Ejemplo n.º 1
0
static void update_meter_cfg(BalanceControl* self, int key, float val) {
	switch (key) {
		case 0:
			if (val >=0 && val <= self->peak_integrate_max) {
				self->peak_integrate_pref = val * self->samplerate;
			}
			reset_uicom(self);
			break;
		case 1:
				self->meter_falloff = MAX(0, val / UPDATE_FREQ);
				self->meter_falloff = MIN(self->meter_falloff, 1000);
			break;
		case 2:
				self->peak_hold = MAX(0, val * UPDATE_FREQ);
				self->peak_hold = MIN(self->peak_hold, 60 * UPDATE_FREQ);
			break;
		case 3:
			for (int i=0; i < CHANNELS; ++i) {
				if ( ((int)val)&1) {
					self->p_max_in[i] = -INFINITY;
				}
				if ( ((int)val)&2) {
					self->p_max_out[i] = -INFINITY;
				}
			}
			forge_kvcontrolmessage(&self->forge, &self->uris, PEAK_IN_LEFT, self->p_max_in[C_LEFT]);
			forge_kvcontrolmessage(&self->forge, &self->uris, PEAK_IN_RIGHT, self->p_max_in[C_RIGHT]);
			forge_kvcontrolmessage(&self->forge, &self->uris, PEAK_OUT_LEFT, self->p_max_out[C_LEFT]);
			forge_kvcontrolmessage(&self->forge, &self->uris, PEAK_OUT_RIGHT, self->p_max_out[C_RIGHT]);
			break;

		default:
			break;
	}
}
Ejemplo n.º 2
0
Archivo: lv2.c Proyecto: aelse/setBfree
static inline void
postrun (B3S* b3s)
{
  if (b3s->swap_instances) {
#ifdef DEBUGPRINT
    fprintf(stderr, "swap instances..\n");
#endif
    struct worknfo w;
    w.cmd = CMD_FREE;
    /* swap engine instances */
    struct b_instance *old  = b3s->inst;
    b3s->inst = b3s->inst_offline;
    b3s->inst_offline = old;
    setControlFunctionCallback(b3s->inst_offline->midicfg, NULL, NULL);
    setControlFunctionCallback(b3s->inst->midicfg, mctl_cb, b3s);

    /* hide midi-maps, stop possibly pending midi-bind process */
    forge_kvcontrolmessage(&b3s->forge, &b3s->uris, "special.midimap", (int32_t) 0);
    forge_kvcontrolmessage(&b3s->forge, &b3s->uris, "special.reinit", (int32_t) 1);

    b3s->schedule->schedule_work(b3s->schedule->handle, sizeof(struct worknfo), &w);
    b3s->update_gui_now = 1;
    b3s->swap_instances = 0;
  }
}
Ejemplo n.º 3
0
static void forge_message_kv (BITui* ui, LV2_URID uri, int key, float value) {
	uint8_t obj_buf[1024];
	if (ui->disable_signals) return;

