Ejemplo n.º 1
0
T float_advance(T val, int distance, const Policy& pol)
{
   //
   // Error handling:
   //
   static const char* function = "float_advance<%1%>(%1%, int)";
   if(!(boost::math::isfinite)(val))
      return policies::raise_domain_error<T>(
         function,
         "Argument val must be finite, but got %1%", val, pol);

   if(val < 0)
      return -float_advance(-val, -distance, pol);
   if(distance == 0)
      return val;
   if(distance == 1)
      return float_next(val, pol);
   if(distance == -1)
      return float_prior(val, pol);
   BOOST_MATH_STD_USING
   int expon;
   frexp(val, &expon);
   T limit = ldexp((distance < 0 ? T(0.5f) : T(1)), expon);
   if(val <= tools::min_value<T>())
   {
      limit = sign(T(distance)) * tools::min_value<T>();
   }
   T limit_distance = float_distance(val, limit);
   while(fabs(limit_distance) < abs(distance))
   {
      distance -= itrunc(limit_distance);
      val = limit;
      if(distance < 0) 
      {
         limit /= 2;
         expon--;
      }
      else
      {
         limit *= 2;
         expon++;
      }
      limit_distance = float_distance(val, limit);
   }
   if((0.5f == frexp(val, &expon)) && (distance < 0))
      --expon;
   T diff = 0;
   if(val != 0)
      diff = distance * ldexp(T(1), expon - tools::digits<T>());
   if(diff == 0)
      diff = distance * detail::get_smallest_value<T>();
   return val += diff;
}
Ejemplo n.º 2
0
T float_advance(T val, int distance, const Policy& pol)
{
   BOOST_MATH_STD_USING
   //
   // Error handling:
   //
   static const char* function = "float_advance<%1%>(%1%, int)";

   int fpclass = (pdalboost::math::fpclassify)(val);

   if((fpclass == FP_NAN) || (fpclass == FP_INFINITE))
      return policies::raise_domain_error<T>(
         function,
         "Argument val must be finite, but got %1%", val, pol);

   if(val < 0)
      return -float_advance(-val, -distance, pol);
   if(distance == 0)
      return val;
   if(distance == 1)
      return float_next(val, pol);
   if(distance == -1)
      return float_prior(val, pol);

   if(fabs(val) < detail::get_min_shift_value<T>())
   {
      //
      // Special case: if the value of the least significant bit is a denorm, 
      // implement in terms of float_next/float_prior.
      // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set.
      //
      if(distance > 0)
      {
         do{ val = float_next(val, pol); } while(--distance);
      }
      else
      {
         do{ val = float_prior(val, pol); } while(++distance);
      }
      return val;
   }

   int expon;
   frexp(val, &expon);
   T limit = ldexp((distance < 0 ? T(0.5f) : T(1)), expon);
   if(val <= tools::min_value<T>())
   {
      limit = sign(T(distance)) * tools::min_value<T>();
   }
   T limit_distance = float_distance(val, limit);
   while(fabs(limit_distance) < abs(distance))
   {
      distance -= itrunc(limit_distance);
      val = limit;
      if(distance < 0) 
      {
         limit /= 2;
         expon--;
      }
      else
      {
         limit *= 2;
         expon++;
      }
      limit_distance = float_distance(val, limit);
      if(distance && (limit_distance == 0))
      {
         policies::raise_evaluation_error<T>(function, "Internal logic failed while trying to increment floating point value %1%: most likely your FPU is in non-IEEE conforming mode.", val, pol);
      }
   }
   if((0.5f == frexp(val, &expon)) && (distance < 0))
      --expon;
   T diff = 0;
   if(val != 0)
      diff = distance * ldexp(T(1), expon - tools::digits<T>());
   if(diff == 0)
      diff = distance * detail::get_smallest_value<T>();
   return val += diff;
}
Ejemplo n.º 3
0
T float_distance(const T& a, const T& b, const Policy& pol)
{
   BOOST_MATH_STD_USING
   //
   // Error handling:
   //
   static const char* function = "float_distance<%1%>(%1%, %1%)";
   if(!(boost::math::isfinite)(a))
      return policies::raise_domain_error<T>(
         function,
         "Argument a must be finite, but got %1%", a, pol);
   if(!(boost::math::isfinite)(b))
      return policies::raise_domain_error<T>(
         function,
         "Argument b must be finite, but got %1%", b, pol);
   //
   // Special cases:
   //
   if(a > b)
      return -float_distance(b, a);
   if(a == b)
      return 0;
   if(a == 0)
      return 1 + fabs(float_distance(boost::math::sign(b) * detail::get_smallest_value<T>(), b, pol));
   if(b == 0)
      return 1 + fabs(float_distance(boost::math::sign(a) * detail::get_smallest_value<T>(), a, pol));
   if(boost::math::sign(a) != boost::math::sign(b))
      return 2 + fabs(float_distance(boost::math::sign(b) * detail::get_smallest_value<T>(), b, pol))
         + fabs(float_distance(boost::math::sign(a) * detail::get_smallest_value<T>(), a, pol));
   //
   // By the time we get here, both a and b must have the same sign, we want
   // b > a and both postive for the following logic:
   //
   if(a < 0)
      return float_distance(-b, -a);

