Ejemplo n.º 1
0
// Weights are based on: Coppola et al, "On-board Communication-based Relative Localization for Collision Avoidance in Micro Air Vehicle teams", 2017
void discrete_ekf_new(struct discrete_ekf *filter)
{
  // P Matrix
  MAKE_MATRIX_PTR(_P, filter->P, EKF_N);
  float_mat_diagonal_scal(_P, 1.f, EKF_N);
  filter->P[2][2] = 0.1;
  filter->P[3][3] = 0.1;
  filter->P[4][4] = 0.1;
  filter->P[5][5] = 0.1;
  filter->P[6][6] = 0.1;

  // Q Matrix
  MAKE_MATRIX_PTR(_Q, filter->Q, EKF_N);
  float_mat_diagonal_scal(_Q, pow(0.3, 2.f), EKF_N);
  filter->Q[0][0] = 0.01;
  filter->Q[1][1] = 0.01;

  MAKE_MATRIX_PTR(_R, filter->R, EKF_M);
  float_mat_diagonal_scal(_R, pow(0.1, 2.f), EKF_M);
  filter->R[0][0] = 0.2;

  // Initial assumptions
  float_vect_zero(filter->X, EKF_N);
  filter->X[0] = 2.5; // filter->X[0] and/or filter->[1] cannot be = 0
  filter->dt = 0.1;
}
Ejemplo n.º 2
0
/** Polynomial regression
 *
 * Polynomial regression is a form of linear regression in which the relationship between
 * the independent variable x and the dependent variable y is modelled as an nth order polynomial.
 *
 * Considering the regression model:
 *  @f[
 *  y_i = c_0 + c_1 x_i + ... + c_p x_i^p + \epsilon_i  (i = 1 ... n)
 *  @f]
 * in matrix form
 *  @f[
 *  y = X.c + \epsilon
 *  @f]
 * where
 *  @f[
 *  X_{ij} = x_i^j (i = 1 ... n; j = 1 ... p)
 *  @f]
 * The vector of estimated polynomial regression coefficients using ordinary least squares estimation is
 *  @f[
 *  c = (X' X)^{-1} X' y
 *  @f]
 *
 * http://en.wikipedia.org/wiki/Polynomial_regression
 * http://fr.wikipedia.org/wiki/R%C3%A9gression_polynomiale
 * http://www.arachnoid.com/sage/polynomial.html
 *
 * @param[in] x pointer to the input array of independent variable X [n]
 * @param[in] y pointer to the input array of dependent variable Y [n]
 * @param[in] n number of input measurments
 * @param[in] p degree of the output polynomial
 * @param[out] c pointer to the output array of polynomial coefficients [p+1]
 */
void pprz_polyfit_float(float* x, float* y, int n, int p, float* c)
{
  int i,j,k;

  // Instead of solving directly (X'X)^-1 X' y
  // let's build the matrices (X'X) and (X'y)
  // Then element ij in (X'X) matrix is sum_{k=0,n-1} x_k^(i+j)
  // and element i in (X'y) vector is sum_{k=0,n-1} x_k^i * y_k
  // Finally we can solve the linear system (X'X).c = (X'y) using SVD decomposition

  // First build a table of element S_i = sum_{k=0,n-1} x_k^i of dimension 2*p+1
  float S[2*p + 1];
  float_vect_zero(S, 2*p + 1);
  // and a table of element T_i = sum_{k=0,n-1} x_k^i*y_k of dimension p+1
  // make it a matrix for later use
  float _T[p + 1][1];
  MAKE_MATRIX_PTR(T, _T, p + 1);
  float_mat_zero(T, p + 1, 1);
  S[0] = n; // S_0 is always the number of input measurements
  for (k = 0; k < n; k++) {
    float x_tmp = x[k];
    T[0][0] += y[k];
    for (i = 1; i < 2*p + 1; i++) {
      S[i] += x_tmp; // add element to S_i
      if (i < p + 1)
        T[i][0] += x_tmp*y[k]; // add element to T_i if i < p+1
      x_tmp *= x[k]; // multiply x_tmp by current value of x
    }
  }
  // Then build a [p+1 x p+1] matrix corresponding to (X'X) based on the S_i
  // element ij of (X'X) is S_(i+j)
  float _XtX[p + 1][p + 1];
  MAKE_MATRIX_PTR(XtX, _XtX, p + 1);
  for (i = 0; i < p + 1; i++) {
    for (j = 0; j < p + 1; j++) {
      XtX[i][j] = S[i+j];
    }
  }
  // Solve linear system XtX.c = T after performing a SVD decomposition of XtX
  // which is probably a bit overkill but looks really cool
  float w[p + 1], _v[p + 1][p + 1];
  MAKE_MATRIX_PTR(v, _v, p + 1);
  pprz_svd_float(XtX, w, v, p + 1, p + 1);
  float _c[p + 1][1];
  MAKE_MATRIX_PTR(c_tmp, _c, p + 1);
  pprz_svd_solve_float(c_tmp, XtX, w, v, T, p + 1, p + 1, 1);
  // set output vector
  for (i = 0; i < p + 1; i++)
    c[i] = c_tmp[i][0];

}
Ejemplo n.º 3
0
/* Linearized (Jacobian) filter function */
void linear_filter(float *X, float dt, float *dX, float **A)
{
  // dX
  float_vect_zero(dX, EKF_N);
  dX[0] = -(X[2] - X[4]) * dt;
  dX[1] = -(X[3] - X[5]) * dt;

  // A(x)
  float_mat_diagonal_scal(A, 1.f, EKF_N);
  A[0][2] = -dt;
  A[0][4] =  dt;
  A[1][3] = -dt;
  A[1][5] =  dt;
};