	lv2_atom_forge_set_buffer (&ui->forge, obj_buf, 1024);
	LV2_Atom* msg = forge_kvcontrolmessage (&ui->forge, &ui->uris, uri, key, value);
	ui->write (ui->controller, 0, lv2_atom_total_size (msg), ui->uris.atom_eventTransfer, msg);
}
Ejemplo n.º 4
0
Archivo: lv2.c Proyecto: aelse/setBfree
static void rc_cb(int fnid, const char *key, const char *kv, unsigned char val, void *arg) {
  B3S* b3s = (B3S*)arg;
#ifdef DEBUGPRINT
      fprintf(stderr, "RC CB %d %s %s %d\n", fnid, key, kv?kv:"-", val);
#endif
  if (fnid >=0) {
    forge_kvcontrolmessage(&b3s->forge, &b3s->uris, key, (int32_t) val);
  } else {
    forge_kvconfigmessage(&b3s->forge, &b3s->uris, b3s->uris.sb3_cfgkv, key, kv);
  }
}
Ejemplo n.º 5
0
Archivo: lv2.c Proyecto: aelse/setBfree
static void mctl_cb(int fnid, const char *fn, unsigned char val, midiCCmap *mm, void *arg) {
  B3S* b3s = (B3S*)arg;
#ifdef DEBUGPRINT
  fprintf(stderr, "xfn: %d (\"%s\", %d) mm:%s\n", fnid, fn, val, mm?"yes":"no");
#endif
  if (b3s->midiout && mm) {
    while (mm) {
#ifdef DEBUGPRINT
      fprintf(stderr, "MIDI FEEDBACK %d %d %d\n", mm->channel, mm->param, val);
#endif
      uint8_t msg[3];
      msg[0] = 0xb0 | (mm->channel&0x0f); // Control Change
      msg[1] = mm->param;
      msg[2] = val;
      forge_midimessage(&b3s->forge, &b3s->uris, msg, 3);
      mm = mm->next;
    }
  }
  if (b3s->midiout && fn && !b3s->suspend_ui_msg) {
    forge_kvcontrolmessage(&b3s->forge, &b3s->uris, fn, (int32_t) val);
  }
}
Ejemplo n.º 6
0
Archivo: lv2.c Proyecto: aelse/setBfree
static void
run(LV2_Handle instance, uint32_t n_samples)
{
  B3S* b3s = (B3S*)instance;
  float* audio[2];

  audio[0] = b3s->outL;
  audio[1] = b3s->outR;

  /* prepare outgoing MIDI */
  const uint32_t capacity = b3s->midiout->atom.size;

  static bool warning_printed = false;
  if (!warning_printed && capacity < 4096) {
    warning_printed = true;
    fprintf(stderr, "B3LV2: LV message buffer is only %d bytes. Expect problems.\n", capacity);
    fprintf(stderr, "B3LV2: if your LV2 host allows one to configure a buffersize use at least 4kBytes.\n");

  }
  lv2_atom_forge_set_buffer(&b3s->forge, (uint8_t*)b3s->midiout, capacity);
  lv2_atom_forge_sequence_head(&b3s->forge, &b3s->frame, 0);

  uint32_t written = 0;