   BOOST_ASSERT(a >= 0);
   BOOST_ASSERT(b >= a);

   BOOST_MATH_STD_USING
   int expon;
   //
   // Note that if a is a denorm then the usual formula fails
   // because we actually have fewer than tools::digits<T>()
   // significant bits in the representation:
   //
   frexp(((boost::math::fpclassify)(a) == FP_SUBNORMAL) ? tools::min_value<T>() : a, &expon);
   T upper = ldexp(T(1), expon);
   T result = 0;
   expon = tools::digits<T>() - expon;
   //
   // If b is greater than upper, then we *must* split the calculation
   // as the size of the ULP changes with each order of magnitude change:
   //
   if(b > upper)
   {
      result = float_distance(upper, b);
   }
   //
   // Use compensated double-double addition to avoid rounding 
   // errors in the subtraction:
   //
   T mb = -(std::min)(upper, b);
   T x = a + mb;
   T z = x - a;
   T y = (a - (x - z)) + (mb - z);
   if(x < 0)
   {
      x = -x;
      y = -y;
   }
   result += ldexp(x, expon) + ldexp(y, expon);
   //
   // Result must be an integer:
   //
   BOOST_ASSERT(result == floor(result));
   return result;
}
Ejemplo n.º 4
0
T float_distance(const T& a, const T& b, const Policy& pol)
{
   BOOST_MATH_STD_USING
   //
   // Error handling:
   //
   static const char* function = "float_distance<%1%>(%1%, %1%)";
   if(!(pdalboost::math::isfinite)(a))
      return policies::raise_domain_error<T>(
         function,
         "Argument a must be finite, but got %1%", a, pol);
   if(!(pdalboost::math::isfinite)(b))
      return policies::raise_domain_error<T>(
         function,
         "Argument b must be finite, but got %1%", b, pol);
   //
   // Special cases:
   //
   if(a > b)
      return -float_distance(b, a, pol);
   if(a == b)
      return 0;
   if(a == 0)
      return 1 + fabs(float_distance(static_cast<T>((b < 0) ? -detail::get_smallest_value<T>() : detail::get_smallest_value<T>()), b, pol));
   if(b == 0)
      return 1 + fabs(float_distance(static_cast<T>((a < 0) ? -detail::get_smallest_value<T>() : detail::get_smallest_value<T>()), a, pol));
   if(pdalboost::math::sign(a) != pdalboost::math::sign(b))
      return 2 + fabs(float_distance(static_cast<T>((b < 0) ? -detail::get_smallest_value<T>() : detail::get_smallest_value<T>()), b, pol))
         + fabs(float_distance(static_cast<T>((a < 0) ? -detail::get_smallest_value<T>() : detail::get_smallest_value<T>()), a, pol));
   //
   // By the time we get here, both a and b must have the same sign, we want
   // b > a and both postive for the following logic:
   //
   if(a < 0)
      return float_distance(static_cast<T>(-b), static_cast<T>(-a), pol);

   BOOST_ASSERT(a >= 0);
   BOOST_ASSERT(b >= a);

   int expon;
   //
   // Note that if a is a denorm then the usual formula fails
   // because we actually have fewer than tools::digits<T>()
   // significant bits in the representation:
   //
   frexp(((pdalboost::math::fpclassify)(a) == FP_SUBNORMAL) ? tools::min_value<T>() : a, &expon);
   T upper = ldexp(T(1), expon);
   T result = 0;
   expon = tools::digits<T>() - expon;
   //
   // If b is greater than upper, then we *must* split the calculation
   // as the size of the ULP changes with each order of magnitude change:
   //
   if(b > upper)
   {
      result = float_distance(upper, b);
   }
   //
   // Use compensated double-double addition to avoid rounding 
   // errors in the subtraction:
   //
   T mb, x, y, z;
   if(((pdalboost::math::fpclassify)(a) == FP_SUBNORMAL) || (b - a < tools::min_value<T>()))
   {
      //
      // Special case - either one end of the range is a denormal, or else the difference is.
      // The regular code will fail if we're using the SSE2 registers on Intel and either
      // the FTZ or DAZ flags are set.
      //
      T a2 = ldexp(a, tools::digits<T>());
      T b2 = ldexp(b, tools::digits<T>());
      mb = -(std::min)(T(ldexp(upper, tools::digits<T>())), b2);
      x = a2 + mb;
      z = x - a2;
      y = (a2 - (x - z)) + (mb - z);

      expon -= tools::digits<T>();
   }
   else
   {
      mb = -(std::min)(upper, b);
      x = a + mb;
      z = x - a;
      y = (a - (x - z)) + (mb - z);
   }
   if(x < 0)
   {
      x = -x;
      y = -y;
   }
   result += ldexp(x, expon) + ldexp(y, expon);
   //
   // Result must be an integer:
   //
   BOOST_ASSERT(result == floor(result));
   return result;
}