            file_accessed(filp);
            goto out;
        }
    }
    else
        retval = 0;

out:
    // Release Lock
    mutex_unlock(&rawfs_sb->rawfs_lock);

    return retval;
}
Ejemplo n.º 19
0
/*
 * Common entry point for read/write/readv/writev
 * This function will dispatch it to either the direct I/O
 * or buffered I/O path depending on the mount options and/or
 * augmented/extended metadata attached to the file.
 * Note: File extended attributes override any mount options.
 */
static ssize_t do_readv_writev(enum ORANGEFS_io_type type, struct file *file,
		loff_t *offset, struct iov_iter *iter)
{
	struct inode *inode = file->f_mapping->host;
	struct orangefs_inode_s *orangefs_inode = ORANGEFS_I(inode);
	struct orangefs_khandle *handle = &orangefs_inode->refn.khandle;
	size_t count = iov_iter_count(iter);
	ssize_t total_count = 0;
	ssize_t ret = -EINVAL;

	gossip_debug(GOSSIP_FILE_DEBUG,
		"%s-BEGIN(%pU): count(%d) after estimate_max_iovecs.\n",
		__func__,
		handle,
		(int)count);

	if (type == ORANGEFS_IO_WRITE) {
		gossip_debug(GOSSIP_FILE_DEBUG,
			     "%s(%pU): proceeding with offset : %llu, "
			     "size %d\n",
			     __func__,
			     handle,
			     llu(*offset),
			     (int)count);
	}

	if (count == 0) {
		ret = 0;
		goto out;
	}

	while (iov_iter_count(iter)) {
		size_t each_count = iov_iter_count(iter);
		size_t amt_complete;

		/* how much to transfer in this loop iteration */
		if (each_count > orangefs_bufmap_size_query())
			each_count = orangefs_bufmap_size_query();

		gossip_debug(GOSSIP_FILE_DEBUG,
			     "%s(%pU): size of each_count(%d)\n",
			     __func__,
			     handle,
			     (int)each_count);
		gossip_debug(GOSSIP_FILE_DEBUG,
			     "%s(%pU): BEFORE wait_for_io: offset is %d\n",
			     __func__,
			     handle,
			     (int)*offset);

		ret = wait_for_direct_io(type, inode, offset, iter,
				each_count, 0);
		gossip_debug(GOSSIP_FILE_DEBUG,
			     "%s(%pU): return from wait_for_io:%d\n",
			     __func__,
			     handle,
			     (int)ret);

		if (ret < 0)
			goto out;

		*offset += ret;
		total_count += ret;
		amt_complete = ret;

		gossip_debug(GOSSIP_FILE_DEBUG,
			     "%s(%pU): AFTER wait_for_io: offset is %d\n",
			     __func__,
			     handle,
			     (int)*offset);

		/*
		 * if we got a short I/O operations,
		 * fall out and return what we got so far
		 */
		if (amt_complete < each_count)
			break;
	} /*end while */

out:
	if (total_count > 0)
		ret = total_count;
	if (ret > 0) {
		if (type == ORANGEFS_IO_READ) {
			file_accessed(file);
		} else {
			SetMtimeFlag(orangefs_inode);
			inode->i_mtime = CURRENT_TIME;
			mark_inode_dirty_sync(inode);
		}
	}

	gossip_debug(GOSSIP_FILE_DEBUG,
		     "%s(%pU): Value(%d) returned.\n",
		     __func__,
		     handle,
		     (int)ret);

	return ret;
}
Ejemplo n.º 20
0
static ssize_t
pipe_read(struct kiocb *iocb, struct iov_iter *to)
{
	size_t total_len = iov_iter_count(to);
	struct file *filp = iocb->ki_filp;
	struct pipe_inode_info *pipe = filp->private_data;
	int do_wakeup;
	ssize_t ret;