  if (b3s->queue_panic) {
	  b3s->queue_panic = 0;
	  midi_panic(b3s->inst);
  }

  /* Process incoming events from GUI and handle MIDI events */
  if (b3s->midiin) {
    LV2_Atom_Event* ev = lv2_atom_sequence_begin(&(b3s->midiin)->body);
    while(!lv2_atom_sequence_is_end(&(b3s->midiin)->body, (b3s->midiin)->atom.size, ev)) {
      if (ev->body.type == b3s->uris.midi_MidiEvent) {
	/* process midi messages from player */
	if (written + BUFFER_SIZE_SAMPLES < ev->time.frames
	    && ev->time.frames < n_samples) {
	  /* first syntheize sound up until the message timestamp */
	  written = synthSound(b3s, written, ev->time.frames, audio);
	}
	/* send midi message to synth, CC's will trigger hook -> update GUI */
	parse_raw_midi_data(b3s->inst, (uint8_t*)(ev+1), ev->body.size);
      } else if (ev->body.type == b3s->uris.atom_Blank || ev->body.type == b3s->uris.atom_Object) {
	/* process messages from GUI */
	const LV2_Atom_Object* obj = (LV2_Atom_Object*)&ev->body;
	if (obj->body.otype == b3s->uris.sb3_uiinit) {
	  b3s->update_gui_now = 1;
	} else if (obj->body.otype == b3s->uris.sb3_uimccquery) {
	  midi_loopCCAssignment(b3s->inst->midicfg, 7, mcc_cb, b3s);
	} else if (obj->body.otype == b3s->uris.sb3_uimccset) {
	  const LV2_Atom* cmd = NULL;
	  const LV2_Atom* flags = NULL;
	  lv2_atom_object_get(obj, b3s->uris.sb3_cckey, &flags, b3s->uris.sb3_ccval, &cmd, 0);
	  if (cmd && flags) {
	    midi_uiassign_cc(b3s->inst->midicfg, (const char*)LV2_ATOM_BODY(cmd), ((LV2_Atom_Int*)flags)->body);
	  }
	} else if (obj->body.otype == b3s->uris.sb3_midipgm) {
	  const LV2_Atom* key = NULL;
	  lv2_atom_object_get(obj, b3s->uris.sb3_cckey, &key, 0);
	  if (key) {
	    installProgram(b3s->inst, ((LV2_Atom_Int*)key)->body);
	  }
	} else if (obj->body.otype == b3s->uris.sb3_midisavepgm) {
	  const LV2_Atom* pgm = NULL;
	  const LV2_Atom* name = NULL;
	  lv2_atom_object_get(obj, b3s->uris.sb3_cckey, &pgm, b3s->uris.sb3_ccval, &name, 0);
	  if (pgm && name) {
	    saveProgramm(b3s->inst, (int) ((LV2_Atom_Int*)pgm)->body, (char*) LV2_ATOM_BODY(name), 0);
	    b3s->update_pgm_now = 1;
	  }
	} else if (obj->body.otype == b3s->uris.sb3_loadpgm) {
	  iowork(b3s, obj, CMD_LOADPGM);
	} else if (obj->body.otype == b3s->uris.sb3_loadcfg) {
	  iowork(b3s, obj, CMD_LOADCFG);
	} else if (obj->body.otype == b3s->uris.sb3_savepgm) {
	  iowork(b3s, obj, CMD_SAVEPGM);
	} else if (obj->body.otype == b3s->uris.sb3_savecfg) {
	  iowork(b3s, obj, CMD_SAVECFG);
	} else if (obj->body.otype == b3s->uris.sb3_cfgstr) {
	  if (!b3s->inst_offline) {
	    advanced_config_set(b3s, obj);
	  }
	} else if (obj->body.otype == b3s->uris.sb3_control) {
	  b3s->suspend_ui_msg = 1;
	  const LV2_Atom_Object* obj = (LV2_Atom_Object*)&ev->body;
	  char *k; int v;
	  if (!get_cc_key_value(&b3s->uris, obj, &k, &v)) {
#ifdef DEBUGPRINT
	    fprintf(stderr, "B3LV2: callMIDIControlFunction(..,\"%s\", %d);\n", k, v);
#endif
	    callMIDIControlFunction(b3s->inst->midicfg, k, v);
	  }
	  b3s->suspend_ui_msg = 0;
	}
      }
      ev = lv2_atom_sequence_next(ev);
    }
  }

  /* synthesize [remaining] sound */
  synthSound(b3s, written, n_samples, audio);

  /* send active keys to GUI - IFF changed */
  bool keychanged = false;
  for (int i = 0 ; i < MAX_KEYS/32; ++i) {
    if (b3s->active_keys[i] != b3s->inst->synth->_activeKeys[i]) {
      keychanged = true;
    }
    b3s->active_keys[i] = b3s->inst->synth->_activeKeys[i];
  }
  if (keychanged) {
    LV2_Atom_Forge_Frame frame;
    lv2_atom_forge_frame_time(&b3s->forge, 0);
    x_forge_object(&b3s->forge, &frame, 1, b3s->uris.sb3_activekeys);
    lv2_atom_forge_property_head(&b3s->forge, b3s->uris.sb3_keyarrary, 0);
    lv2_atom_forge_vector(&b3s->forge, sizeof(unsigned int), b3s->uris.atom_Int, MAX_KEYS/32, b3s->active_keys);
    lv2_atom_forge_pop(&b3s->forge, &frame);
  }

