char _lngamma( floatnum x, int digits) { floatstruct factor; int infinity; char result; if (float_cmp(x, &c1) == 0 || float_cmp(x, &c2) == 0) return _setzero(x); float_create(&factor); result = _lngamma_prim(x, &factor, &infinity, digits) && infinity == 0; if (result) { float_abs(&factor); _ln(&factor, digits + 1); result = float_sub(x, x, &factor, digits+1); } float_free(&factor); if (infinity != 0) return _seterror(x, ZeroDivide); if (!result) float_setnan(x); return result; }
/* evaluates tan x for |x| <= pi. A return value of 0 indicates that x = +/- pi/2 within small tolerances, so that tan x cannot be reliable computed */ char _tan( floatnum x, int digits) { signed char sgn; sgn = float_getsign(x); float_abs(x); if (float_cmp(x, &cPiDiv2) > 0) { float_sub(x, &cPi, x, digits+1); sgn = -sgn; } if (float_cmp(x, &cPiDiv4) <= 0) _tanltPiDiv4(x, digits); else { float_sub(x, &cPiDiv2, x, digits+1); if (float_iszero(x) || float_getexponent(x) < -digits) return 0; _tanltPiDiv4(x, digits); float_reciprocal(x, digits); } float_setsign(x, sgn); return 1; }
Error float_out( p_otokens tokens, floatnum x, int scale, signed char base, char outmode) { t_number_desc n; _emptytokens(tokens); /* do some sanity checks first */ if (!_validmode(outmode) || scale < 0 || !_isvalidbase(base)) return InvalidParam; _clearnumber(&n); if (float_iszero(x)) n.prefix.base = IO_BASE_ZERO; else if (!float_isnan(x)) n.prefix.base = base; if (!_isvalidbase(n.prefix.base)) /* NaN and 0 are handled here */ return desc2str(tokens, &n, 0); n.prefix.sign = float_getsign(x); float_abs(x); switch (outmode) { case IO_MODE_FIXPOINT: return _outfixp(tokens, x, &n, scale); case IO_MODE_ENG: return _outeng(tokens, x, &n, scale); case IO_MODE_COMPLEMENT: return _outcompl(tokens, x, &n, 0); default: return _outsci(tokens, x, &n, scale); } }
char _trigreduce( floatnum x, int digits) { floatstruct tmp; int expx, save; signed char sgn; char odd; if (float_abscmp(x, &cPi) <= 0) return 1; expx = float_getexponent(x); if (expx > float_getlength(&cPi) - digits) return 0; save = float_setprecision(MAXDIGITS); float_create(&tmp); sgn = float_getsign(x); float_abs(x); float_divmod(&tmp, x, x, &cPi, INTQUOT); float_setprecision(save); odd = float_isodd(&tmp); if (odd) float_sub(x, x, &cPi, digits+1); if (sgn < 0) float_neg(x); float_free(&tmp); return 1; }
void _cos( floatnum x, int digits) { signed char sgn; float_abs(x); sgn = 1; if (float_cmp(x, &cPiDiv2) > 0) { sgn = -1; float_sub(x, &cPi, x, digits+1); } if (float_cmp(x, &cPiDiv4) <= 0) { if (2*float_getexponent(x)+2 < - digits) float_setzero(x); else _cosminus1ltPiDiv4(x, digits); float_add(x, x, &c1, digits); } else { float_sub(x, &cPiDiv2, x, digits+1); _sinltPiDiv4(x, digits); } float_setsign(x, sgn); }
char _cosminus1ltPiDiv4( floatnum x, int digits) { floatstruct tmp; int reductions; if (float_iszero(x)) return 1; float_abs(x); reductions = 0; while(float_getexponent(x) >= -2) { float_mul(x, x, &c1Div2, digits+1); ++reductions; } if (!cosminus1near0(x, digits) && reductions == 0) return !float_iszero(x); float_create(&tmp); for(; reductions-- > 0;) { float_mul(&tmp, x, x, digits); float_add(x, x, x, digits+2); float_add(x, x, &tmp, digits+2); float_add(x, x, x, digits+2); } float_free(&tmp); return 1; }