	/* Null read succeeds. */
	if (unlikely(total_len == 0))
		return 0;

	do_wakeup = 0;
	ret = 0;
	__pipe_lock(pipe);
	for (;;) {
		int bufs = pipe->nrbufs;
		if (bufs) {
			int curbuf = pipe->curbuf;
			struct pipe_buffer *buf = pipe->bufs + curbuf;
			const struct pipe_buf_operations *ops = buf->ops;
			size_t chars = buf->len;
			size_t written;
			int error;

			if (chars > total_len)
				chars = total_len;

			error = ops->confirm(pipe, buf);
			if (error) {
				if (!ret)
					ret = error;
				break;
			}

			written = copy_page_to_iter(buf->page, buf->offset, chars, to);
			if (unlikely(written < chars)) {
				if (!ret)
					ret = -EFAULT;
				break;
			}
			ret += chars;
			buf->offset += chars;
			buf->len -= chars;

			/* Was it a packet buffer? Clean up and exit */
			if (buf->flags & PIPE_BUF_FLAG_PACKET) {
				total_len = chars;
				buf->len = 0;
			}

			if (!buf->len) {
				buf->ops = NULL;
				ops->release(pipe, buf);
				curbuf = (curbuf + 1) & (pipe->buffers - 1);
				pipe->curbuf = curbuf;
				pipe->nrbufs = --bufs;
				do_wakeup = 1;
			}
			total_len -= chars;
			if (!total_len)
				break;	/* common path: read succeeded */
		}
		if (bufs)	/* More to do? */
			continue;
		if (!atomic_read(&pipe->writers))
			break;
		if (!atomic_read(&pipe->waiting_writers)) {
			/* syscall merging: Usually we must not sleep
			 * if O_NONBLOCK is set, or if we got some data.
			 * But if a writer sleeps in kernel space, then
			 * we can wait for that data without violating POSIX.
			 */
			if (ret)
				break;
			if (filp->f_flags & O_NONBLOCK) {
				ret = -EAGAIN;
				break;
			}
		}
		if (signal_pending(current)) {
			if (!ret)
				ret = -ERESTARTSYS;
			break;
		}
		if (do_wakeup) {
			wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
		}
		pipe_wait(pipe);
	}
	__pipe_unlock(pipe);

	/* Signal writers asynchronously that there is more room. */
	if (do_wakeup) {
		wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
	}
	if (ret > 0)
		file_accessed(filp);
	return ret;
}
Ejemplo n.º 21
0
static int gfs2_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct page *page = vmf->page;
	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
	struct gfs2_inode *ip = GFS2_I(inode);
	struct gfs2_sbd *sdp = GFS2_SB(inode);
	struct gfs2_alloc_parms ap = { .aflags = 0, };
	unsigned long last_index;
	u64 pos = page->index << PAGE_CACHE_SHIFT;
	unsigned int data_blocks, ind_blocks, rblocks;
	int alloc_required = 0;
	struct gfs2_holder gh;
	loff_t size;
	int ret;

	sb_start_pagefault(inode->i_sb);

	/* Update file times before taking page lock */
	file_update_time(vma->vm_file);

	ret = get_write_access(inode);
	if (ret)
		goto out;

	ret = gfs2_rs_alloc(ip);
	if (ret)
		goto out_write_access;

	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
	ret = gfs2_glock_nq(&gh);
	if (ret)
		goto out_uninit;

	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
	set_bit(GIF_SW_PAGED, &ip->i_flags);

	gfs2_size_hint(inode, pos, PAGE_CACHE_SIZE);

	ret = gfs2_write_alloc_required(ip, pos, PAGE_CACHE_SIZE, &alloc_required);
	if (ret)
		goto out_unlock;

	if (!alloc_required) {
		lock_page(page);
		if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
			ret = -EAGAIN;
			unlock_page(page);
		}
		goto out_unlock;
	}

	ret = gfs2_rindex_update(sdp);
	if (ret)
		goto out_unlock;