  /* check for new instances */
  postrun(b3s);

  if (b3s->update_gui_now) {
    b3s->update_gui_now = 0;
    b3s->update_pgm_now = 1;
    b3s->suspend_ui_msg = 1;
    rc_loop_state(b3s->inst->state, rc_cb, b3s);
    b3s->suspend_ui_msg = 0;
    forge_kvconfigmessage(&b3s->forge, &b3s->uris, b3s->uris.sb3_cfgkv, "lv2.info", b3s->lv2nfo);
    forge_kvcontrolmessage(&b3s->forge, &b3s->uris, "special.init", (int32_t) b3s->thirtysec);
  } else if (b3s->update_pgm_now) {
    b3s->update_pgm_now = 0;
    loopProgammes(b3s->inst->progs, 1, pgm_cb, b3s);
  }
}
Ejemplo n.º 7
0
static void
bim_run(LV2_Handle instance, uint32_t n_samples)
{
	LV2meter* self = (LV2meter*)instance;

	const uint32_t capacity = self->notify->atom.size;
	assert(capacity > 920);
	lv2_atom_forge_set_buffer(&self->forge, (uint8_t*)self->notify, capacity);
	lv2_atom_forge_sequence_head(&self->forge, &self->frame, 0);

	if (self->send_state_to_ui && self->ui_active) {
		self->send_state_to_ui = false;
		forge_kvcontrolmessage(&self->forge, &self->uris, self->uris.mtr_control, CTL_SAMPLERATE, self->rate);
	}

	/* Process incoming events from GUI */
	if (self->control) {
		LV2_Atom_Event* ev = lv2_atom_sequence_begin(&(self->control)->body);
		while(!lv2_atom_sequence_is_end(&(self->control)->body, (self->control)->atom.size, ev)) {
			if (ev->body.type == self->uris.atom_Blank || ev->body.type == self->uris.atom_Object) {
				const LV2_Atom_Object* obj = (LV2_Atom_Object*)&ev->body;
				if (obj->body.otype == self->uris.mtr_meters_on) {
					self->ui_active = true;
					self->send_state_to_ui = true;
				}
				else if (obj->body.otype == self->uris.mtr_meters_off) {
					self->ui_active = false;
				}
				else if (obj->body.otype == self->uris.mtr_meters_cfg) {
					int k; float v;
					get_cc_key_value(&self->uris, obj, &k, &v);
					switch (k) {
						case CTL_START:
							self->ebu_integrating = true;
							break;
						case CTL_PAUSE:
							self->ebu_integrating = false;
							break;
						case CTL_RESET:
							bim_reset(self);
							self->send_state_to_ui = true;
							break;
						case CTL_AVERAGE:
							self->bim_average = true;
							break;
						case CTL_WINDOWED:
							self->bim_average = false;
							break;
						default:
							break;
					}
				}
			}
			ev = lv2_atom_sequence_next(ev);
		}
	}
#if 0
	static uint32_t max_post = 0;
	if (self->notify->atom.size > max_post) {
		max_post = self->notify->atom.size;
		printf("new post parse: %d\n", max_post);
	}
#endif


	/* process */

	if (self->ebu_integrating && self->integration_time < 2147483647) {
		/* currently 'self->histS' is int32,
		 * the max peak that can be recorded is 2^31,
		 * for now we simply limit data-acquisition to at
		 * most 2^31 points.
		 */
		if (self->integration_time > 2147483647 - n_samples) {
			self->integration_time = 2147483647;
		} else {
			for (uint32_t s = 0; s < n_samples; ++s) {
				float_stats(self, self->input[0] + s);
			}
			self->integration_time += n_samples;
		}
	}

	const int fps_limit = n_samples * ceil(self->rate / (5.f * n_samples)); // ~ 5fps
	self->radar_resync += n_samples;

	if (self->radar_resync >= fps_limit || self->send_state_to_ui) {
		self->radar_resync = self->radar_resync % fps_limit;

		if (self->ui_active && (self->ebu_integrating || self->send_state_to_ui)) {
			LV2_Atom_Forge_Frame frame;
			lv2_atom_forge_frame_time(&self->forge, 0);
			x_forge_object(&self->forge, &frame, 1, self->uris.bim_stats);

			lv2_atom_forge_property_head(&self->forge, self->uris.ebu_integr_time, 0);
			lv2_atom_forge_long(&self->forge, self->integration_time);