/* evaluates cos x - 1 for |x| <= pi. This function may underflow, which is indicated by the return value 0 */ char _cosminus1( floatnum x, int digits) { float_abs(x); if (float_cmp(x, &cPiDiv4) <= 0) return _cosminus1ltPiDiv4(x, digits); _cos(x, digits); float_sub(x, x, &c1, digits); return 1; }
char float_tanh( floatnum x, int digits) { signed char sgn; if (!chckmathparam(x, digits)) return 0; sgn = float_getsign(x); float_abs(x); if (float_cmp(x, &c1Div2) >= 0) _tanhgt0_5(x, digits); else _tanhlt0_5(x, digits); float_setsign(x, sgn); return 1; }
/* evaluates arcsin x for -1 <= x <= 1. The result is in the range -pi/2 <= result <= pi/2 The relative error for a 100 digit result is < 8e-100 */ void _arcsin( floatnum x, int digits) { signed char sgn; if (float_abscmp(x, &c1Div2) <= 0) _arcsinlt0_5(x, digits); else { sgn = float_getsign(x); float_abs(x); _arccos(x, digits); float_sub(x, &cPiDiv2, x, digits); float_setsign(x, sgn); } }
char float_raise( floatnum power, cfloatnum base, cfloatnum exponent, int digits) { signed char sgn; if (float_isnan(exponent) || float_isnan(base)) return _seterror(power, NoOperand); if (digits <= 0 || digits > MATHPRECISION) return _seterror(power, InvalidPrecision); if (float_iszero(base)) { switch(float_getsign(exponent)) { case 0: return _seterror(power, OutOfDomain); case -1: return _seterror(power, ZeroDivide); } return _setzero(power); } sgn = float_getsign(base); if (sgn < 0) { if (!float_isinteger(exponent)) return _seterror(power, OutOfDomain); if ((float_getdigit(exponent, float_getexponent(exponent)) & 1) == 0) sgn = 1; } float_copy(power, base, digits+1); float_abs(power); if (!_raise(power, exponent, digits)) { float_seterror(Overflow); if (float_getexponent(base) * float_getsign(exponent) < 0) float_seterror(Underflow); return _setnan(power); } float_setsign(power, sgn); return 1; }
/* evaluates arctan x for all x. The result is in the range -pi/2 < result < pi/2 relative error for a 100 digit result is 9e-100 */ void _arctan( floatnum x, int digits) { signed char sgn; if (float_abscmp(x, &c1) > 0) { sgn = float_getsign(x); float_abs(x); float_reciprocal(x, digits); _arctanlt1(x, digits); float_sub(x, &cPiDiv2, x, digits+1); float_setsign(x, sgn); } else _arctanlt1(x, digits); }
/* evaluate sin x for |x| <= pi/4, using |sin x| = sqrt((1-cos x)*(2 + cos x-1)) relative error for 100 digit results is < 6e-100*/ void _sinltPiDiv4( floatnum x, int digits) { floatstruct tmp; signed char sgn; if (2*float_getexponent(x)+2 < -digits) /* for small x: sin x approx.== x */ return; float_create(&tmp); sgn = float_getsign(x); _cosminus1ltPiDiv4(x, digits); float_add(&tmp, x, &c2, digits+1); float_mul(x, x, &tmp, digits+1); float_abs(x); float_sqrt(x, digits); float_setsign(x, sgn); float_free(&tmp); }
/* evaluates arccos x for -1 <= x <= 1. The result is in the range 0 <= result <= pi. The relative error for a 100 digit result is < 5e-100 */ void _arccos( floatnum x, int digits) { signed char sgn; sgn = float_getsign(x); float_abs(x); if (float_cmp(x, &c1Div2) > 0) { float_sub(x, x, &c1, digits+1); _arccosxplus1lt0_5(x, digits); } else { _arcsinlt0_5(x, digits); float_sub(x, &cPiDiv2, x, digits+1); } if (sgn < 0) float_sub(x, &cPi, x, digits+1); }
int main() { printf("%d \n",int_abs(-5)); printf("%d",float_abs(-5.123)); return 0; }