	ret = gfs2_quota_lock_check(ip);
	if (ret)
		goto out_unlock;
	gfs2_write_calc_reserv(ip, PAGE_CACHE_SIZE, &data_blocks, &ind_blocks);
	ap.target = data_blocks + ind_blocks;
	ret = gfs2_inplace_reserve(ip, &ap);
	if (ret)
		goto out_quota_unlock;

	rblocks = RES_DINODE + ind_blocks;
	if (gfs2_is_jdata(ip))
		rblocks += data_blocks ? data_blocks : 1;
	if (ind_blocks || data_blocks) {
		rblocks += RES_STATFS + RES_QUOTA;
		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
	}
	ret = gfs2_trans_begin(sdp, rblocks, 0);
	if (ret)
		goto out_trans_fail;

	lock_page(page);
	ret = -EINVAL;
	size = i_size_read(inode);
	last_index = (size - 1) >> PAGE_CACHE_SHIFT;
	/* Check page index against inode size */
	if (size == 0 || (page->index > last_index))
		goto out_trans_end;

	ret = -EAGAIN;
	/* If truncated, we must retry the operation, we may have raced
	 * with the glock demotion code.
	 */
	if (!PageUptodate(page) || page->mapping != inode->i_mapping)
		goto out_trans_end;

	/* Unstuff, if required, and allocate backing blocks for page */
	ret = 0;
	if (gfs2_is_stuffed(ip))
		ret = gfs2_unstuff_dinode(ip, page);
	if (ret == 0)
		ret = gfs2_allocate_page_backing(page);

out_trans_end:
	if (ret)
		unlock_page(page);
	gfs2_trans_end(sdp);
out_trans_fail:
	gfs2_inplace_release(ip);
out_quota_unlock:
	gfs2_quota_unlock(ip);
out_unlock:
	gfs2_glock_dq(&gh);
out_uninit:
	gfs2_holder_uninit(&gh);
	if (ret == 0) {
		set_page_dirty(page);
		wait_for_stable_page(page);
	}
out_write_access:
	put_write_access(inode);
out:
	sb_end_pagefault(inode->i_sb);
	return block_page_mkwrite_return(ret);
}

static const struct vm_operations_struct gfs2_vm_ops = {
	.fault = filemap_fault,
	.page_mkwrite = gfs2_page_mkwrite,
};

/**
 * gfs2_mmap -
 * @file: The file to map
 * @vma: The VMA which described the mapping
 *
 * There is no need to get a lock here unless we should be updating
 * atime. We ignore any locking errors since the only consequence is
 * a missed atime update (which will just be deferred until later).
 *
 * Returns: 0
 */

static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
{
	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);

	if (!(file->f_flags & O_NOATIME) &&
	    !IS_NOATIME(&ip->i_inode)) {
		struct gfs2_holder i_gh;
		int error;

		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
					   &i_gh);
		if (error)
			return error;
		/* grab lock to update inode */
		gfs2_glock_dq_uninit(&i_gh);
		file_accessed(file);
	}
	vma->vm_ops = &gfs2_vm_ops;
	vma->vm_flags |= VM_CAN_NONLINEAR;

	return 0;
}

/**
 * gfs2_open - open a file
 * @inode: the inode to open
 * @file: the struct file for this opening
 *
 * Returns: errno
 */

static int gfs2_open(struct inode *inode, struct file *file)
{
	struct gfs2_inode *ip = GFS2_I(inode);
	struct gfs2_holder i_gh;
	struct gfs2_file *fp;
	int error;

	fp = kzalloc(sizeof(struct gfs2_file), GFP_KERNEL);
	if (!fp)
		return -ENOMEM;

	mutex_init(&fp->f_fl_mutex);

	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
	file->private_data = fp;

	if (S_ISREG(ip->i_inode.i_mode)) {
		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
					   &i_gh);
		if (error)
			goto fail;

		if (!(file->f_flags & O_LARGEFILE) &&
		    i_size_read(inode) > MAX_NON_LFS) {
			error = -EOVERFLOW;
			goto fail_gunlock;
		}

		gfs2_glock_dq_uninit(&i_gh);
	}

	return 0;

fail_gunlock:
	gfs2_glock_dq_uninit(&i_gh);
fail:
	file->private_data = NULL;
	kfree(fp);
	return error;
}