			lv2_atom_forge_property_head(&self->forge, self->uris.bim_zero, 0);
			lv2_atom_forge_int(&self->forge, self->bim_zero);
			lv2_atom_forge_property_head(&self->forge, self->uris.bim_pos, 0);
			lv2_atom_forge_int(&self->forge, self->bim_pos);

			lv2_atom_forge_property_head(&self->forge, self->uris.bim_max, 0);
			lv2_atom_forge_double(&self->forge, self->bim_max);
			lv2_atom_forge_property_head(&self->forge, self->uris.bim_min, 0);
			lv2_atom_forge_double(&self->forge, self->bim_min);
			lv2_atom_forge_property_head(&self->forge, self->uris.bim_nan, 0);
			lv2_atom_forge_int(&self->forge, self->bim_nan);
			lv2_atom_forge_property_head(&self->forge, self->uris.bim_inf, 0);
			lv2_atom_forge_int(&self->forge, self->bim_inf);
			lv2_atom_forge_property_head(&self->forge, self->uris.bim_den, 0);
			lv2_atom_forge_int(&self->forge, self->bim_den);

			lv2_atom_forge_property_head(&self->forge, self->uris.bim_data, 0);
			lv2_atom_forge_vector(&self->forge, sizeof(int32_t), self->uris.atom_Int, BIM_LAST, self->histS);
			lv2_atom_forge_pop(&self->forge, &frame);
		}

		if (self->ui_active) {
			LV2_Atom_Forge_Frame frame;
			lv2_atom_forge_frame_time(&self->forge, 0);
			x_forge_object(&self->forge, &frame, 1, self->uris.bim_information);
			lv2_atom_forge_property_head(&self->forge, self->uris.ebu_integrating, 0);
			lv2_atom_forge_bool(&self->forge, self->ebu_integrating);
			lv2_atom_forge_property_head(&self->forge, self->uris.bim_averaging, 0);
			lv2_atom_forge_bool(&self->forge, self->bim_average);
			lv2_atom_forge_pop(&self->forge, &frame);
		}

		if (!self->bim_average) {
			bim_clear (self);
		}
	}

	/* foward audio-data */
	if (self->input[0] != self->output[0]) {
		memcpy(self->output[0], self->input[0], sizeof(float) * n_samples);
	}

#if 0
	//printf("forged %d bytes\n", self->notify->atom.size);
	static uint32_t max_cap = 0;
	if (self->notify->atom.size > max_cap) {
		max_cap = self->notify->atom.size;
		printf("new max: %d (of %d avail)\n", max_cap, capacity);
	}
#endif
}
Ejemplo n.º 8
0
static void
run(LV2_Handle instance, uint32_t n_samples)
{
	uint32_t i,c;
	BalanceControl* self = (BalanceControl*)instance;
	const float balance = *self->balance;
	const float trim = db_to_gain(*self->trim);
	float gain_left  = 1.0;
	float gain_right = 1.0;

	const int ascnt = self->samplerate / UPDATE_FREQ;

  const uint32_t capacity = self->notify->atom.size;
  lv2_atom_forge_set_buffer(&self->forge, (uint8_t*)self->notify, capacity);
  lv2_atom_forge_sequence_head(&self->forge, &self->frame, 0);

  /* reset after state restore */
	if (self->queue_stateswitch) {
		self->queue_stateswitch = 0;
		self->peak_integrate_pref = self->state[0] * self->samplerate;
		self->meter_falloff = self->state[1] / UPDATE_FREQ;
		self->peak_hold = self->state[2] * UPDATE_FREQ;

		self->peak_integrate_pref = MAX(0, self->peak_integrate_pref);
		self->peak_integrate_pref = MIN(self->peak_integrate_pref, self->peak_integrate_max);

		self->meter_falloff = MAX(0, self->meter_falloff);
		self->meter_falloff = MIN(self->meter_falloff, 1000);

		self->peak_hold = MAX(0, self->peak_hold);
		self->peak_hold = MIN(self->peak_hold, 60 * UPDATE_FREQ);
		reset_uicom(self);
		send_cfg_to_ui(self);
	}

  /* Process incoming events from GUI */
  if (self->control) {
    LV2_Atom_Event* ev = lv2_atom_sequence_begin(&(self->control)->body);
    while(!lv2_atom_sequence_is_end(&(self->control)->body, (self->control)->atom.size, ev)) {
      if (ev->body.type == self->uris.atom_Blank || ev->body.type == self->uris.atom_Object) {
				const LV2_Atom_Object* obj = (LV2_Atom_Object*)&ev->body;
				if (obj->body.otype == self->uris.blc_meters_on) {
					if (self->uicom_active == 0) {
						reset_uicom(self);
						send_cfg_to_ui(self);
						self->uicom_active = 1;
					}
				}
				if (obj->body.otype == self->uris.blc_meters_off) {
					self->uicom_active = 0;
				}
				if (obj->body.otype == self->uris.blc_meters_cfg) {
					const LV2_Atom* key = NULL;
					const LV2_Atom* value = NULL;
					lv2_atom_object_get(obj, self->uris.blc_cckey, &key, self->uris.blc_ccval, &value, 0);
					if (value && key) {
						update_meter_cfg(self, ((LV2_Atom_Int*)key)->body, ((LV2_Atom_Float*)value)->body);
					}
				}
			}
      ev = lv2_atom_sequence_next(ev);
    }
	}

	/* pre-calculate parameters */
	if (balance < 0) {
		gain_right = 1.0 + RAIL(balance, -1.0, 0.0);
	} else if (balance > 0) {
		gain_left = 1.0 - RAIL(balance, 0.0, 1.0);
	}

	switch ((int) *self->unitygain) {
		case 1:
			{
				/* maintain amplitude sum */
				const double gaindiff = (gain_left - gain_right);
				gain_left = 1.0 + gaindiff;
				gain_right = 1.0 - gaindiff;
			}
			break;
		case 2:
			{
				/* equal power*/
				if (balance < 0) {
					gain_right = MAX(.5, gain_right);
					gain_left = db_to_gain(-gain_to_db(gain_right));
				} else {
					gain_left = MAX(.5, gain_left);
					gain_right = db_to_gain(-gain_to_db(gain_left));
				}
			}
		case 0:
			/* 'tradidional' balance */
			break;
	}

	if (*(self->phase[C_LEFT])) gain_left *=-1;
	if (*(self->phase[C_RIGHT])) gain_right *=-1;

	/* keep track of input levels -- only if GUI is visiable */
	if (self->uicom_active) {
		for (c=0; c < CHANNELS; ++c) {
			for (i=0; i < n_samples; ++i) {
				/* input peak meter */
				const float ps = fabsf(self->input[c][i]);
				if (ps > self->p_peak_in[c]) self->p_peak_in[c] = ps;

				if (self->peak_integrate_pref < 1) {
					const float psm = ps * ps;
					if (psm > self->p_peak_inM[c]) self->p_peak_inM[c] = psm;
					continue;
				}

				/* integrated level, peak */
				const int pip = (self->peak_integrate_pos + i ) % self->peak_integrate_pref;
				const double p_sig = SQUARE(self->input[c][i]);
				self->p_peak_inP[c] += p_sig - self->p_peak_inPi[c][pip];
				self->p_peak_inPi[c][pip] = p_sig;
				/* peak of integrated signal */
				const float psm = self->p_peak_inP[c] / (double) self->peak_integrate_pref;
				if (psm > self->p_peak_inM[c]) self->p_peak_inM[c] = psm;
			}
		}
	}

	/* process audio -- delayline + balance & gain */
	process_channel(self, gain_left * trim,  C_LEFT, n_samples);
	process_channel(self, gain_right * trim, C_RIGHT, n_samples);