/**
 * gfs2_release - called to close a struct file
 * @inode: the inode the struct file belongs to
 * @file: the struct file being closed
 *
 * Returns: errno
 */

static int gfs2_release(struct inode *inode, struct file *file)
{
	struct gfs2_inode *ip = GFS2_I(inode);

	kfree(file->private_data);
	file->private_data = NULL;

	if (!(file->f_mode & FMODE_WRITE))
		return 0;

	gfs2_rs_delete(ip);
	return 0;
}

/**
 * gfs2_fsync - sync the dirty data for a file (across the cluster)
 * @file: the file that points to the dentry
 * @start: the start position in the file to sync
 * @end: the end position in the file to sync
 * @datasync: set if we can ignore timestamp changes
 *
 * The VFS will flush data for us. We only need to worry
 * about metadata here.
 *
 * Returns: errno
 */

static int gfs2_fsync(struct file *file, struct dentry *dentry, int datasync)
{
	struct inode *inode = dentry->d_inode;
	int sync_state = inode->i_state & I_DIRTY;
	struct gfs2_inode *ip = GFS2_I(inode);
	int ret;

	if (!gfs2_is_jdata(ip))
		sync_state &= ~I_DIRTY_PAGES;
	if (datasync)
		sync_state &= ~I_DIRTY_SYNC;

	if (sync_state) {
		ret = sync_inode_metadata(inode, 1);
		if (ret)
			return ret;
		if (gfs2_is_jdata(ip))
			filemap_write_and_wait(inode->i_mapping);
		gfs2_ail_flush(ip->i_gl, 1);
	}

	return 0;
}

/**
 * gfs2_file_aio_write - Perform a write to a file
 * @iocb: The io context
 * @iov: The data to write
 * @nr_segs: Number of @iov segments
 * @pos: The file position
 *
 * We have to do a lock/unlock here to refresh the inode size for
 * O_APPEND writes, otherwise we can land up writing at the wrong
 * offset. There is still a race, but provided the app is using its
 * own file locking, this will make O_APPEND work as expected.
 *
 */

static ssize_t gfs2_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
				   unsigned long nr_segs, loff_t pos)
{
	struct file *file = iocb->ki_filp;
	size_t writesize = iov_length(iov, nr_segs);
	struct dentry *dentry = file->f_dentry;
	struct gfs2_inode *ip = GFS2_I(dentry->d_inode);
	struct gfs2_sbd *sdp;
	int ret;

	sdp = GFS2_SB(file->f_mapping->host);
	ret = gfs2_rs_alloc(ip);
	if (ret)
		return ret;

	gfs2_size_hint(file->f_dentry->d_inode, pos, writesize);
	if (file->f_flags & O_APPEND) {
		struct gfs2_holder gh;

		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
		if (ret)
			return ret;
		gfs2_glock_dq_uninit(&gh);
	}

	return generic_file_aio_write(iocb, iov, nr_segs, pos);
}

static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
				      struct file *out, loff_t *ppos,
				      size_t len, unsigned int flags)
{
	int error;
	struct inode *inode = out->f_mapping->host;
	struct gfs2_inode *ip = GFS2_I(inode);

	error = gfs2_rs_alloc(ip);
	if (error)
		return (ssize_t)error;

	gfs2_size_hint(inode, *ppos, len);

	return generic_file_splice_write(pipe, out, ppos, len, flags);
}
Ejemplo n.º 22
0
static ssize_t
ncp_file_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
	struct dentry *dentry = file->f_path.dentry;
	struct inode *inode = dentry->d_inode;
	size_t already_read = 0;
	off_t pos;
	size_t bufsize;
	int error;
	void* freepage;
	size_t freelen;

	DPRINTK("ncp_file_read: enter %s/%s\n",
		dentry->d_parent->d_name.name, dentry->d_name.name);

	pos = *ppos;

	if ((ssize_t) count < 0) {
		return -EINVAL;
	}
	if (!count)
		return 0;
	if (pos > inode->i_sb->s_maxbytes)
		return 0;
	if (pos + count > inode->i_sb->s_maxbytes) {
		count = inode->i_sb->s_maxbytes - pos;
	}

	error = ncp_make_open(inode, O_RDONLY);
	if (error) {
		DPRINTK(KERN_ERR "ncp_file_read: open failed, error=%d\n", error);
		return error;
	}

	bufsize = NCP_SERVER(inode)->buffer_size;

	error = -EIO;
	freelen = ncp_read_bounce_size(bufsize);
	freepage = vmalloc(freelen);
	if (!freepage)
		goto outrel;
	error = 0;
	/* First read in as much as possible for each bufsize. */
	while (already_read < count) {
		int read_this_time;
		size_t to_read = min_t(unsigned int,
				     bufsize - (pos % bufsize),
				     count - already_read);

		error = ncp_read_bounce(NCP_SERVER(inode),
			 	NCP_FINFO(inode)->file_handle,
				pos, to_read, buf, &read_this_time, 
				freepage, freelen);
		if (error) {
			error = -EIO;	/* NW errno -> Linux errno */
			break;
		}
		pos += read_this_time;
		buf += read_this_time;
		already_read += read_this_time;

		if (read_this_time != to_read) {
			break;
		}
	}
	vfree(freepage);

	*ppos = pos;

	file_accessed(file);

	DPRINTK("ncp_file_read: exit %s/%s\n",
		dentry->d_parent->d_name.name, dentry->d_name.name);
outrel:
	ncp_inode_close(inode);		
	return already_read ? already_read : error;
}
Ejemplo n.º 23
0
static ssize_t
pipe_read(struct kiocb *iocb, const struct iovec *_iov,
	   unsigned long nr_segs, loff_t pos)
{
	struct file *filp = iocb->ki_filp;
	struct inode *inode = filp->f_path.dentry->d_inode;
	struct pipe_inode_info *pipe;
	int do_wakeup;
	ssize_t ret;
	struct iovec *iov = (struct iovec *)_iov;
	size_t total_len;

	total_len = iov_length(iov, nr_segs);
	/* Null read succeeds. */
	if (unlikely(total_len == 0))
		return 0;

	do_wakeup = 0;
	ret = 0;
	mutex_lock(&inode->i_mutex);
	pipe = inode->i_pipe;
	for (;;) {
		int bufs = pipe->nrbufs;
		if (bufs) {
			int curbuf = pipe->curbuf;
			struct pipe_buffer *buf = pipe->bufs + curbuf;
			const struct pipe_buf_operations *ops = buf->ops;
			void *addr;
			size_t chars = buf->len;
			int error, atomic;

			if (chars > total_len)
				chars = total_len;

			error = ops->confirm(pipe, buf);
			if (error) {
				if (!ret)
					error = ret;
				break;
			}

			atomic = !iov_fault_in_pages_write(iov, chars);
redo:
			addr = ops->map(pipe, buf, atomic);
			error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
			ops->unmap(pipe, buf, addr);
			if (unlikely(error)) {
				/*
				 * Just retry with the slow path if we failed.
				 */
				if (atomic) {
					atomic = 0;
					goto redo;
				}
				if (!ret)
					ret = error;
				break;
			}
			ret += chars;
			buf->offset += chars;
			buf->len -= chars;
			if (!buf->len) {
				buf->ops = NULL;
				ops->release(pipe, buf);
				curbuf = (curbuf + 1) & (pipe->buffers - 1);
				pipe->curbuf = curbuf;
				pipe->nrbufs = --bufs;
				do_wakeup = 1;
			}
			total_len -= chars;
			if (!total_len)
				break;	/* common path: read succeeded */
		}
		if (bufs)	/* More to do? */
			continue;
		if (!pipe->writers)
			break;
		if (!pipe->waiting_writers) {
			/* syscall merging: Usually we must not sleep
			 * if O_NONBLOCK is set, or if we got some data.
			 * But if a writer sleeps in kernel space, then
			 * we can wait for that data without violating POSIX.
			 */
			if (ret)
				break;
			if (filp->f_flags & O_NONBLOCK) {
				ret = -EAGAIN;
				break;
			}
		}
		if (signal_pending(current)) {
			if (!ret)
				ret = -ERESTARTSYS;
			break;
		}
		if (do_wakeup) {
			wake_up_interruptible_sync(&pipe->wait);
 			kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
		}
		pipe_wait(pipe);
	}
	mutex_unlock(&inode->i_mutex);