	/* swap/assign channels */
	uint32_t pos = 0;

	if (self->c_monomode != (int) *self->monomode) {
		/* smooth change */
		const uint32_t fade_len = (n_samples >= FADE_LEN) ? FADE_LEN : n_samples;
		for (; pos < fade_len; pos++) {
			const float gain = (float)pos / (float)fade_len;
			float x1[CHANNELS], x2[CHANNELS];
			channel_map_change(self, self->c_monomode, pos, x1);
			channel_map_change(self, (int) *self->monomode, pos, x2);
			self->output[C_LEFT][pos] = x1[C_LEFT] * (1.0 - gain) + x2[C_LEFT] * gain;
			self->output[C_RIGHT][pos] = x1[C_RIGHT] * (1.0 - gain) + x2[C_RIGHT] * gain;
		}
	}

	channel_map(self, (int) *self->monomode, pos, n_samples);
	self->c_monomode = (int) *self->monomode;

	/* audio processing done */

	if (!self->uicom_active) {
		return;
	}

	/* output peak meter */
	for (c=0; c < CHANNELS; ++c) {
		for (i=0; i < n_samples; ++i) {
			/* peak */
			const float ps = fabsf(self->output[c][i]);
			if (ps > self->p_peak_out[c]) self->p_peak_out[c] = ps;

				if (self->peak_integrate_pref < 1) {
				const float psm = ps * ps;
				if (psm > self->p_peak_outM[c]) self->p_peak_outM[c] = psm;
				continue;
			}

			/* integrated level, peak */
			const int pip = (self->peak_integrate_pos + i ) % self->peak_integrate_pref;
			const double p_sig = SQUARE(self->output[c][i]);
			self->p_peak_outP[c] += p_sig - self->p_peak_outPi[c][pip];
			self->p_peak_outPi[c][pip] = p_sig;
			/* peak of integrated signal */
			const float psm = self->p_peak_outP[c] / (double) self->peak_integrate_pref;
			if (psm > self->p_peak_outM[c]) self->p_peak_outM[c] = psm;
		}
	}
	if (self->peak_integrate_pref > 0) {
		self->peak_integrate_pos = (self->peak_integrate_pos + n_samples ) % self->peak_integrate_pref;
	}

	/* simple output phase correlation */
	for (i=0; i < n_samples; ++i) {
		const double p_pos = SQUARE(self->output[C_LEFT][i] + self->output[C_RIGHT][i]);
		const double p_neg = SQUARE(self->output[C_LEFT][i] - self->output[C_RIGHT][i]);

		/* integrate over 500ms */
		self->p_phase_outP += p_pos - self->p_phase_outPi[self->phase_integrate_pos];
		self->p_phase_outN += p_neg - self->p_phase_outNi[self->phase_integrate_pos];
		self->p_phase_outPi[self->phase_integrate_pos] = p_pos;
		self->p_phase_outNi[self->phase_integrate_pos] = p_neg;
		self->phase_integrate_pos = (self->phase_integrate_pos + 1) % self->phase_integrate_max;
	}

/* abs peak hold */
#define PKM(A,CHN,ID) \
{ \
	const float peak = VALTODB(self->p_peak_##A[CHN]); \
	if (peak > self->p_max_##A[CHN]) { \
		self->p_max_##A[CHN] = peak; \
		self->p_tme_##A[CHN] = 0; \
		forge_kvcontrolmessage(&self->forge, &self->uris, ID, self->p_max_##A[CHN]); \
	} else if (self->peak_hold <= 0) { \
		(self->p_tme_##A[CHN])=0; /* infinite hold */ \
	} else if (self->p_tme_##A[CHN] <= self->peak_hold) { \
		(self->p_tme_##A[CHN])++; \
	} else if (self->meter_falloff == 0) { \
		self->p_max_##A[CHN] = peak; \
		forge_kvcontrolmessage(&self->forge, &self->uris, ID, self->p_max_##A[CHN]); \
	} else { \
		self->p_max_##A[CHN] -= self->meter_falloff; \
		self->p_max_##A[CHN] = MAX(peak, self->p_max_##A[CHN]); \
		forge_kvcontrolmessage(&self->forge, &self->uris, ID, self->p_max_##A[CHN]); \
	} \
}