	/* Signal writers asynchronously that there is more room. */
	if (do_wakeup) {
		wake_up_interruptible_sync(&pipe->wait);
		kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
	}
	if (ret > 0)
		file_accessed(filp);
	return ret;
}
Ejemplo n.º 24
0
static ssize_t
pipe_readv(struct file *filp, const struct iovec *_iov,
	   unsigned long nr_segs, loff_t *ppos)
{
	struct inode *inode = filp->f_dentry->d_inode;
	struct pipe_inode_info *info;
	int do_wakeup;
	ssize_t ret;
	struct iovec *iov = (struct iovec *)_iov;
	size_t total_len;

	total_len = iov_length(iov, nr_segs);
	/* Null read succeeds. */
	if (unlikely(total_len == 0))
		return 0;

	do_wakeup = 0;
	ret = 0;
	down(PIPE_SEM(*inode));
	info = inode->i_pipe;
	for (;;) {
		int bufs = info->nrbufs;
		if (bufs) {
			int curbuf = info->curbuf;
			struct pipe_buffer *buf = info->bufs + curbuf;
			struct pipe_buf_operations *ops = buf->ops;
			void *addr;
			size_t chars = buf->len;
			int error;

			if (chars > total_len)
				chars = total_len;

			addr = ops->map(filp, info, buf);
			error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars);
			ops->unmap(info, buf);
			if (unlikely(error)) {
				if (!ret) ret = -EFAULT;
				break;
			}
			ret += chars;
			buf->offset += chars;
			buf->len -= chars;
			if (!buf->len) {
				buf->ops = NULL;
				ops->release(info, buf);
				curbuf = (curbuf + 1) & (PIPE_BUFFERS-1);
				info->curbuf = curbuf;
				info->nrbufs = --bufs;
				do_wakeup = 1;
			}
			total_len -= chars;
			if (!total_len)
				break;	/* common path: read succeeded */
		}
		if (bufs)	/* More to do? */
			continue;
		if (!PIPE_WRITERS(*inode))
			break;
		if (!PIPE_WAITING_WRITERS(*inode)) {
			/* syscall merging: Usually we must not sleep
			 * if O_NONBLOCK is set, or if we got some data.
			 * But if a writer sleeps in kernel space, then
			 * we can wait for that data without violating POSIX.
			 */
			if (ret)
				break;
			if (filp->f_flags & O_NONBLOCK) {
				ret = -EAGAIN;
				break;
			}
		}
		if (signal_pending(current)) {
			if (!ret) ret = -ERESTARTSYS;
			break;
		}
		if (do_wakeup) {
			wake_up_interruptible_sync(PIPE_WAIT(*inode));
 			kill_fasync(PIPE_FASYNC_WRITERS(*inode), SIGIO, POLL_OUT);
		}
		pipe_wait(inode);
	}
	up(PIPE_SEM(*inode));
	/* Signal writers asynchronously that there is more room.  */
	if (do_wakeup) {
		wake_up_interruptible(PIPE_WAIT(*inode));
		kill_fasync(PIPE_FASYNC_WRITERS(*inode), SIGIO, POLL_OUT);
	}
	if (ret > 0)
		file_accessed(filp);
	return ret;
}