/* RMS meter */
#define PKF(A,CHN,ID) \
{ \
	float dbp = VALTODB(sqrt(2.0 * self->p_peak_##A##M[CHN])); \
	if (dbp > self->p_vpeak_##A[CHN]) { \
		self->p_vpeak_##A[CHN] = dbp; \
	} else if (self->meter_falloff == 0) { \
		self->p_vpeak_##A[CHN] = dbp; \
	} else { \
		self->p_vpeak_##A[CHN] -= self->meter_falloff; \
		self->p_vpeak_##A[CHN] = MAX(dbp, self->p_vpeak_##A[CHN]); \
	} \
	forge_kvcontrolmessage(&self->forge, &self->uris, ID, (self->p_vpeak_##A [CHN])); \
}

	/* report peaks to UI */
	self->p_peakcnt += n_samples;
	if (self->p_peakcnt > ascnt) {

		PKF(in,  C_LEFT,  METER_IN_LEFT)
		PKF(in,  C_RIGHT, METER_IN_RIGHT);
		PKF(out, C_LEFT,  METER_OUT_LEFT);
		PKF(out, C_RIGHT, METER_OUT_RIGHT);

		PKM(in,  C_LEFT,  PEAK_IN_LEFT);
		PKM(in,  C_RIGHT, PEAK_IN_RIGHT);
		PKM(out, C_LEFT,  PEAK_OUT_LEFT);
		PKM(out, C_RIGHT, PEAK_OUT_RIGHT);

#define RMSF(A) sqrt( ( (A) / (double)self->phase_integrate_max ) + 1.0e-12 )
		double phase = 0.0;
		const double phasdiv = self->p_phase_outP + self->p_phase_outN;
		if (phasdiv >= 1.0e-6) {
			phase = (RMSF(self->p_phase_outP) - RMSF(self->p_phase_outN)) / RMSF(phasdiv);
		} else if (self->p_phase_outP > .001 && self->p_phase_outN > .001) {
			phase = 1.0;
		}

		forge_kvcontrolmessage(&self->forge, &self->uris, PHASE_OUT, phase);

		self->p_peakcnt -= ascnt;
		for (c=0; c < CHANNELS; ++c) {
			self->p_peak_in[c] = -INFINITY;
			self->p_peak_out[c] = -INFINITY;
			self->p_peak_inM[c] = -INFINITY;
			self->p_peak_outM[c] = -INFINITY;
		}
	}

	/* report values to UI - if changed*/
	float bal = gain_to_db(fabsf(gain_left));
	if (bal != self->p_bal[C_LEFT]) {
		forge_kvcontrolmessage(&self->forge, &self->uris, GAIN_LEFT, bal);
	}
	self->p_bal[C_LEFT] = bal;

	bal = gain_to_db(fabsf(gain_right));
	if (bal != self->p_bal[C_RIGHT]) {
		forge_kvcontrolmessage(&self->forge, &self->uris, GAIN_RIGHT, bal);
	}
	self->p_bal[C_RIGHT] = bal;

	if (self->p_dly[C_LEFT] != self->c_dly[C_LEFT]) {
		forge_kvcontrolmessage(&self->forge, &self->uris, DELAY_LEFT, (float) self->c_dly[C_LEFT] / self->samplerate);
	}
	self->p_dly[C_LEFT] = self->c_dly[C_LEFT];

	if (self->p_dly[C_RIGHT] != self->c_dly[C_RIGHT]) {
		forge_kvcontrolmessage(&self->forge, &self->uris, DELAY_RIGHT, (float) self->c_dly[C_RIGHT] / self->samplerate);
	}
	self->p_dly[C_RIGHT] = self->c_dly[C_RIGHT];

}
Ejemplo n.º 9
0
static void send_cfg_to_ui(BalanceControl* self) {
	forge_kvcontrolmessage(&self->forge, &self->uris, CFG_INTEGRATE, self->peak_integrate_pref / self->samplerate);
	forge_kvcontrolmessage(&self->forge, &self->uris, CFG_FALLOFF, self->meter_falloff * (float) UPDATE_FREQ);
	forge_kvcontrolmessage(&self->forge, &self->uris, CFG_HOLDTIME, self->peak_hold / (float) UPDATE_FREQ);
}